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Description of the Domain of Definition of the Frac-
tional Power L

1
2 of a Second-order Differential Op-

erator

T.B. Gasymov∗, R.J. Taghiyeva

Abstract. In this paper, we study the operator L generated in the space Lp(0, 1)
by a second-order differential operator with integral boundary conditions: Uv(y) =∫ 1

0
φv(x)y(x) dx, v = 1, 2. Such an operator is not densely defined in any space Lp(0, 1).

Therefore, the operator is considered not on the whole Lp(0, 1), but in its subspace
Lp,U (0, 1) = {y(x) ∈ Lp(0, 1) : Uv(y), v = 1, 2}, 1 < p < ∞, which has codimension 2.
Under additional conditions on the functions φv(x), v = 1, 2, a constructive description

of the domain of definition of the operator L
1
2 is given. The results on uniform and

absolute convergence of biorthogonal expansions in eigen- and associated functions are
formulated.
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1. Introduction

Consider the linear differential expression

l(y) = −y′′
+ q(x)y, x ∈ (0, 1) (1)

and boundary conditions Uv(y) = 0, v = 1, 2, where q(x)- is a complex-valued
function summable on [0, 1] and U1(y) and U2(y)-are the corresponding boundary
forms. Differential expression (1) and boundary conditions Uv(y) = 0, v = 1, 2,
generate a differential operator L with a domain of definition D(L) in some func-
tional space X. We are interested in some spectral properties, including the
behavior of the eigenvalues and the basis properties of the eigenfunctions, as well
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as the domains of fractional powers of this operator Such a problem in the case of
regular boundary conditions has been studied quite well (see [1, 2] and the bibli-
ography there). The case of irregular, as well as more general regular boundary
conditions, when the boundary conditions contain some integrals of the function
y(x) and its derivatives, was considered in [3, 8]. In these works, the spectral
properties of the corresponding operator were studied in the space L2(0, 1). The
spectral properties of differential operators with regular two-point boundary con-
ditions in Lp(0, 1). spaces were studied in [9, 11]. In [12, 19], direct and inverse
spectral problems for differential operators with multipoint boundary conditions,
as well as with discontinuity conditions in various function spaces, were studied.
We also note the class of degenerate boundary conditions for which the spectrum
of the corresponding operator is either empty or coincides with the entire complex
plane (see [20] and the bibliography therein). However, as a rule, boundary forms
generated an unbounded functional in the space under consideration, and in this
case the operator has a dense domain of definition, which made it possible to
construct a conjugate operator or assume the regularity of boundary conditions
[1, 2, 4]. Here we will consider integral boundary conditions

Uv(y) =

∫ 1

0
φv(x)y(x) dx, v = 1, 2 (2)

where φ1(x) and φ2(x) are given linearly independent functions belonging to
the space Lq(0, 1),

1
p + 1

q = 1. These conditions are not regular in the sense of
Birkhoff [1], and there is no corresponding conjugate operator for them. Such
conditions were used for other purposes in [6, 7]. In [21] problem (1), (2) was
investigated under conditions of sufficient smoothness of the functions q(x) and
φv(x), the asymptotic behavior of the eigenvalues and eigenfunctions was studied,
and in [22] a theorem on the Riesz basis property of a system of eigenfunctions
in a certain subspace L2(0, 1) was proven. Note that differential equations with
nonlocal conditions of integral form have interesting applications in mechanics
[23] and in the theory of diffusion processes [24].

The theory of fractional powers of positive operators is closely related to
questions of convergence of spectral decompositions. In [25], an application of
fractional powers of self-adjoint operators to questions of uniform convergence of
series in eigenfunctions of differential operators was given. More profound results
in this direction were obtained in [26] for elliptic operators. In [28, 29], fractional
powers of operators close to self-adjoint operators were used to estimate the rate
of convergence of series in the eigen-functions of elliptic and pseudo-differential
operators.

