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Description of the Domain of Definition of the Frac-
tional Power Lz of a Second-order Differential Op-
erator

T.B. Gasymov*, R.J. Taghiyeva

Abstract. In this paper, we study the operator L generated in the space L,(0,1)
by a second-order differential operator with integral boundary conditions: U,(y) =
fol wu(z)y(x) dz, v =1,2. Such an operator is not densely defined in any space L,(0,1).
Therefore, the operator is considered not on the whole L,(0,1), but in its subspace
L,u(0,1) = {y(z) € L,(0,1) : Uy(y),v = 1,2},1 < p < oo, which has codimension 2.
Under additional conditions on the functions ¢, (x),v = 1,2, a constructive description
of the domain of definition of the operator L2 is given. The results on uniform and
absolute convergence of biorthogonal expansions in eigen- and associated functions are
formulated.
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1. Introduction

Consider the linear differential expression

(y) =~y +q(z)y,z € (0,1) (1)

and boundary conditions U,(y) = 0,v = 1,2, where ¢(z)- is a complex-valued
function summable on [0, 1] and U; (y) and Us(y)-are the corresponding boundary
forms. Differential expression (1) and boundary conditions U,(y) = 0,v = 1,2,
generate a differential operator L with a domain of definition D(L) in some func-
tional space X. We are interested in some spectral properties, including the
behavior of the eigenvalues and the basis properties of the eigenfunctions, as well
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as the domains of fractional powers of this operator Such a problem in the case of
regular boundary conditions has been studied quite well (see [1, 2] and the bibli-
ography there). The case of irregular, as well as more general regular boundary
conditions, when the boundary conditions contain some integrals of the function
y(x) and its derivatives, was considered in [3, 8]. In these works, the spectral
properties of the corresponding operator were studied in the space L2(0,1). The
spectral properties of differential operators with regular two-point boundary con-
ditions in L,(0,1). spaces were studied in [9, 11]. In [12, 19], direct and inverse
spectral problems for differential operators with multipoint boundary conditions,
as well as with discontinuity conditions in various function spaces, were studied.
We also note the class of degenerate boundary conditions for which the spectrum
of the corresponding operator is either empty or coincides with the entire complex
plane (see [20] and the bibliography therein). However, as a rule, boundary forms
generated an unbounded functional in the space under consideration, and in this
case the operator has a dense domain of definition, which made it possible to
construct a conjugate operator or assume the regularity of boundary conditions
[1, 2, 4]. Here we will consider integral boundary conditions

1
Uu(y) = /0 po(@)y(z) de, v =1,2 2)

where ¢1(z) and po(x) are given linearly independent functions belonging to
the space Lg(0, 1),% + % = 1. These conditions are not regular in the sense of
Birkhoff [1], and there is no corresponding conjugate operator for them. Such
conditions were used for other purposes in [6, 7]. In [21] problem (1), (2) was
investigated under conditions of sufficient smoothness of the functions ¢(z) and
(), the asymptotic behavior of the eigenvalues and eigenfunctions was studied,
and in [22] a theorem on the Riesz basis property of a system of eigenfunctions
in a certain subspace L2(0,1) was proven. Note that differential equations with
nonlocal conditions of integral form have interesting applications in mechanics
[23] and in the theory of diffusion processes [24].

The theory of fractional powers of positive operators is closely related to
questions of convergence of spectral decompositions. In [25], an application of
fractional powers of self-adjoint operators to questions of uniform convergence of
series in eigenfunctions of differential operators was given. More profound results
in this direction were obtained in [26] for elliptic operators. In [28, 29], fractional
powers of operators close to self-adjoint operators were used to estimate the rate
of convergence of series in the eigen-functions of elliptic and pseudo-differential
operators.

In the theory of boundary value problems, one of the important questions is
the description of the domains of definition of fractional powers of positive oper-
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ators. This question is the subject of the works [29-32], where positive operators
generated by elliptic boundary value problems are studied and the domains of def-
inition of fractional powers of such operators are described. In the papers [33, 34],
the domains of definition of fractional powers of ordinary differential operators
generated by regular boundary conditions in the space L,(0,1),1 < p < oo, are
described. In [10-12], generalizations of these results are given to the case of
quasi-differential and differential operators with regular multipoint and integral
boundary conditions. In [35, 36] the basis properties of the eigen- and associ-
ated functions of problem (1),(2) in a certain subspace Ly 7(0,1) C Ly(0,1) of
finite codimension were studied. In the present paper, Welwill give a constructive
description of the domain of definition of the operator L2.

