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Effective Algorithm for Solving Symmetric Nonlinear
Equations

J. Sabi’u

Abstract. In this article, effective and efficient solver for symmetric nonlinear equations without
computing exact gradient and Jacobian matrix with a very low memory requirement is proposed.
The global convergence of the proposed method was also established under some rigorous conditions
with nonmonotone line search. Numerical experiment shows the proposed method is efficient.
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1. Introduction

Considering the systems of symmetric nonlinear equations

F (x) = 0, (1)

where F : Rn → Rn is a nonlinear mapping. Often, the mapping, F is assumed to
satisfying the following assumptions:
A1. There exists an x∗ ∈ Rn s.t F (x∗) = 0
A2. F is a continuously differentiable mapping in a neighborhood of x∗

A3. F ′(x∗) is invertible
A4. The Jacobian F

′
(x) is symmetric.

where the symmetry means that the Jacobian J(x) := F T (x) is symmetric; that is, J(x) =
J(x)T . This class of special equations come from many practical problems such as an
unconstrained optimization problem, Karush-Kuhn-Tucker (KKT) of equality constrained
optimization problem, saddle point problem, the discritized two-point boundary value
problem, the discritized elliptic boundary value problem, and etc. Equation (1) is the
first-order necessary condition for the unconstrained optimization problem where F is the
gradient mapping of some function f : Rn −→ R,

Minf(x), xϵRn. (2)

http://www.jcam.azvs.az 26 c⃝ 2011 JCAM All rights reserved.



Effective Algorithm for Solving Symmetric Nonlinear Equations 27

A large number of efficient solvers for large-scale symmetric nonlinear equations have been
proposed, analyzed, and tested by different researchers. Among them are [4, 2, 8]. Still,
the matrix storage and solving of an n-linear system of equations are required in the BFGS
type methods presented in the literature. The new designed non-monotone spectral gra-
dient algorithm [1] falls within the framework of matrix-free.
Researches on conjugate gradient methods for symmetric nonlinear equations has received
a proper attention and take an appropriate progress. However, Li and Wang [? ] pro-
posed a modified Fletcher-Reeves conjugate gradient method which is based on the work
of Zhang et al. [3], and the results illustrated that their proposed conjugate gradient
method is promising. In line with this development, further studies on conjugate gradient
are [6, 9, 7, 11, 14]. Extensive numerical experiments showed that each over mentioned
method performs quite well. Therefore, motivated by [6] this article is aimed at develop-
ing a derivative-free conjugate gradient method for solving symmetric nonlinear equations
without computing the Jacobian matrix with less number of iterations and CPU timethat
is globally convergent. This paper is organized as follows: Next section presents the details
of the proposed method. Convergence results are shown in Section 3. Some numerical
results are reported in Section 4.

2. Details of the Method

Recall that, in [11] we used the term

gk =
F (xk + αkFk)− Fk

αk
(3)

To approximate the gradient ∇f(xk), which avoids computing exact gradient. Sumit and
Nath in [6] proposed a conjugate gradient parameter given by

βk =
−t∇f(xk)

T sk−1 − (γ − 1)∇f(xk)
T∇f(xk−1)

dTk∇f(xk−1)
, (4)

where γ ∈ (0, 1) and t is any positive constant. From now on, problem (1) is assume to
be symmetric and f(x) is defined by

f(x) =
1

2
||F (x)||2. (5)

Then the problem (1) is equivalent to the global optimization problem (2). However, when
f(x) is given by (5):

∇f(xk) = J(xk)
TF (xk) = J(xk)F (xk) (6)
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which requires the computions of both the Jacobian and the gradient of f . However, in
this research our scheme is defined by

dk =

{
−gk if k = 0

−gk + β∗
kdk−1 if k ≥ 1

(7)

where β∗
k is given by

β∗
k =

−tkg
T
k sk−1 − (γ − 1)gTk gk−1

dTk gk−1
, (8)

||.|| is the Euclidean norm, γ ∈ (0, 1) and tk is the inverse of the Rayleigh quotient [13]
defined by

tk =
sT sk
sTk yk

. (9)

