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Formula for Second Regularized Trace of the Sturm-

Liouville Equation with Spectral Parameter Dependent

Boundary Condition

Hajar F. Movsumova

Abstract. In this paper we consider the problem generated by Sturm-Liouville operator equa-
tion with spectral parameter-λ dependent boundary condition. The asymptotic formula for this
problem is obtained by B.A.Aliyev and the formula for the first regularized trace is calculated
by N.M.Aslanova. The main goal of this paper is to derive a formula for the second regularized
trace of that operator. In section 2 was given the problem statement. In section 3 were noted
the auxiliary facts which we have used. Finally in section 4 was derived formula for the second
regularized trace of this problem. For this at first was proved that the series formed the trace
formula is absolutely convergent.
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1. Introduction

A formula for the regularized trace was first obtained by I.M.Gelfand and B.M.Levitan
[1] for Sturm-Liouville differential operators. After this work many papers were devoted
to study of regularized traces various differential operators. A common tool for the study
of partial differential equations, integro- differential equations and infinite systems of ordi-
nary differential-operators is the theory of operator-differential equations with unbounded
operator-coefficient. The one of the main tasks in this theory is to determine the be-
havior of the eigenvalues and calculation of traces of the associated differential opera-
tors. A formula for the first regularized trace of the Sturm-Liouville operator with un-
bounded operator-coefficient was first calculated by F.Q. Maksudov, M.Bayramoglu and
A.A Adigozelov [2].Higher order regularized traces investigated for example, in [3-7]. The
trace formulas for differential operators with unbounded operator coefficient are obtained
in the works [2],[5-15].

In the paper [16],we considered the following spectral problem

−y′′(t) +Ay(t) + q(t)y(t) = λy(t)
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y′(0) = 0, ay(1) + by′(1) = λ(cy(1) − dy′(1))

in the Hilbert space L2 (H, (0, 1)) . The self-adjointness and symmetry of the operator
associated with this problem were established .The asymptotic formula for the eigenvalues
of this problem was derived. Trace formula for the special case of this problem was
calculated in [9] .

In the present paper we consider an operator which different from operators in [6,7] by
boundary condition only. The main goal of this paper is to calculate the second regularized
trace of that operator. The asymptotic formula for this problem is obtained in [17] and
the formula for the first regularized trace is calculated in [18].

2. Problem statement

Assume L2 = L2 (H, (0, 1))
⊕

H ( H is a separable Hilbert space). Let’s denote
the scalar product by (·, ·) and the norm by ‖ · ‖ in the space H .The space of the vector
functions y(t) for which

∫ 1
0 ‖y(t)‖2dt < ∞ is denoted by L2 (H, (0, 1)) . The class of

compact operators in separable Hilbert space H , whose singular values form a convergent
series is denoted by σ1 (H) and is called a trace class (see [19, p.88]).

Consider the following boundary value problem

l [y] ≡ −y′′(t) +Ay(t) + q(t)y(t) = λy(t) (2.1)

y(0) = 0 (2.2)

y(1) = −λy′(1) (2.3)

in the Hilbert space L2 (H, (0, 1)) ,where A = A∗ > E ( E is an identity operator in H)
with a compact inverse. For each t q (t) is a selfadjoint operator-valued function in the
space H . Assume operator-valued function q (t) is weakly measurable. Suppose that the
following conditions hold:

1) There exist fourth order weak derivatives on [0, 1] denoted by q(k) (t) which is from
σ1 (H) .For each t ∈ [0, 1]

∥

∥q(k) (t)
∥

∥

σ1(H)
(k = 0, 4) are bounded. Also Aq(k) (t) ∈ σ1 (H)

and
∥

∥Aq(k) (t)
∥

∥

σ1(H)
≤ const for k = 0, 1, 2.

2) Let q (1) = q′ (0) = q′ (1) = 0;

3)
∫ 1
0 (q (t) f, f) dt = 0 is true for each f ∈ H.