2. Some auxiliary concepts and facts

Let’s give some concepts and facts that we will need later

Definition 1. [38] Let X-be a Banach space and A-be a closed linear operator
with dense domain D(A) C X and with values also in X. The operator A is
called positive if the interval (—oo, 0] belongs to the resolvent set and there exists
a number C' > 0 such that

I(A+tD)7Y < ,t>0 (3)

C
(I+¢t) —
Definition 2. Let X -be a Banach space and let L- be a closed linear operator with
dense domain D(A) C X and with values also in X. A ray l = {\;arg\ = ¢} is
called a ray of minimal growth of the resolvent of the operator L, if the resolvent
R(X\) = (L — XI)~! exists on this ray far enough from the origin and satisfies the
inequality

<

IR < 137

From Definition 2 it follows that there exist numbers € and A such that the
operator A = eL + hl is positive.

Let A-be a positive operator. Then it is easy to show [39, p.135] that estimate
(3) is also satisfied in some neighborhood of the interval (—oo, 0]. Let I" denote the
contour that goes around the interval (—oo, 0] and is located in this neighborhood.
For —oo < Rez < 0 the complex powers of the operator A are defined by the

formula [39, p.135]

z 1 z
A= o [ RO (4)
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Complex powers of A%, —oo < —Rez < 0, are defined as operators inverse to
powers of A7%,

We present another theorem, which we will use to obtain estimates for the
norms of the operators A%.

Theorem 1. (M.Riesz) [9]. Let f € L,(0,1),1 < p < oo. Then the integral

0
0 r+1

g9(z) dt

exists almost everywhere in [0,1]. Moreover, there exists a constant C' > 0 such
that the inequality ||g|l, < C||f|lp holds.

Let us introduce in the space L,(0,1),1 < p < oo, a differential operator L,
corresponding to the differential expression [(y) with the domain of definition
D(L) = {y(x) € WZ?(O, 1),l(y) € Ly,(0,1);Uy(y) = 0,v = 1,2} and consider the
problem of the eigenvalues of this operator: Ly = \y.

Let’s put A = p?. Let us denote S, = {p: I < argp < W},y =0,1,2,3.
In each region S, equation (1) has a fundamental system of solutions with asymp-
totics [1, p. 58]

yi(@, p) = " (1 + Ta(x, ), y2(, p) = 27 (1 + Ta(x, p)), ()

where the numbers w; and wy are different square roots of (—1) (i.e. %i), num-
bered so that Re(pwi) < 0 < Re(pws) is satisfied for p € S, and the func-
tions 7;(x, p) are continuous even for sufficiently large values of |p| the estimate
Yi(z, p)| < {,i=1,2 is satisfied, uniformly in 2 € [0, 1].

In what follows, with respect to functions ¢, (x),v = 1,2, we will assume that
the following conditions are met:

A) q(z) € L1(0,1); 3a € (0,1) : pyu(x) € L1(0,)NWL(0, ) "W (1—a,1),v =
1,2;

B) a182 — aaB1 # 0, where oy, = ¢,,(0), By = (Pv(l)-

Then in some strip [Im p| < 7, for some 7 > 0, the following relations are
satisfied:

/1 (x)ei’”dw 1 (B P — ) +o0 (1) (6)
. v = Zp v v P ,

1
, 1 . 1
/ oy(x)e PPdr = — (Bve*”’ — av) +o0 <> )
0 —p p
These relations are obtained using integration by parts and from the Riemann-
Lebesgue theorem. In addition, from (5) and (6) it follows that under the same

assumptions the relations are also satisfied:
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1
Uy (1) = [ 0 (@)1 (2,p) dz = & (B — ) + ™02
0 ()
1
Uy (12) = [ 0 (@) 2 (2,p) dz = == (8670 — @) + 22
0

where for functions r,;(p) for large values of |p| and |Imp| < 7 the estimate
rvi(p) = o(1) is satisfied.

The eigenvalues of the operator L are the numbers )\, = p?, where p,, are the
zeros of the characteristic determinant

Ur(y1) Ui(y2)

B0 = \ty) Ualye)]

The following theorem is true regarding the function A(p) [37].