In the theory of boundary value problems, one of the important questions is
the description of the domains of definition of fractional powers of positive oper-
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ators. This question is the subject of the works [29-32], where positive operators
generated by elliptic boundary value problems are studied and the domains of def-
inition of fractional powers of such operators are described. In the papers [33, 34],
the domains of definition of fractional powers of ordinary differential operators
generated by regular boundary conditions in the space Lp(0, 1), 1 < p < ∞, are
described. In [10-12], generalizations of these results are given to the case of
quasi-differential and differential operators with regular multipoint and integral
boundary conditions. In [35, 36] the basis properties of the eigen- and associ-
ated functions of problem (1),(2) in a certain subspace Lp,U (0, 1) ⊂ Lp(0, 1) of
finite codimension were studied. In the present paper, we will give a constructive
description of the domain of definition of the operator L

1
2 .

2. Some auxiliary concepts and facts

Let’s give some concepts and facts that we will need later

Definition 1. [38] Let X-be a Banach space and A-be a closed linear operator
with dense domain D(A) ⊂ X and with values also in X. The operator A is
called positive if the interval (−∞, 0] belongs to the resolvent set and there exists
a number C > 0 such that

∥(A+ tI)−1∥ ≤ C

(1 + t)
, t ≥ 0 (3)

Definition 2. Let X-be a Banach space and let L- be a closed linear operator with
dense domain D(A) ⊂ X and with values also in X. A ray l = {λ; argλ = φ} is
called a ray of minimal growth of the resolvent of the operator L, if the resolvent
R(λ) = (L− λI)−1 exists on this ray far enough from the origin and satisfies the
inequality

∥R(λ)∥ ≤ C

|λ|
.

From Definition 2 it follows that there exist numbers ε and h such that the
operator A = εL+ hI is positive.

Let A-be a positive operator. Then it is easy to show [39, p.135] that estimate
(3) is also satisfied in some neighborhood of the interval (−∞, 0]. Let Γ denote the
contour that goes around the interval (−∞, 0] and is located in this neighborhood.
For −∞ < Rez < 0 the complex powers of the operator A are defined by the
formula [39, p.135]

Az =
1

2πi

∫
Γ
λzR(λ)dλ. (4)
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Complex powers of Az, −∞ < −Rez < 0, are defined as operators inverse to
powers of A−z.

We present another theorem, which we will use to obtain estimates for the
norms of the operators Az.

Theorem 1. (M.Riesz) [9]. Let f ∈ Lp(0, 1), 1 < p <∞. Then the integral

g(x) =

∫ 1

0

f(t)

x+ t
dt

exists almost everywhere in [0, 1]. Moreover, there exists a constant C > 0 such
that the inequality ∥g∥p ≤ C∥f∥p holds.

Let us introduce in the space Lp(0, 1), 1 < p < ∞, a differential operator L,
corresponding to the differential expression l(y) with the domain of definition
D(L) = {y(x) ∈W 2

p (0, 1), l(y) ∈ Lp(0, 1);Uv(y) = 0, v = 1, 2} and consider the
problem of the eigenvalues of this operator: Ly = λy.

Let’s put λ = ρ2. Let us denote Sγ = {ρ : γπ
2 ≤ argρ ≤ (γ+1)π

2 }, γ = 0, 1, 2, 3.
In each region Sγ , equation (1) has a fundamental system of solutions with asymp-
totics [1, p. 58]

y1(x, ρ) = eρω1x(1 + Υ1(x, ρ)), y2(x, ρ) = eρω2x(1 + Υ2(x, ρ)), (5)

where the numbers ω1 and ω2 are different square roots of (−1) (i.e. ±i), num-
bered so that Re(ρω1) ≤ 0 ≤ Re(ρω2) is satisfied for ρ ∈ Sγ , and the func-
tions Υi(x, ρ) are continuous even for sufficiently large values of |ρ| the estimate
|Υi(x, ρ)| ≤ ci

|ρ| , i = 1, 2 is satisfied, uniformly in x ∈ [0, 1].