In case q (t) ≡ 0 one can associate with problem (2.1)-(2.3) in space L2 the operator
L0 defined as

D(L0) = {Y : Y = {y(t), y1}/− y′′(t) +Ay(t) ∈ L2(H, (0, 1)),

y(0) = 0, y1 = −y′(1)}, (2.4)
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L0Y = {−y′′(t) +Ay(t), y(1)}. (2.5)

Denote the operator corresponding to the case q(t) 6≡ 0 by L = L0 + Q. Here Q :
Q{y (t) , −y′ (1)} = {q (t) y (t) , 0}. The scalar product in L2 defined as

(Y, Z)L2 =

∫ 1

0
(y(t), z(t))dt + (y1, z1) (2.6)

where Y = {y(t), y1}, Z = {z(t), z1}, y(t), z(t) ∈ L2 (H, (0, 1)) , y1, z1 ∈ H.

Obviousles, the operators L0 and L have a discrete spectrum.Let the eigenvalues of
these operators be µ1 ≤ µ2 ≤ . . . and λ1 ≤ λ2 ≤ . . . , respectively.

3. Auxiliary facts

Let the eigenvalues and eigen-vectors of operator A be γ1 ≤ γ2 ≤ . . . and ϕ1, ϕ2, . . . ,
respectively.

Denote the resolvent of the operator L2
0 by R0

λ. Obviousles , R0
λ ∈ σ1 (H) (It follows

from the asymptotics of µk ).Suppose that the operator A0 is a self-adjoint and positive
discrete operator in separable Hilbert space H. {λn} be its eigen-values arranged in
ascending order. Assume B is a perturbation operator and the eigenvalues of A0 + B
is denoted by {µn} . Also, suppose that A−1

0 ∈ σ1 (H) . For operators A0 and B the
following theorem is true (see [20 ,p.133]) .

Theorem 3.1. Let D (A0) ⊂ D (B). Assume that there exist a number δ ∈ [0; 1) such
that BA−δ

0 is continuable to bounded operator and some number ω ∈ [0; 1) , ω+δ < 1, such

that A
−(1−δ−ω)
0 is a trace class operator. Then there exist subsequence of natural numbers

{nm}∞m=1 and sequence of closed contours Γm ∈ C such that for N ≥ δ
ω

lim
m→∞





nm
∑

j=1

(µj − λj) +
1

2πi

∫

Γm

N
∑

k=1

(−1)k−1

k
tr (BR0 (λ))

k dλ



 = 0

where R0 (λ) is a resolvent of A0.

Note that the conditions of the above theorem are satisfied for L2
0 and L2. That

is, if we take A0 = L2
0, B = L0Q + QL0 + Q2,

(

L2 = A0 +B
)

and δ = 1
2 , provided

L0QL
−1
0 and BA−1

0 are bounded . For ω ∈ [0; 1) , ω < 1
2 − 2+α

4α , we will have that

A
−(1−δ−ω)
0 = L

−2(1−δ−ω)
0 is a trace class operator. Thus by statement of Theorem 3.1 for

N > 1
2ω ,we have (see [6,p.637])

lim
m→∞

(

nm
∑

n=1

(

λ2n − µ2n
)

+
1

2πi

∫

Γm

N
∑

k=1

(−1)k−1

k
×

×tr
[(

L0Q+QL0 +Q2
)

R0 (λ)
]k
dλ
)

= 0. (3.1)
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4. Second regularized trace of L

lim
m→∞

(

nm
∑

n=1

(

λ2n − µ2n −

∫ 1

0
trq2 (t) dt

)

+

+
1

2πi

∫

Γm

N
∑

k=2

(−1)k−1

k
tr
[(

L0Q+QL0 +Q2
)

R0 (λ)
]k
dλ

)

(4.1)

is called the second regularized trace of the operator L . Denote it by
∑∞

n=1

(

λ
(2)
n − µ

(2)
n

)

.

In this paper we will show later that, its value is independent of the choice of the subse-
quence {nm}.

By virtue of lemma 3 in [20, p.132] the number of eigenvalues of L2
0 and L2 inside the

contour Γm is the same for great m values and equals to nm.