Theorem 2. [37] Let conditions A), B) be met. Then for the characteristic
determinant A(p) of the spectral problem (1), (2) the following are valid:

i) any number § > 0 corresponds to a constant ms > 0, depending on the
function A(p), such that on the set obtained from the complex p-plane by
throwing out the d-neighborhoods of the zeros of A(p) the inequality holds

1
|A(p)| = my—geelrs),

p|?

ii) the zeros of the function A(p) are asymptotically simple and separated;
iii) the function A(p) has two series of roots: the first series has an asymptotic
pn =1+ o(1),

and the second series pl, is defined by the equality pl, = —pn.
The operator L constructed above does not have a dense domain of definition
in the space L,(0,1) and therefore the eigenfunctions of the operator L cannot

be complete in this space. To eliminate this drawback, consider the operator L
not on the whole space L,(0,1), but in its closed subspace

Ly (0,1) = {f(z) € Ly(0.1) : Uy (f) = 0,v = 1,2}.
It is obvious that codimL, 7 = 2. Similarly we define the space

Wy (0,1) = {f(z) € WF(0,1) : Uy(f) = 0,v =1,2}.
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Let us define the operator L in the space Ly, 7(0,1) as follows:
D(L) ={y e W};(0,1) : {(y) € Lpy(0,1)} and for y € D(L) : Ly = £(y).

The operator L thus defined has an everywhere dense domain of definition in
L,1(0,1) [40, Lemma 2.2]. To study the spectral properties of the operator L in
the space Ly, 7(0, 1), we construct and estimate the resolvent of the operator L.
It is known (see [1, p. 47]) that the Green’s function of the operator L — p*I has
the form

1 9@ &p) yila,p) yz(m,p)
G(%&P):m U(g)  Uilyr) Ui(ye) |, (8)
P ) Us(yr)  Ua(ye)

where
(z,€,p) = {—y1($,p)21(§,p), xr >E,
o ya(z,p)22(€,p), T <E,
a(6p) = B8A e gy = WED) gy urlE0) 1alEp)

W(p)’ v1(&0) v(€sp)

Consider in the complex p-plane the region Qs = (72 {p : |p — pu| > 0},
where {pi} is the set of zeros of the function A(p). Let K denote the region of
the complex A-plane, which is the image of €25 under the mapping \ = p.

In work [37] it is shown that for the Green’s function G(x, &, p), the following
representation is true:

G(x,6,p) = *Po (p,z,6) + Zmp,xf (9)

zk‘l

where

Po(p,z,8) = Aoo(p, z,§) Eo(p, 7,§), Pulp,r,§) = Ai(p, x,§) Ei(p, x) Ex(p, §),

Aik(p,x, &) = ai(p)(1 + ui(p, ) (1 + vi(p,§)), 4, k=0,1,2, (11)

ip(z—¢&) ) .
E(w &) =15 " P78 By =em, Bypa) =t (12)
ezp(ffx), xr < é"
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if p € SyN Qs and

e~ =8 x> ¢

__ _—ipx _ _—ip(l—x)
e—ip(f—ai)’ I < €7 El(pvx) =€ ) Eg(p,l‘) =e€

E()(«T,f,p) = {

(13)

if p € S3NQs. In addition, the following relations are fulfilled:
lai(p)| < e, 4,k=0,1,2; pe€ (SoUS3)NQ; (14)
ui(p,z) = 0, vp(p,&) — 0 as p — 0 uniformly in z,& € [0, 1]. (15)

The following theorem is also proved in [37].

Theorem 3 [37]. Let p take values on a ray on which Re(tip) # 0, and
let the operator L be generated by the differential expression (1) and boundary
conditions (2), where conditions A), B) are satisfied. Then, for the resolvent of
the operator L, for sufficiently large values of |p|, the following estimate holds:

C
IR0 Ly y—sLyo < e (16)

It follows from this theorem that, in addition to the positive real semi-axis, all
rays on the A-plane emanating from the origin are rays of minimal growth of the
resolvent of the operator L. Moreover, for sufficiently large h > 0, the operator
A =L + hl is positive.

Remark 1. Let f € Ly(a,b) and g = R(p*)f. Then, on the rays Re(+ip) # 0,
the estimate

C
lg'll» < m\lfllp- (17)

This follows from the fact that for the function % a%G(x, &, p), an asymptotic
representation similar to (9) holds.