In what follows, with respect to functions φν(x), ν = 1, 2, we will assume that
the following conditions are met:

A) q(x) ∈ L1(0, 1); ∃α ∈ (0, 1) : φv(x) ∈ L1(0, 1)∩W 1
1 (0, α)∩W 1

1 (1−α, 1), v =
1, 2;

B) α1β2 − α2β1 ̸= 0, where αv = φv(0), βv = φv(1).
Then in some strip |Im ρ| ≤ τ , for some τ > 0, the following relations are

satisfied: ∫ 1

0
φv(x)e

iρxdx =
1

iρ

(
βve

iρ − αv

)
+ o

(
1

ρ

)
, (6)

∫ 1

0
φv(x)e

−iρxdx =
1

−iρ
(
βve

−iρ − αv

)
+ o

(
1

ρ

)
,

These relations are obtained using integration by parts and from the Riemann-
Lebesgue theorem. In addition, from (5) and (6) it follows that under the same
assumptions the relations are also satisfied:
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Uν (y1) =
1∫
0

φν (x) y1 (x, ρ) dx = 1
iρ

(
βνe

iρ − αν

)
+

rν1 (ρ)
ρ

Uν (y2) =
1∫
0

φν (x) y2 (x, ρ) dx = 1
−iρ

(
βνe

−iρ − αν

)
+

rν2 (ρ)
ρ

 (7)

where for functions rvi(ρ) for large values of |ρ| and |Im ρ| ≤ τ the estimate
rvi(ρ) = o(1) is satisfied.

The eigenvalues of the operator L are the numbers λn = ρ2n, where ρn are the
zeros of the characteristic determinant

∆(ρ) =

∣∣∣∣U1(y1) U1(y2)
U2(y1) U2(y2)

∣∣∣∣ .
The following theorem is true regarding the function ∆(ρ) [37].

Theorem 2. [37] Let conditions A), B) be met. Then for the characteristic
determinant ∆(ρ) of the spectral problem (1), (2) the following are valid:

i) any number δ > 0 corresponds to a constant mδ > 0, depending on the
function ∆(ρ), such that on the set obtained from the complex ρ-plane by
throwing out the δ-neighborhoods of the zeros of ∆(ρ) the inequality holds

|∆(ρ)| ≥ mδ
1

|ρ|2
eRe(ρωδ),

ii) the zeros of the function ∆(ρ) are asymptotically simple and separated;

iii) the function ∆(ρ) has two series of roots: the first series has an asymptotic

ρn = πn+ o(1),

and the second series ρ′n is defined by the equality ρ′n = −ρn.

The operator L constructed above does not have a dense domain of definition
in the space Lp(0, 1) and therefore the eigenfunctions of the operator L cannot
be complete in this space. To eliminate this drawback, consider the operator L
not on the whole space Lp(0, 1), but in its closed subspace

Lp,U (0, 1) = {f(x) ∈ Lp(0, 1) : Uν(f) = 0, ν = 1, 2}.

It is obvious that codimLp,U = 2. Similarly we define the space

W k
p,U (0, 1) = {f(x) ∈W k

p (0, 1) : Uν(f) = 0, ν = 1, 2}.
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Let us define the operator L in the space Lp,U (0, 1) as follows:

D(L) =
{
y ∈W 2

p,U (0, 1) : ℓ(y) ∈ Lp,U (0, 1)
}

and for y ∈ D(L) : Ly = ℓ(y).

The operator L thus defined has an everywhere dense domain of definition in
Lp,U (0, 1) [40, Lemma 2.2]. To study the spectral properties of the operator L in
the space Lp,U (0, 1), we construct and estimate the resolvent of the operator L.
It is known (see [1, p. 47]) that the Green’s function of the operator L− ρ2I has
the form

G(x, ξ, ρ) =
1

∆(ρ)

∣∣∣∣∣∣
g(x, ξ, ρ) y1(x, ρ) y2(x, ρ)
U1(g) U1(y1) U1(y2)
U2(g) U2(y1) U2(y2)

∣∣∣∣∣∣ , (8)

where

g(x, ξ, ρ) =

{
−y1(x, ρ)z1(ξ, ρ), x ≥ ξ,

y2(x, ρ)z2(ξ, ρ), x < ξ,

z1(ξ, ρ) =
y2(ξ, ρ)

W (ρ)
, z2(ξ, ρ) =

y1(ξ, ρ)

W (ρ)
, W (ρ) =

∣∣∣∣y1(ξ, ρ) y2(ξ, ρ)
y′1(ξ, ρ) y′2(ξ, ρ)

∣∣∣∣
Consider in the complex ρ-plane the region Ωδ =

⋂∞
n=1{ρ : |ρ − ρn| ≥ δ},

where {ρk} is the set of zeros of the function ∆(ρ). Let Kδ denote the region of
the complex λ-plane, which is the image of Ωδ under the mapping λ = ρ2.