From (3.1),we get

lim
m→∞

(

nm
∑

n=1

(

λ2n − µ2n −

∫ 1

0
trq2 (t) dt

)

+

+
1

2πi

∫

Γm

N
∑

k=2

(−1)k−1

k
tr
[(

L0Q+QL0 +Q2
)

R0 (λ)
]k
dλ

)

=

= lim
m→∞

(

−
1

2πi

∫

Γm

tr
[(

L0Q+QL0 +Q2
)

R0 (λ)
]

dλ−
nm
∑

n=1

∫ 1

0
trq2 (t) dt

)

. (4.2)

Let ψ1, ψ2, . . . be the eigenvectors of the operator L0 . The operator L0QL
−1
0 is

bounded and
(

L0Q+QL0 +Q2
)

R0
λ is trace class operator . Eigenvectors of the operator

L0 form a basis in the space L2. From (4.2) follows that (see [6,pp.638])

−
1

2πi

∫

Γm

tr
[(

L0Q+QL0 +Q2
)

R0 (λ)
]

dλ =

−
1

2πi

∫

Γm

∞
∑

n=1

(

(L0Q+QL0 +Q2)R0(λ)ψnψn

)

L2
dλ =

= −
1

2πi

∞
∑

n=1

∫

Γm

1

µ2n − λ

(

(L0Q+QL0 +Q2)R0(λ)ψnψn

)

L2
dλ =

nm
∑

n=1

(

[L0Q+QL0 +Q2]ψnψn

)

L2
. (4.3)
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In [18 , p.29 ] the orthonormal eigenvectors of the operator L is obtained and are of
the form:

ψn =

√

4xk,n
2xk,n − sin 2xk,n + 4x3k,ncos

2 xk,n
{sin (xk,nt)ϕk, xk,ncos xk,n ϕk} . (4.4)

Here xk, n are the roots of the following equation

sin z +
(

z2 + γk
)

z cos z = 0, z =
√

λ− γk. (4.5)

Note that in [17 ,p.12] this problem is studied and the following asymptotic formula for
the eigenvalues of L0 is obtained:

λk,n ∼ γk + π2
(

n−
1

2

)2

, n = 1,∞.

Thus we get
nm
∑

n=1

(

[L0Q+QL0 +Q2]ψn, ψn

)

L2
=

= 2

nm
∑

n=1

4xk,n(x
2
k,n + γk)

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

1
∫

0

sin2(xk,nt)(q(t)ϕk, ϕk)dt+

+

nm
∑

n=1

4xk,n
2xk,n − sin 2xk,n + 4x3k,n cos

2 xk,n

1
∫

0

sin2(xk,nt)(q
2(t)ϕk, ϕk)dt. (4.6)

We can prove the following lemma about the above series.
Lemma 4.1. Provided that hold the conditions 1,2 and γk ∼ gkα, 0 < g < ∞, 2 <

α <∞, then

∞
∑

k=1

∞
∑

n=1

∣

∣

∣

∣

∣

(

x2k,n + γk
) 2xk,n

∫ 1
0 cos (2xk,nt) fk(t)dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

∣

∣

∣

∣

∣

+

+
∞
∑

k=1

∞
∑

n=1

∣

∣

∣

∣

∣

4xk,n
∫ 1
0 sin2 (xk,nt) gk(t)dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

−

∫ 1

0
gk(t)dt

∣

∣

∣

∣

∣

<∞. (4.7)

where fk (t) = (q (t)ϕk, ϕk) , gk (t) =
(

q2 (t)ϕk, ϕk

)

.