Lemma 2.1. Let the above assumption be satisfied and {αk, dk, xk+1} be generated by
MHCG algorithm. Then there exist a positive constant m such that for all k

yTk sk ≥ m∥sk∥2. (10)

Proof. By the mean-value theorem, we have

yTk sk = sTk (gk+1 − gk) = sTk∇g(ξ)sk ≥ m∥sk∥2, (11)

where ξ = xk+ ς(xk+1−xk), ς ∈ (0, 1). Moreover, the direction dk given by (7) may not
be a descent direction of (5), then the standard wolfe and Armijo line searches can not
be used to compute the stepsize directly. Therefore, the nonmonotone line search used in
[9, 10, 11] is the best choice to compute the stepsize αk. Let ω1 > 0, ω2 > 0, r ∈ (0, 1) be
constants and {ηk} be a given positive sequence such that

∞∑
k=0

ηk < ∞. (12)

Let αk = max
{
1, rk

}
that satisfy

f(xk + αkdk)− f(xk) ≤ −ω1||αkF (xk)||2 − ω2||αkdk||2 + ηkf(xk). (13)

Algorithm 1
Step 1 : Given x0, αk > 0, ω ∈ (0, 1), r ∈ (0, 1) and a positive sequence ηk satisfying
(12), then compute d0 = −g0 and set k = 0.
Step 2 : Test a stopping criterion. If yes, then stop; otherwise continue with Step 3.
Step 3 : Compute αk by the line search (13).
Step 4 : Compute xk+1 = xk + αkdk.
Step 5 : Compute the search direction by (7).
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Step 6 : Consider k = k + 1 and go to step 2.

3. Convergence Result

This section presents global convergence results of an efficient hybrid CG method. To
begin with, defined the level set

Ω = {x|f(x) ≤ eηf(x0)} , (14)

where η satisfies
∞∑
k=0

ηk ≤ η < ∞. (15)

Lemma 3.1. [4] Let the sequence {xk} be generated by algorithm 1. Then the sequence
{||Fk||} converges and xkϵΩ for all k ≥ 0.

Proof. For all k, from (13) we have ∥Fk+1∥ ≤ (1 + ηk)
1
2 ∥Fk∥ ≤ (1 + ηk)∥Fk∥. Since ηk

satisfies (12), we conclude that {∥Fk∥∥ converges. Moreover, we have for all k

∥Fk+1∥ ≤ (1 + ηk)
1
2 ∥Fk∥

...

≤
k∏

i=0

(1 + ηk)
1
2 ∥F0∥

≤ ∥F0∥

[
1

k + 1

k∑
i=0

(1 + ηi)

] k+1
2

≤ ∥F0∥

[
1 +

1

k + 1

k∑
i=0

ηi

] k+1
2

≤ ∥F0∥
(
1 +

η

k + 1

) k+1
2

≤ ∥F0∥
(
1 +

η

k + 1

)k+1

≤ eη∥F0∥,

where η is a constant satisfying (12). This implies that xk ∈ Ω.
In order to get the global convergence of DFCG algorithm, we need the following assump-
tions.
(i) The level set Ω defined by (14) is bounded
(ii) In some neighbourhood N of Ω, the Jacobian of F is symmetric, bounded and positive
definite. Namely, there exists L > 0 such that

||J(x)− J(y)|| ≤ L||x− y||, ∀x, y ∈ N. (16)

Li and Fukushima in [4] showed that, there exists positive constants M1, M2 and L1 such
that

||F (x)|| ≤ M1, ||J(x)|| ≤ M2, ∀xϵN, (17)
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||∇f(x)−∇f(y)|| ≤ L1||x− y||, ||J(x)|| ≤ M2, ∀x, yϵN. (18)

Lemma 3.2. Let the properties of (1) above hold. Then we have

lim
k→∞

||αkdk|| = lim
k→∞

||sk|| = 0, (19)

and
lim

k→∞
||αkFk|| = 0. (20)

Proof. by (12) and (13) we have for all k > 0,

ω1||αkF (xk)||2 + ω2||αkdk||2 ≤ f(xk)− f(xk+1) + ηkf(xk), (21)

by summing the above k inequality, then we obtain:

m∑
i=0

ω1||αkF (xk)||2 + ω2||αkdk||2 ≤ f(x1)− f(xm) +
m∑
i=0

ηif(xk). (22)

So, from (18) and the fact that {ηk} satisfies (12) the result follows.
The following result shows that our algorithm 1 is globally convergent.