In work [37] it is shown that for the Green’s function G(x, ξ, ρ), the following
representation is true:

G(x, ξ, ρ) =
1

ρ
P0(ρ, x, ξ) +

1

ρ

2∑
i,k=1

Pi,k(ρ, x, ξ) (9)

where

P0(ρ, x, ξ) = A00(ρ, x, ξ)E0(ρ, x, ξ), Pik(ρ, x, ξ) = Aik(ρ, x, ξ)Ei(ρ, x)Ek(ρ, ξ),
(10)

Aik(ρ, x, ξ) = aik(ρ)(1 + ui(ρ, x))(1 + νk(ρ, ξ)), i, k = 0, 1, 2, (11)

E0(x, ξ, ρ) =

{
eiρ(x−ξ), x > ξ,

eiρ(ξ−x), x < ξ,
E1(ρ, x) = eiρx, E2(ρ, x) = eiρ(1−x) (12)
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if ρ ∈ S0 ∩ Ωδ and

E0(x, ξ, ρ) =

{
e−iρ(x−ξ), x > ξ,

e−iρ(ξ−x), x < ξ,
E1(ρ, x) = e−iρx, E2(ρ, x) = e−iρ(1−x)

(13)
if ρ ∈ S3 ∩ Ωδ. In addition, the following relations are fulfilled:

|aik(ρ)| ≤ c, i, k = 0, 1, 2; ρ ∈ (S0 ∪ S3) ∩ Ωδ; (14)

ui(ρ, x) → 0, νk(ρ, ξ) → 0 as ρ→ 0 uniformly in x, ξ ∈ [0, 1]. (15)

The following theorem is also proved in [37].
Theorem 3 [37]. Let ρ take values on a ray on which Re(±iρ) ̸= 0, and

let the operator L be generated by the differential expression (1) and boundary
conditions (2), where conditions A), B) are satisfied. Then, for the resolvent of
the operator L, for sufficiently large values of |ρ|, the following estimate holds:

∥R(ρ2)∥Lp,U→Lp,U
≤ c

|ρ|2
(16)

It follows from this theorem that, in addition to the positive real semi-axis, all
rays on the λ-plane emanating from the origin are rays of minimal growth of the
resolvent of the operator L. Moreover, for sufficiently large h > 0, the operator
A = L+ hI is positive.

Remark 1. Let f ∈ Lp(a, b) and g = R(ρ2)f . Then, on the rays Re(±iρ) ̸= 0,
the estimate

∥g′∥p ≤
C

|ρ|
∥f∥p. (17)

This follows from the fact that for the function 1
ρ

∂
∂xG(x, ξ, ρ), an asymptotic

representation similar to (9) holds.

In the next section, we will give a constructive description of D
(
A

1
2

)
under

additional conditions on the functions φν(x), ν = 1, 2. But before that, we will
prove one more theorem in the general case.

Theorem 4 Let the operator L be generated by the differential expression (1)
and the boundary conditions (2), and A = L + hI. Let f ∈ Lp,U (0, 1) and set
g = A−1/2f . Then g ∈W 1

p,U (0, 1) and the following estimate holds:

∥g∥p ≤ C∥f∥p (18)

where C > 0-is a constant independent of f and g. In other words, the operator
A− 1

2 acts boundedly from Lp,U (0, 1) to W
1
p,U (0, 1).