Proof. For simplicity, denote the sums on the left of (4.7) by d1, d2 according to their
order. Integrating by parts at first twice, then four times and using the condition 2, we
get

∫ 1

0
cos 2xk,ntfk (t) dt = −

1

(2xk,n)
2

∫ 1

0
cos 2xk,ntf

′′
k (t) dt. (4.8)
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∫ 1

0
cos 2xk,ntfk (t) dt = −

1

(2xk,n)
3 f

′′
k (1) sin 2xk,n−

−
1

(2xk,n)
4 cos 2xk,ntf

′′′
k (t) |10 +

1

(2xk,n)
4

∫ 1

0
cos 2xk,ntf

(IV )
k (t) dt. (4.9)

Take into consideration

2xk,n
2xk,n − sin 2xk,n + 4x3k,n cos

2 xk,n
<

1

1−
sin 2xk,n

2xk,n

= 1 +O

(

1

xk,n

)

(4.10)

and by using (4.9) , asymptotics xk,n = πn + π
2 + O

(

1
n3

)

(see [17 ,p.13]) ,property
‖Aq′′ (t)‖σ1(H) ≤ const and (4.8) ,we have

∞
∑

k=1

∞
∑

n=1

∣

∣

∣

∣

∣

2xk,nγk
∫ 1
0 cos 2xk,ntfk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

∣

∣

∣

∣

∣

=

=

∞
∑

k=1

∞
∑

n=1

γk

(

1 +O

(

1

n

))

O

(

1

n2

)
∫ 1

0

∣

∣f ′′k (t)
∣

∣ dt =

=
∞
∑

k=1

∞
∑

n=1

O

(

1

n2

)
∫ 1

0

∣

∣

(

Aq′′ (t)ϕk, ϕk

)∣

∣ dt < const (4.11)

Since
∥

∥q(k) (t)
∥

∥

σ1(H)
≤ const (k = 2, 3, 4) , in virtue of asymptotics xk,n and (4.9), we get

∞
∑

k=1

∞
∑

n=1

∣

∣

∣

∣

∣

2x3k,n
∫ 1
0 cos 2xk,ntfk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

∣

∣

∣

∣

∣

=

=

∞
∑

k=1

∞
∑

n=1

(

1 +O

(

1

n

))

[

1

(2xk,n)
2

(∣

∣f ′′′k (1)
∣

∣ +

+
∣

∣f ′′′k (0)
∣

∣

)

+
1

(2xk,n)
2

∫ 1

0

∣

∣

∣
f
(IV )
k (t)

∣

∣

∣
dt

]

<∞ (4.12)

Above we have used sin 2xk,n ∼ c
n3 , n → ∞.

From (4.11) and (4.12) we have that d1 is convergent.

Therefore

∞
∑

k=1

∞
∑

n=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

4xk,n
1
∫

0

sin2 (xk,nt) gk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

−

1
∫

0

gk (t) dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
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=
∞
∑

k=1

∞
∑

n=1

∣

∣

∣

∣

∣

2xk,n
∫ 1
0 gk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

−
2xk,n

∫ 1
0 cos (2xk,nt) gk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

−

−

∫ 1

0
gk (t) dt

∣

∣

∣

∣

=

=

∞
∑

k=1

∞
∑

n=1

∣

∣

∣

∣

(

1 +O

(

1

n

))
∫ 1

0
gk (t) dt−

(

1 +O

(

1

n

))
∫ 1

0
cos 2xk,nt gk (t) dt−

∫ 1

0
gk (t) dt

∣

∣

∣

∣

≤
∞
∑

k=1

∞
∑

n=1

(

1 +O

(

1

n

))
∫ 1

0
|cos 2xk,nt gk (t)| dt+

∞
∑

k=1

∞
∑

n=1

O

(

1

n

)
∫ 1

0
|gk (t)| dt.

The last equality in virtue of (4.8) and properties gk (t) ∈ σ1 (H) , g′′k (t) ∈ σ1 (H) follows
that series denoted by d2 converges.

The lemma is proved .

By using lemma 4.1, prove the following theorem.

Theorem 4.1 Let L−1
0 QL0 be bounded operator in L2 and γk ∼ gkα g > 0, α > 2.

Provided operator-valued function q(t) satisfies conditions 1-3, then the formula

∞
∑

n=1

(

λ(2)n − µ(2)n

)

= −
trq2 (0)

4
−
trAq (0)− tr Aq (1)

2
+

+
trq′′ (0)− trq′′ (1)

8
(4.13)

is true.