In the next section, we will give a constructive description of D (A% under
additional conditions on the functions ¢, (x), v = 1,2. But before that, we will
prove one more theorem in the general case.

Theorem 4 Let the operator L be generated by the differential expression (1)
and the boundary conditions (2), and A = L+ hl. Let f € L,y(0,1) and set
g=A"Y2f Then g ¢ W;U(O, 1) and the following estimate holds:

lglls < ClIfll» (18)

whelre C > 0-is a constant independent of f and g. In other words, the operator
A7z acts boundedly from Ly (0,1) to W;U(O, 1).
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Proof. Setting z = —% in formula (4), we obtain
1 o0
A"3if = “sin s {/ [(N2 —)7 - t—%] (L +tI)~ fdt+
e 2 N2
& 1
—i—/ té(L—i-tI)lfdt} 4 —{g1+ 92} - (19)
N2 T

To prove the existence of the derivative of the function g;(x) for x € (0, 1),
we represent it in the form

nio)= [ o —oti-ri] [ Gl €, 1) ()t =

N2

=2 [Tolove -t G 6 - (©dedp. (20)

N
We also denote

¢15(z) = 2/000 [(N2 — ) - p’l} X

N

1
« [ 69w —@acdp, j=o01 (21)

Taking into account the relation

[(NZ —p?)7E - ,0‘1} =0 <1>

pE
and inequalities (16),(17), we obtain that the integral over p in (21) converges
absolutely for j = 0, and for j = 1, it converges in L,(0,1). However, since (21)
is obtained from (20) by formal differentiation, it follows that ¢19 € Wpl(O, 1) and
gi(x) = ¢r1(x),z € (0,1), hence g1 € W (0,1).
Now let’s consider the function go(z). Taking into account (9), we represent
it as follows:

] 1
nle) == [0t [ R os@dsdps

2 00 1
+ > /N p‘lfo Pik(%&p)f(g)dfdpﬂ%{QQ,O(x)+g2,l<$)}- (22)

i,k=1

Let us also denote for z € (0,1),

o) 1 .
é2,4(2) = /N p! /0 {2060 (@, ~0") — P)(x.6.p) } F()dsdp =
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TR G) 2 () df
= lim - {2 G (x, €, — — P €, } dédp = lim i(x,€).
E;M/N p /g pGF (2,8, —p”) — Fyp(x,&,p) ¢ f(§)dEdp €i+0¢2,;(9«° €)

Let f(z) first be a continuous function. We will show that the integrals
¢2,j(x,€) converge absolutely. Indeed,

2 oo 1—e
astec <0 Y [T [ 1@ e dgap <

ik=1

2 1—e oo
<C). / 1)l / 1 eRerin(m8) gpde <
ik=1"¢ N

PUSPEOTNER)

2 1—¢
<o ) [ 10 g e s

ik=1
1= 1 1 1 1
SCQ/@ !f(f)!<$+£+1+x_£+1_x+£+2_$_£>d§. (23)

Since z+1—& > 0 for z € [0,1],§ € [e,1 — €], the integral on the right-hand
side of (23) converges uniformly in z € [0,1]. On the other hand, ¢2;(x,§) is
obtained from the integral

00 1—¢
92,1(2,€) —/N p_l/ £(8) [2pG (&, —p%) = Po(a,€, p)] dédp,
15
by differentiation. It follows that go1(x,§) € WI} (0,1). Considering that

92,1 («T) - El_i}:_lo 92,1 (.’17, 5)7

in the norm of L,(0, 1), from the closeness of the differentiation operator d%, we
obtain that go1(z,¢) € W (0,1). Moreover, by Riesz’s theorem 1, it follows from

(23) that

lg21llp < ClLf -

To prove the theorem for the function gz o(x), we consider the operator Ly,
generated by the differential expression (1) and some strongly regular two-point
boundary conditions. We set Ag = Lo + hl, where the choice of the number h

_1
ensures the positivity of the operator Ag. Let go = Ay *f, f € Ly(0,1). In [10]
(see also [11] ) it was proved that estimate (18) holds for the function go(z). On
the other hand, in representation (9) for the Green’s function of the operator L —
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p*I the function Py(z, &, p) coincides with the corresponding function Pyg(z, &, p)
from the representation for the Green’s function of the operator Ly — p?I, similar
to (9). It follows that estimate (18) is also true for the function gz o(x).