106 T.B. Gasymov, R.J. Taghiyeva

Proof. Setting z = −1
2 in formula (4), we obtain

A− 1
2 f =

1

π
sin

π

2

{∫ ∞

N2

[
(N2 − t)−

1
2 − t−

1
2

]
(L+ tI)−1fdt+

+

∫ ∞

N2

t−
1
2 (L+ tI)−1fdt

}
df
=

1

π
{g1 + g2} . (19)

To prove the existence of the derivative of the function g1(x) for x ∈ (0, 1),
we represent it in the form

g1(x) =

∫ ∞

N2

[
(N2 − t)−

1
2 − t−

1
2

] ∫ 1

0
G(x, ξ,−t)f(ξ)dξdt =

= 2

∫ ∞

N
ρ
[
(N2 − ρ2)−

1
2 − ρ−1

] ∫ 1

0
G(x, ξ,−ρ2)f(ξ)dξdρ. (20)

We also denote

ϕ1j(x) = 2

∫ ∞

N
ρ
[
(N2 − ρ2)−

1
2 − ρ−1

]
×

×
∫ 1

0
G(j)

x (x, ξ,−ρ2)f(ξ)dξdρ, j = 0, 1. (21)

Taking into account the relation[
(N2 − ρ2)−

1
2 − ρ−1

]
= O

(
1

ρ3

)
and inequalities (16),(17), we obtain that the integral over ρ in (21) converges
absolutely for j = 0, and for j = 1, it converges in Lp(0, 1). However, since (21)
is obtained from (20) by formal differentiation, it follows that ϕ10 ∈W 1

p (0, 1) and
g′1(x) = ϕ11(x), x ∈ (0, 1), hence g1 ∈W 1

p (0, 1).
Now let’s consider the function g2(x). Taking into account (9), we represent

it as follows:

g2(x) =
1

π

∫ ∞

N
ρ−1

∫ 1

0
P0(x, ξ, ρ)f(ξ)dξdρ+

+

2∑
i,k=1

∫ ∞

N
ρ−1

∫ 1

0
Pik(x, ξ, ρ)f(ξ)dξdρ

df
=

1

π
{g2,0(x) + g2,1(x)} . (22)

Let us also denote for x ∈ (0, 1),

ϕ2,j(x) =

∫ ∞

N
ρ−1

∫ 1

0

{
2ρG(j)

x (x, ξ,−ρ2)− P
(j)
0,x(x, ξ, ρ)

}
f(ξ)dξdρ =
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= lim
ε→+0

∫ ∞

N
ρ−1

∫ 1−ε

ε

{
2ρG(j)

x (x, ξ,−ρ2)− P
(j)
0,x(x, ξ, ρ)

}
f(ξ)dξdρ

df
= lim

ε→+0
ϕ2,j(x, ε).

Let f(x) first be a continuous function. We will show that the integrals
ϕ2,j(x, ε) converge absolutely. Indeed,

|ϕ2,j(x, ε)| ≤ C
2∑

i,k=1

∫ ∞

N
ρj−1

∫ 1−ε

ε
|f(ξ)||eρΩik(x,ξ)|dξdρ ≤

≤ C

2∑
i,k=1

∫ 1−ε

ε
|f(ξ)|

∫ ∞

N
ρj−1eReρΩik(x,ξ)dρdξ ≤

≤ C1

2∑
i,k=1

∫ 1−ε

ε
|f(ξ)| ρ

j−1eNΩik(x,ξ)

−ReρΩik(x, ξ)
dξ ≤

≤ C2

∫ 1−ε

ε
|f(ξ)|

(
1

x+ ξ
+

1

1 + x− ξ
+

1

1− x+ ξ
+

1

2− x− ξ

)
dξ. (23)

Since x+ 1− ξ > 0 for x ∈ [0, 1], ξ ∈ [ε, 1− ε], the integral on the right-hand
side of (23) converges uniformly in x ∈ [0, 1]. On the other hand, ϕ2,1(x, ξ) is
obtained from the integral

g2,1(x, ε) =

∫ ∞

N
ρ−1

∫ 1−ε

ε
f(ξ)

[
2ρG(x, ξ,−ρ2)− P0(x, ξ, ρ)

]
dξdρ,

by differentiation. It follows that g2,1(x, ξ) ∈W 1
p (0, 1). Considering that

g2,1(x) = lim
ε→+0

g2,1(x, ξ),

in the norm of Lp(0, 1), from the closeness of the differentiation operator d
dx , we

obtain that g2,1(x, ε) ∈W 1
p (0, 1). Moreover, by Riesz’s theorem 1, it follows from

(23) that

∥g′2,1∥p ≤ C∥f∥p.