Theorem 3.3. Let the properties of (1) hold. Then the sequence {xk} be generated by
algorithm 1 converges globally, that is,

lim inf
k→∞

||∇f(xk)|| = 0. (23)

Proof. We prove this theorem by contradiction. Suppose that (23) is not true, then
there exists a positive constant τ such that

||∇f(xk)|| ≥ τ, ∀k ≥ 0. (24)

Since ∇f(xk) = JkFk, (24) implies that there exists a positive constant τ1 satisfying

||Fk|| ≥ τ1, ∀k ≥ 0. (25)

Case (i): lim supk→∞ αk > 0. then by (19), we have lim infk→∞ ||Fk|| = 0. This and
Lemma (3.1) show that limk→∞ ||Fk|| = 0, which contradicts with (24). Case (ii):
lim supk→∞ αk = 0. Since αk ≥ 0,this case implies that

lim
k→∞

αk = 0. (26)

by definition of gk in (3) and the symmetry of the Jacobian, we have

||gk −∇f(xk)|| = ||F (xk + αk−1Fk)− Fk

αk−1
− JT

k Fk||
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= ||
∫ 1

0
J(xk + tαk−1Fk)− Jk)dtFk|| ≤ LM2

1αk−1,

where we use (17) and (18) in the last inequality. (12), (13) and (24) show that there
exists a constant τ2 > 0 such that

||gk|| ≥ τ2, ∀k ≥ 0. (27)

By (3) and (17), we get

||gk|| = ∥
∫ 1

0
J(xk + tαk−1Fk)Fkdt∥ ≤ M1M2, ∀k ≥ 0. (28)

From (28) and (18), we obtain

||yk|| = ||gk − gk−1||

≤ ||gk −∇f(xk)||+ ||gk−1 −∇f(xk−1)||+ ||∇f(xk)−∇f(xk−1)||

≤ LM2
1 (αk−1 + αk−2) + L1||sk−1||. (29)

This together with (26) and (19) shows that limk→∞ ||yk|| = 0. Again from the definition
of our β∗

k we obtain

|β∗
k| ≤

−tkg
T
k sk−1 − (γ − 1)gTk gk−1

dTk gk−1
∥yk−1|| −→ 0 (30)

which implies there exists a constant ρ ∈ (0, 1) such that for sufficiently large k

|β∗
k| ≤ ρ. (31)

Without lost of generality, assume that the above inequalities holds for all k ≥ 0. Clearly
from (31) and (29) we can conclude that the sequence {dk} is bounded. Since limk→∞ αk =
0, then α

′
k = αk

r does not satisfy (13), namely

f(xk + α
′
kdk) > f(xk)− ω1||α

′
kF (xk)||2 − ω2||α

′
kdk||2 + ηkf(xk), (32)

which implies that

f(xk + α
′
kdk)− f(xk)

α
′
k

> −ω1||α
′
kF (xk)||2 − ω2||α

′
kdk||2. (33)

By the mean-value theorem, there exists δk ∈ (0, 1) such that

f(xk + α
′
kdk)− f(xk)

α
′
k

= ∇f(xk + δkα
′
kdk)

Tdk. (34)
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Since {xk} ⊂ Ω is bounded, without loss of generality, we assume xk −→ x∗. By (3) and
(7), we have

lim
k→∞

dk = − lim
k→∞

gk + lim
k→∞

β∗
kdk−1 = −∇f(x∗), (35)

where we use (30), (13) and the fact that the sequence {dk} is bounded. On the other
hand, we have

lim
k→∞

∇f(xk + δkα
′
kdk) = ∇f(x∗). (36)

Hence, from (33)-(36), we obtain

−∇f(x∗)T∇f(x∗) ≥ 0, (37)

which means ||∇f(x∗)|| = 0. This contradicts with (24). The proof is completed.