The theorem is proved. «

3. Constructive description of the domain of the operator As

Consider in the space Ly, 7(0,1) the operator L, generated by the differential
expression [(y) from (1) and the boundary conditions (2). Since the functions
©1(z) and @a(z) from (2) are linearly independent, their linear span forms a two-
dimensional subspace in L4(0, 1) and, therefore, is complemented in L4(0,1). Let
L,v(0,1) be its complement. Then we can choose functions 1 (x) and ()
from L,(0, 1) such that (¢, px), v,k =1,2 and

1
Viu(y) = /0 Uy (z)z(z)de =0,v = 1,2, (24)

for any z(z) from L,y (0,1). On the other hand, WqZ(O, 1) is everywhere dense
in Ly(0,1), then W21,(0,1) will also be everywhere dense in Lg v (0,1) (see [40,
p. 28]. To construct the adjoint operator with respect to the functions ¢;(x)
and p9(x), we additionally assume that they belong to Wq2 (0,1) and, moreover,

I(¢1),1(p1) € Ly(0,1), where

I(2) = 2" +q(z)2.

Let y € D(L) and z € VVf(O7 1). Then, integrating twice by parts, we obtain

(Ly, z) = —y'(1)2(1) + ¢/ (0)2(0) + y(1)2/(1) — y(0)2'(0) + (y,1(2)). (25

On the other hand, given that I(y) € W;U(O, 1), the function I(y) satisfies the
boundary conditions (2). Then, integrating by parts twice, we have

(1) 21) = =y (Ve (1) +¢'(0)p1(0) + (1)1 (1) — y(0)#1(0) + (y, (1)) = 0,

(I(y),2) = =y (1)wa(1) + 4'(0)p2(0) + y(1)5(1) — y(0)¥5(0) + (y, (¢2)) =0,

According to the assumption A = ©1(1)p2(0) — 2(1)91(0) # 0. Then, solving
the resulting system of equations for the unknowns (1) and y'(0), we obtain

Y (1) = 1 (2200064 (1) ~ 1(0)eh(1) 5(1) + 5 (21(0)eh(0) — ¢ (0)2(0)) y(0) +
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1

+E<y’ 22(0)i(1) — 1(0)(p2))
(0) = % (22161 (1) — 21 (Deh(1) y(1) + (221 (0) ~ h(0)er(1) y(0)+
1

+ {2 (Diler) — o1 (Dil02)-

Now substituting the obtained expressions into (25), we obtain

+y(0) x
x| 5 (£4(0)22(0)  1(0)h(0)) 2(1) + . (22(1)64(0) — F(0)1 (1)) (0) — #1(0) | +

1 ~ 1 -
1)+ 5 (#200)i(01) = 21(0)(¢2)) 2D+ 5 (2Dile1) = e1(Dil22)) 2(0)).
From the obtained relations it follows that to ensure the equality

!

o~

(Ly,2) = (y, L"2),

the adjoint operator should be defined as follows:

D(L*) = {2 € WZ(0,1): Vo (2) =0, v =T,4; I*(2) € Lqv(0,1)} (26)
and for z € D(L*):

where

P(2) =~ + 3@ + 5 (220)(01) — 91 0)i(p2)) 2(1)+
5 (20ie1) — o1 (D)) 20, = € (0,1); (25)

the boundary forms Vi(z) and Va(z) are defined above (see (24)), and the forms
V3(z) and Vj(z) are defined by the equalities

Va(z) = 2(1) + 5 (202400 ~ 201750 20+
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5 (2020 - 20 2(0).

Vi(z) = 2(0) + 5 (F0:0) ~ 1(0)25(0)) 2(1)~

— (2050 - (1) 2(0).

Thus, the adjoint operator L* is defined in the space L, 1 (0, 1) by the functional-
differential expression (28) using equalities (26), (27).
The following lemma plays an important role in proving the main result.

Lemma 1. Let y € D(L), = € W}(0,1),¢, € W2(0,1),1(¢,) € Ly(0,1),v =
1,2, ;1) + % = 1. Then the following estimate holds.

Ly, 2)| < Cliylwson=lwi o). (20)

Proof. Integrating by parts, we get

1
(Ly,z) = /0 (—y"(2)2'()dz + q(x)y(x))2(z) = =y (1)2(1) + y'(0)2(0)+

1 , : 1 d_f
4 /0 ()7 @)da + /0 g(@)y(@)2(@)de <

L1y, 2]+ (0, ) + Qy, 2).