To prove the theorem for the function g2,0(x), we consider the operator L0,
generated by the differential expression (1) and some strongly regular two-point
boundary conditions. We set A0 = L0 + hI, where the choice of the number h

ensures the positivity of the operator A0. Let g0 = A
− 1

2
0 f, f ∈ Lp(0, 1). In [10]

(see also [11] ) it was proved that estimate (18) holds for the function g0(x). On
the other hand, in representation (9) for the Green’s function of the operator L−
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ρ2I the function P0(x, ξ, ρ) coincides with the corresponding function P00(x, ξ, ρ)
from the representation for the Green’s function of the operator L0−ρ2I, similar
to (9). It follows that estimate (18) is also true for the function g2,0(x).

The theorem is proved. ◀

3. Constructive description of the domain of the operator A
1
2

Consider in the space Lp,U (0, 1) the operator L, generated by the differential
expression l(y) from (1) and the boundary conditions (2). Since the functions
φ1(x) and φ2(x) from (2) are linearly independent, their linear span forms a two-
dimensional subspace in Lq(0, 1) and, therefore, is complemented in Lq(0, 1). Let
Lq,V (0, 1) be its complement. Then we can choose functions ψ1(x) and ψ2(x)
from Lp(0, 1) such that ⟨ψν , φk⟩, ν, k = 1, 2 and

Vν(y) =

∫ 1

0
ψν(x)z(x)dx = 0, ν = 1, 2, (24)

for any z(x) from Lq,V (0, 1). On the other hand, W 2
q (0, 1) is everywhere dense

in Lq(0, 1), then W
2
q,V (0, 1) will also be everywhere dense in Lq,V (0, 1) (see [40,

p. 28]. To construct the adjoint operator with respect to the functions φ1(x)
and φ2(x), we additionally assume that they belong to W 2

q (0, 1) and, moreover,

l̃(φ1), l̃(φ1) ∈ Lq(0, 1), where

l̃(z) = z′′ + q(x)z.

Let y ∈ D(L) and z ∈W 2
q (0, 1). Then, integrating twice by parts, we obtain

⟨Ly, z⟩ = −y′(1)z(1) + y′(0)z(0) + y(1)z′(1)− y(0)z′(0) + ⟨y, l̃(z)⟩. (25)

On the other hand, given that l(y) ∈ W 2
p,U (0, 1), the function l(y) satisfies the

boundary conditions (2). Then, integrating by parts twice, we have

⟨l(y), φ1⟩ = −y′(1)φ1(1) + y′(0)φ1(0) + y(1)φ′
1(1)− y(0)φ′

1(0) + ⟨y, l̃(φ1)⟩ = 0,

⟨l(y), φ2⟩ = −y′(1)φ2(1) + y′(0)φ2(0) + y(1)φ′
2(1)− y(0)φ′

2(0) + ⟨y, l̃(φ2)⟩ = 0,

According to the assumption ∆
def
= φ1(1)φ2(0) − φ2(1)φ1(0) ̸= 0. Then, solving

the resulting system of equations for the unknowns y′(1) and y′(0), we obtain

y′(1) =
1

∆

(
φ2(0)φ

′
1(1)− φ1(0)φ

′
2(1)

)
y(1) +

1

∆

(
φ1(0)φ

′
2(0)− φ′

1(0)φ2(0)
)
y(0)+
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+
1

∆
⟨y, φ2(0)l̃(φ1)− φ1(0)l̃(φ2)⟩

y′(0) =
1

∆

(
φ2(1)φ

′
1(1)− φ1(1)φ

′
2(1)

)
y(1) +

1

∆

(
φ2(1)φ

′
1(0)− φ′

2(0)φ1(1)
)
y(0)+

+
1

∆
⟨y, φ2(1)l̃(φ1)− φ1(1)l̃(φ2)⟩.