4. Numerical results

In this section, we compared the performance of the proposed method with the norm
descent conjugate gradient method for symmetric nonlinear equations (NDCG) [7]. For
the proposed algorithm the following parameters are set to ω1 = ω2 = 10−4, α0 = 0.01,
r = 0.2 and ηk = 1

(k+1)2
. while for NDCG; ξ = 10, ρ = 0.3, δ = 0.001 , ηk = 1

(k+1)2

and θ = 0.2. The codes for both methods were written in Matlab 7.4 R2010a and run
on a personal computer 1.8 GHz CPU processor and 4 GB RAM memory. We stopped
the iteration if the toatal number of iterations exceeds 2000 or ||Fk|| ≤ 10−4. ”-” to
represents failure due to; (i) Memory requirement (ii) Number of iteration exceed 1000
(iii) If ||Fk|| is not a number. The methods were tested on some Benchmark test problems
with different initial points. Problem 1 and2 are from [11] whilethe remaining one is an
artifitial problem.
Problem 1
F1(x) = x1(x

2
1 + x22)− 1

Fi(x) = xi(x
2
i−1 + 2x2i + x2i+1)− 1 ; 1, 2, . . . , n− 1

Fn(x) = xn(xn−1 + x2n).

Problem 2.(n is multiple of 3) for i = 1, 2, , n/3,
F3i−2(x) = x3i−2x3i−1 − x23i − 1,
F3i−1(x) = x3i−2x3i−1x3i − x23i−2 + x23i−1 − 2,
F3i(x) = e−x3i−2 − e−x3i−1 .

Problem 3. The variable band function:
F1(x) = −2x21 + 3x1 − 2x2 + 0.5x3 + 1
Fi(x) = −2x2i + 3xi − xi−1 − 1.5xi+1 + 1 for i = 2, 3, . . . , n− 1
Fn(x) = −2x2n + 3xn − 0.5xn−1 + 1
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Table 1: Numerical comparison of the proposed method versus NDCG

Problem 1

Algorithm NDCG
Dimension Guess iter Time iter Time

1000 x 1 175 0.420227 157 0.773793
x 2 31 0.131822 183 0.733555
x 3 58 0.198267 86 0.369955
x 4 199 0.515923 214 0.836359

20000 x 1 164 6.449805 157 7.684803
x 2 33 1.352192 264 13.27992
x 3 42 2.217185 193 9.416138
x 4 476 17.99319 124 6.435678

Problem 2
Algorithm NDCG

Dimension Guess iter Time iter Time
1000 x 1 5 0.033245 133 0.671819

x 2 24 0.117488 - -
x 3 32 0.141892 - -
x 4 21 0.108126 188 0.965073

20000 x 1 8 0.50871 71 4.008832
x 2 29 1.29933 - -
x 3 35 1.641559 - -
x 4 15 0.806084 136 7.643776

Problem 3
Algorithm NDCG

Dimension Guess iter Time iter Time
1000 x 1 4 0.040597 - -

x 2 0 0.006984 0 0.006419
x 3 4 0.026863 12 0.073842
x 4 21 0.101723 188 0.836854

20000 x 1 9 0.521719 - -
x 2 0 0.144088 0 0.123382
x 3 10 0.628647 - -
x 4 8 0.472832 - -
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The tables listed numerical results, where ”Iter” and ”Time” stand for the total
number of all iterations and the CPU time in seconds, respectively;||Fk|| is the norm
of the residual at the stopping point.The numerical results indicate that the proposed
Algorithm has rigorous advantages when compared to NDCG, i.e. minimum number
of iteration and CPU time in almost all the tested problems. Also x1 = (1, 1, . . . , n),
x2 = (0, 0, . . . , 0), x3 = (0.1, 0.1, . . . , 0.1) and x4 = (1− 1, 1− 1

2 , 1−
1
3 , . . . , 1−

1
n).
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