For (y/,2'),estimate (29) follows from Holder’s inequality, and for Q(y, 2), it fol-
lows from the well-known estimate

(4) , -
m@{éﬁ}’y (SC)| < HyHW;JA(O,l)v] =0, 1 (30)

Considering that for functions y € WI? v(0,1) the function I(y) also satisfies
the boundary conditions (3), we obtain

1 1
U, (1)) = - / " (2)pu (@)dz + / a(@)y (@) ey (x)dz = 0.

From here, integrating by parts, we have

1
U, (l(y)) =¥ (1)eu(1) — 4/ (0)¢,(0) :/0 Y (x)g,, (z)dx+

1
-|-/0 q(@)y(x)py(z)dx,v =1,2. (31)
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Solving the resulting system of linear equations for the unknowns ¢/(1) and 3/(0),
we obtain

(1(1)b2 — @2(1)by), (32)

B =

(02(0)b1 — 1(0)b2),4'(0) =

B =

y'(1) =

where we denote

1 1
by = /0 y (2)) () do + /0 d@)y(@)p (@) dz, v=1,2.

Then, substituting (32) into (31), we obtain the following expression for the form
[y, 2]:

1 1
.2 = 5 (@2(0)b1 — @1 (0)h2) 2(1) + 5 (21 (12 — 2a(1)b1) 20).
Now estimate (29) for [y, z] is obtained from inequalities (30) applied to the
function z(z) and from Hélder’s inequality for b,. The lemma is proved. «

Remark 2. From the construction of the adjoint operator, as well as from the
form of the adjoint boundary conditions, it follows that an estimate similar to
(29) is also valid for the adjoint operator.

Theorem 5. Let the operator L be generated by the differential expression
(1) and the boundary conditions (2), and let A = L+ hI . Furthermore, suppose
that ¢, € W2(0,1), l(py) € Ly(0,1), v = 1,2. Then the following relation holds:

D(A%) — W (0,1). (33)

Proof. First, we show that the inclusion D(A%) C W;’U(O,l) holds. Let

fe D(A%). Let F,, be the Riesz projections of the operator A, corresponding to
the eigenvalues A, (see [37]). We expand the function f in the series

fEY Enf, (34)
n=2

which converges in L,(0,1) by Theorem 4 of [37]. On the other hand, Theorem
4 implies that series (34) can be differentiated term by term. Since the forms U,
are continuous linear functionals in Wpl’U(O, 1), by estimate (30), the functions
(Enf)(z) satisfy all boundary conditions (2), acting by the functionals U,, v =
1,2, on the series (34), we obtain U,(f) =0, v =1,2.
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Now we prove the inverse inclusion. Let g € W;U(O, 1), z € D(A*) and set

9 = (A*)%z. Then ¢ € D((A*)%) and (A*)%ﬁ = A*z. Applying Lemma 1 and
then Theorem 4 to the adjoint operator, we obtain

*\ 1 *
(9, (4)59)| = I(9, ()] < Cllgllwyon 12wy on) =

w1
= Cllgllwi oA 20w 01 < Cullgllws o1l 2y0.0)-

Thus, (g, (A*)%ﬁ)— is a bounded functional of ¢ for any g € Wpl(O, 1). It

follows that W;U(O, 1) C D(A%), and consequently, (33) holds.
The theorem is proved. <«

Corollary 1. The eigenfunctions and associated functions of the operator L gen-
erated by the expression l(y) and the boundary conditions (2) form a basis in the
space W;,U(Ov 1).

Corollary 2. The eigenfunctions and associated functions of the operator L gen-
erated by the expression l(y) and the boundary conditions (2) form a Riesz basis
in the space WzlyU(O, 1).

Proof. Let f € W2,,(0,1), then, according to [22], series (34) unconditionally
converges in L2(0,1). However, the series

A2f =3 A2E.f
n=2

also converges unconditionally. It follows that series (34) converges uncondition-

ally in the norm of the graph of the operatorA% and, consequently, by Theorem
5, in the norm of the space W3 ;(0,1). <«

Corollary 3. Let f € WI},U(O’ 1). Then the series

o0

> (Enf)() (35)

n=2

converges uniformly to the function f(x). Moreover, for p = 2, series (35) con-
verges uniformly and absolutely.
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