Proof. From Lemma 4.1 and relations (4.2) and (4.3) ,we get

lim
m→∞

(

nm
∑

n=1

(

λ2n − µ2n −

∫ 1

0
trq2 (t) dt

)

+

+
1

2πi

∫

Γm

N
∑

k=2

(−1)k−1

k
tr
[(

L0Q+QL0 +Q2
)

R0 (λ)
]k
dλ

)

=

=

∞
∑

k=1

∞
∑

n=1

(

x2k,n + γk
) 4xk,n

∫ 1
0 (1− cos 2xk,nt) fk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

+

+

∞
∑

k=1

∞
∑

n=1

[

4xk,n
∫ 1
0

1−cos 2xk,nt

2 gk(t)dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

−

∫ 1

0
gk(t)dt

]

=
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= −

∞
∑

k=1

∞
∑

n=1

(

x2k,n + γk
) 4xk,n

∫ 1
0 cos 2xk,ntfk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

+

+

∞
∑

k=1

∞
∑

n=1

[

2xk,n
∫ 1
0 (1− cos 2xk,nt) gk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

−

∫ 1

0
gk (t) dt

]

. (4.14)

At first we derive a formula for the following sum

∞
∑

n=1

[

2xk,n
2xk,n − sin 2xk,n + 4x3k,n cos

2 xk,n
− 1

]

=

= lim
N→∞

N
∑

n=1

[

2xk,n
2xk,n − sin 2xk,n + 4x3k,n cos

2 xk,n
− 1

]

. (4.15)

For this we will investigate the asymptotics behavior of the following function at N →
∞

SN (t) =

N
∑

n=1

[

2xk,n
2xk,n − sin 2xk,n + 4x3k,n cos

2 xk,n
− 1

]

.

Express the k−th term of sum SN (t) as a residue at the pole xk,n of some function of
complex variable z:

P (z) =
z

(

tg z
z

+ z2 + γk
)

z2 cos2 z
. (4.16)

P (z) has simple poles at the points xk,n, (n+ 1
2)π and z = 0.

Find the residue at the point xk,n:

res
z=xk,n

P (z) =
xk,n

x2k,n cos
2 xk,n

(

tgz
z

+ z2 + γk
)′

z=xk,n

=

=
2xk,n

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

.

We have

res
z=(n+ 1

2)π
P (z) = res

z=(n+ 1
2)π

z
(

tgz
z

+ z2 + γk
)

z2 cos2 z
=

= res
z=(n+ 1

2)π

z
(

sin z
z

+ (z2 + γk) cos z
)

z2 cos z
=

=
πn+ π

2
sin(πn+π

2
)

πn+π
2

(

πn+ π
2

)2 (
− sin(πn+ π

2 )
)

= −1.
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For the contour of integration let take the rectangle with vertices at the points
±iB, AN ± iB, .Then this contour bypass the origin on the right hand side of imag-
inary axis. B will go to infinity and take AN = πN. In this case for AN we get
xk,N < AN < xk,N+1.

Obviously, the function P (z) is an odd function of z. That is why the integral along
the contour on imaginary axis is equal to zero.

Let be z = x + iy. Then for x ≥ 0 and for large y the function P (z) is of order

O
(

e2|x|(t−1)

|y|3

)

. In this case for the given value of AN the integrals along lower and upper

sides of the contour also vanish when B → ∞.

Therefore ,we have the following

SN (t) =
1

2πi
lim

B→∞

∫ AN+iB

AN−iB

P (z) dz +
1

2πi
lim
r→0

∫

|z| = r
−π

2 < ϕ < π
2

P (z) dz. (4.17)

As N → ∞

1

2πi
lim

B→∞

∫ AN+iB

AN−iB

P (z) dz ∼
1

2πi

∫ AN+i∞

AN−i∞

dz

z3 cos2 z
=

=
1

π

∫ +∞

−∞

dy

(AN + iy)3 (1 + cos (2AN + 2iy))
=

1

π

∫ +∞

−∞

dy

(AN + iy)3 (1 + cos 2iy)
=

=
1

π

+∞
∫

−∞

dy

(AN + iy)3(1 + ch2y)
≡ L (4.18)