Now substituting the obtained expressions into (25), we obtain

⟨L(y), z⟩ = y(1)×

×
[
1

∆

(
φ2(0)φ

′
1(1)− φ1(0)φ

′
2(1)

)
z(1) +

1

∆

(
φ2(1)φ

′
1(1)− φ1(1)φ

′
2(1)

)
z(0) + z′(1)

]
+

+y(0)×

×
[
1

∆

(
φ′
1(0)φ2(0)− φ1(0)φ

′
2(0)

)
z(1) +

1

∆

(
φ2(1)φ

′
1(0)− φ′

2(0)φ1(1)
)
z(0)− z′(0)

]
+

+⟨y, l(z)⟩+ 1

∆

(
φ2(0)l̃(φ1)− φ1(0)l̃(φ2)

)
z(1)+

1

∆

(
φ2(1)l̃(φ1)− φ1(1)l̃(φ2)

)
z(0)⟩.

From the obtained relations it follows that to ensure the equality

⟨Ly, z⟩ = ⟨y, L∗z⟩,

the adjoint operator should be defined as follows:

D(L∗) =
{
z ∈W 2

q (0, 1) : Vν(z) = 0, ν = 1, 4; l∗(z) ∈ Lq,V (0, 1)
}

(26)

and for z ∈ D(L∗):

L∗z = l∗(z), (27)

where

l∗(z) = −z′′ + q(x)z +
1

∆

(
φ2(0)l̃(φ1)− φ1(0)l̃(φ2)

)
z(1)+

+
1

∆

(
φ2(1)l̃(φ1)− φ1(1)l̃(φ2)

)
z(0), x ∈ (0, 1); (28)

the boundary forms V1(z) and V2(z) are defined above (see (24)), and the forms
V3(z) and V4(z) are defined by the equalities

V3(z) = z′(1) +
1

∆

(
φ2(0)φ′

1(1)− φ1(0)φ′
2(1)

)
z(1)+
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+
1

∆

(
φ2(1)φ′

1(1)− φ1(1)φ′
2(1)

)
z(0),

V4(z) = z′(0) +
1

∆

(
φ′
1(0)φ2(0)− φ1(0)φ′

2(0)
)
z(1)−

− 1

∆

(
φ2(1)φ′

1(0)− φ′
2(0)φ1(1)

)
z(0).

Thus, the adjoint operator L∗ is defined in the space Lq,V (0, 1) by the functional-
differential expression (28) using equalities (26), (27).

The following lemma plays an important role in proving the main result.

Lemma 1. Let y ∈ D(L), z ∈ W 1
q (0, 1), φν ∈ W 2

q (0, 1), l̃(φν) ∈ Lq(0, 1), ν =

1, 2, 1p + 1
q = 1. Then the following estimate holds.

|⟨Ly, z⟩| ≤ C∥y∥W 1
p (0,1)

∥z∥W 1
q (0,1)

. (29)

Proof. Integrating by parts, we get

⟨Ly, z⟩ =
∫ 1

0
(−y′′(x)z′(x)dx+ q(x)y(x))z(x) = −y′(1)z(1) + y′(0)z(0)+

+

∫ 1

0
y′(x)z′(x)dx+

∫ 1

0
q(x)y(x)z(x)dx

df
=

df
= [y, z] + ⟨y′, z′⟩+Q(y, z).

For ⟨y′, z′⟩,estimate (29) follows from Hölder’s inequality, and for Q(y, z), it fol-
lows from the well-known estimate

max
x∈[0,1]

|y(i)(x)| ≤ ∥y∥
W j+1

p (0,1)
, j = 0, 1. (30)

Considering that for functions y ∈ W 2
p,U (0, 1) the function l(y) also satisfies

the boundary conditions (3), we obtain

Uν(l(y)) = −
∫ 1

0
y′′(x)φν(x)dx+

∫ 1

0
q(x)y(x)φν(x)dx = 0.

From here, integrating by parts, we have

Uν(l(y)) = y′(1)φν(1)− y′(0)φν(0) =

∫ 1

0
y′(x)φ′

ν(x)dx+

+

∫ 1

0
q(x)y(x)φν(x)dx, ν = 1, 2. (31)
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Solving the resulting system of linear equations for the unknowns y′(1) and y′(0),
we obtain

y′(1) =
1

∆
(φ2(0)b1 − φ1(0)b2), y

′(0) =
1

∆
(φ1(1)b2 − φ2(1)b1), (32)

where we denote

bν =

∫ 1

0
y′(x)φ′

ν(x) dx+

∫ 1

0
q(x)y(x)φν(x) dx, ν = 1, 2.