Then,

|L| <
2

π

+∞
∫

0

dy
√

(

A2
N + y2

)3
(1 + ch2y)

<
2

πAN

+∞
∫

0

dy
√

(

A2
N + y2

)3
(1 + ch2y)

≡

=
const

AN
. (4.19)

Therefore,

∫ 1

0
SN (t) gk (t) dt =

1

2πi

∫ 1

0
gk (t) dt

AN+i∞
∫

AN−i∞

z
(

tg z
z

+ z2 + γk
)

z2 cos2 z
dz+
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+
1

2πi
lim
r→0

∫ 1

0
gk (t) dt

∫

|z| = r
−π

2 < ϕ < π
2

z
(

tg z
z

+ z2 + γk
)

z2 cos2 z
dz. (4.20)

We get

1

2πi

∫

|z| = r
−π

2 < ϕ < π
2

zdz
(

tg z
z

+ z2 + γk
)

z2 cos2 z
=

=
1

2πi

∫

|z| = r
−π

2 < ϕ < π
2

dz
1
2 sin 2z + (z2 + γk) z cos2 z

=

=
1

2πi

∫

|z| = r
−π

2 < ϕ < π
2

dz
1
2 sin 2z + (z2 + γk) z(1− sin2 z)

∼

∼
1

2πi

∫ π
2

−π
2

ireiϕdϕ

reiϕ +
(

(reiϕ)2 + γk

)

reiϕ (1− (reiϕ)2)
=

=
1

2π

∫ π
2

−π
2

dϕ

1 +
(

(reiϕ)2 + γk

)

(1− (reiϕ)2)
−→
r→0

1

2π

∫ π
2

−π
2

dϕ

1 + γk
=

1

2(1 + γk)
(4.21)

Take into consideration (4.17), (4.18), (4.19) and (4.21) in (4.20) we have

lim
N→∞

∫ 1

0
SN (t) gk (t) dt =

1

2(1 + γk)

∫ 1

0
gk (t) dt. (4.22)

For the fixed k investigate the asymptotic behavior of the function

TN (t) =

N
∑

n=1

−2xk,n cos 2xk,nt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

.

For this consider the function of complex variable

F (z) =
−z cos 2zt

(

tgz
z

+ z2 + γk
)

z2 cos2 z
.

This function also has simple poles at the points xk,n, πn+ π
2 and z = 0:

res
z=xk,n

F (z) =
−2xk,n cos 2xk,nt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

and
res

z=(n+ 1
2)πn

F (z) = cos (2n+ 1) πt.
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Again take as a contour of integration the above considered contour. One can show
that as N → ∞ (see [18 ,p.32])

1

2πi

∫ AN+i∞

AN−i∞

−z cos 2zt dz
(

tgz
z

+ z2 + γk
)

z2 cos2 z
∼
const

AN
(4.23)

from which we get

lim
N→∞

∫ 1

0
gk (t)

∫ AN+i∞

AN−i∞
F (z) dzdt = 0. (4.24)

From (4.24),we have the following

lim
N→∞

∫ 1

0
TN (t) gk (t) dt = − lim

N→∞

∫ 1

0
MN (t) gk (t) dt+

+
1

2πi
lim
r→0

∫ 1

0
gk (t) dt

∫

|z| = r
−π

2 < ϕ < π
2

F (z) dz (4.25)

where

MN (t) =

N
∑

n=1

cos (2n + 1)πt.

The first term in (4.25) is calculated in [18 ,p.33] and equal to

lim
N→∞

∫ 1

0
MN (t) gk (t) dt =

gk (0)− gk (1)

4

and the second term in (4.25) as r → 0 goes to − 1
2(1+γk)

∫ 1
0 gk (t) dt.