Then, substituting (32) into (31), we obtain the following expression for the form
[y, z]:

[y, z] = − 1

∆
(φ2(0)b1 − φ1(0)b2) z(1) +

1

∆
(φ1(1)b2 − φ2(1)b1) z(0).

Now estimate (29) for [y, z] is obtained from inequalities (30) applied to the
function z(x) and from Hölder’s inequality for bν . The lemma is proved. ◀

Remark 2. From the construction of the adjoint operator, as well as from the
form of the adjoint boundary conditions, it follows that an estimate similar to
(29) is also valid for the adjoint operator.

Theorem 5. Let the operator L be generated by the differential expression
(1) and the boundary conditions (2), and let A = L+ hI . Furthermore, suppose
that φν ∈W 2

q (0, 1), l̃(φν) ∈ Lq(0, 1), ν = 1, 2. Then the following relation holds:

D
(
A

1
2

)
=W 1

p,U (0, 1). (33)

Proof. First, we show that the inclusion D(A
1
2 ) ⊂ W 1

p,U (0, 1) holds. Let

f ∈ D(A
1
2 ). Let En be the Riesz projections of the operator A, corresponding to

the eigenvalues λn (see [37]). We expand the function f in the series

f ∈
∞∑
n=2

Enf, (34)

which converges in Lp(0, 1) by Theorem 4 of [37]. On the other hand, Theorem
4 implies that series (34) can be differentiated term by term. Since the forms Uν

are continuous linear functionals in W 1
p,U (0, 1), by estimate (30), the functions

(Enf)(x) satisfy all boundary conditions (2), acting by the functionals Uν , ν =
1, 2, on the series (34), we obtain Uν(f) = 0, ν = 1, 2.
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Now we prove the inverse inclusion. Let g ∈ W 1
p,U (0, 1), z ∈ D(A∗) and set

ϑ = (A∗)
1
2 z. Then ϑ ∈ D((A∗)

1
2 ) and (A∗)

1
2ϑ = A∗z. Applying Lemma 1 and

then Theorem 4 to the adjoint operator, we obtain∣∣∣(g, (A∗)
1
2ϑ)

∣∣∣ = |(g, l∗(z))| ≤ C∥g∥W 1
p (0,1)

∥z∥W 1
q (0,1)

=

= C∥g∥W 1
p (0,1)

∥(A∗)−
1
2ϑ∥W 1

q (0,1)
≤ C1∥g∥W 1

p (0,1)
∥ϑ∥Lq(0,1).

Thus, (g, (A∗)
1
2ϑ)- is a bounded functional of ϑ for any g ∈ W 1

p (0, 1). It

follows that W 1
p,U (0, 1) ⊂ D(A

1
2 ), and consequently, (33) holds.

The theorem is proved. ◀

Corollary 1. The eigenfunctions and associated functions of the operator L gen-
erated by the expression l(y) and the boundary conditions (2) form a basis in the
space W 1

p,U (0, 1).

Corollary 2. The eigenfunctions and associated functions of the operator L gen-
erated by the expression l(y) and the boundary conditions (2) form a Riesz basis
in the space W 1

2,U (0, 1).

Proof. Let f ∈W 2
2,U (0, 1), then, according to [22], series (34) unconditionally

converges in L2(0, 1). However, the series

A
1
2 f =

∞∑
n=2

A
1
2Enf

also converges unconditionally. It follows that series (34) converges uncondition-

ally in the norm of the graph of the operatorA
1
2 and, consequently, by Theorem

5, in the norm of the space W 1
2,U (0, 1). ◀

Corollary 3. Let f ∈W 1
p,U (0, 1). Then the series

∞∑
n=2

(Enf)(x) (35)

converges uniformly to the function f(x). Moreover, for p = 2, series (35) con-
verges uniformly and absolutely.
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