Other words

lim
N→∞

∫ 1

0
TN (t) gk (t) dt = −

gk (0)− gk (1)

4
−

1

2(1 + γk)

∫ 1

0
gk (t) dt. (4.26)

From (4.22) and (4.26), we have

∞
∑

k=1

∞
∑

n=1

(

2xk,n
∫ 1
0 (1− cos 2xk,nt) gk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

−

∫ 1

0
gk (t) dt

)

=

= −

∞
∑

k=1

gk (0)− gk (1)

4
−

∞
∑

k=1

∫ 1

0
(−

gk (t)

2(1 + γk)
+

gk (t)

2(1 + γk)
)dt =

= −

∞
∑

k=1

gk (0)− gk (1)

4
= −

∞
∑

k=1

gk (0)

4
= −

trq2 (0)

4
. (4.27)
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Here we used the following relation

gk (1) =
(

q2 (1)ϕk, ϕk

)

= (q (1)ϕk, q (1)ϕk) = 0.

Note that in [18 ,p.33] the following is calculated

∞
∑

k=1

∞
∑

n=1

∫ 1

0

2xk,n cos 2xk,ntfk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

=

=
1

4

∞
∑

k=1

[

∞
∑

n=0

cos n · 0 ·
2

π

∫ π

0
cos nzfk

( z

π

)

dz −

−

∞
∑

n=0

cos n · π ·
2

π

∫ π

0
cos nzfk

( z

π

)

dz

]

=

∞
∑

k=1

fk (0)− fk (1)

4
. (4.28)

From (4.28) we get

∞
∑

k=1

∞
∑

n=1

γk
−4xk,n

∫ 1
0 cos 2xk,ntfk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

=

= −
∞
∑

k=1

∞
∑

n=1

2γk
2xk,n

∫ 1
0 cos 2xk,ntfk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

=

= −

∞
∑

k=1

γk
fk (0)− fk (1)

2
= −

1

2

∞
∑

k=1

γk[(q(0)ϕkϕk)− (q(1)ϕkϕk)] (4.29)

Take into considiration the following

∞
∑

k=1

γk(q(t)ϕkϕk) =

∞
∑

k=1

(Aq(t)ϕkϕk) = trAq(t),

from (4.29) we get

∞
∑

k=1

∞
∑

n=1

γk
−4xk,n

∫ 1
0 cos 2xk,ntfk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

= −
trAq (0)− trAq (1)

2
(4.30)

and by using condition 2) we have ( Note that in this case we consider as the complex
valued function H (z) = −2z cos 2zt

( tgz

z
+z2+γk) cos2 z

. The residues of this function at the poles

xk,n and πn + π
2 are equal to

−4x3
k,n

cos 2xk,nt

2xk,n−sin 2xk,n+4x3
k,n

cos2 xk,n
and 2

(

πn+ π
2

)2
cos(2n + 1)πt ,

respectively.)

∞
∑

k=1

∞
∑

n=1

−4x3k,n
∫ 1
0 cos 2xk,nt fk (t) dt

2xk,n − sin 2xk,n + 4x3k,n cos
2 xk,n

=
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= −
∞
∑

k=1

∞
∑

n=1

∫ 1

0
2
(

πn+
π

2

)2
cos(2n + 1)πt fk (t) dt =

=
∞
∑

k=1

∞
∑

n=1

∫ 1

0
(πn+

π

2
) sin(2n + 1)πt f ′k (t) dt =

∞
∑

k=1

∞
∑

n=1

1

2

∫ 1

0
cos (2n + 1)πt f ′′k (t) dt =

=
∞
∑

k=1

∞
∑

n=1

1

2π

∫ π

0
cos (2n+ 1)z f ′′k

( z

π

)

dz =

=
1

8

∞
∑

k=1

∞
∑

n=1

[

cos n · 0 ·
2

π

∫ π

0
cos nz f ′′k

( z

π

)

dz −

− cos n · π ·
2

π

∫ π

0
cos nz f ′′k

( z

π

)

dz

]

=

∞
∑

k=1

f ′′k (0)− f ′′k (1)

8
=
trq′′ (0)− trq′′ (1)

8
. (4.31)

From (4.27), (4.30) and (4.31) we get the formula (4.13) is true.Theorem is proved.
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