
Journal of Contemporary Applied Mathematics

V. 7, No 1, 2017, June
ISSN 2222-5498

The Stress Distribution in the Composite Materials with

Locally Curved Fibers

Humbet Aliyev

Abstract. Nowadays composite materials are widely used in industry as they can withstand high

loads. In this paper, in the case of the piecewise-homogeneous body model with the use of the

three -dimensional linearized theory of elastic stability the problem of stress distribution in the

composite materials with curved layers is investigated. The case in which layers are antiphased

locally curved is considered. It is also assumed that external compressive forces act at in�nity in

the direction along the �ber.
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Investigations of the stability, stress strain state of composite materials have been
carried out in many works [1-5]. Due to wide usage of composite materials in industry,
stress strain distribution, stability of composite materials are very important problems.
Guz, Ilyushin, Akbarov made great contribution to the theory of composite materials.

In this paper, composite material with in�nite number of non-intersecting �bers is
considered. It is assumed that matrix and �ller are anisotropic. This paper also investigates
the in�uence of antiphased piecewise-homogeneous body model using the three-dimensional
linearized theory of elastic stability problem of stress distribution in composite materials
with curved �bers.

Elements of matrix and �ller will be denoted by (1) and (2) respectively. To each �ber

the Cartesian coordinate system O
(k)
m x

(k)
1mx

(k)
2mx

(k)
3m (k = 1, 2; m = 1, 2, 3, ....)is assigned.

Suppose that �bers lie in x
(2)
1mx

(2)
2mx

(2)
3m, and width of each �ller is a constant. It is assumed

that the external compressive forces act at in�nity in the direction along the �ber.
For each �ber equation of equilibrium, generalized Hook's law and Cauchy relations are
given in the form
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In (1) generally accepted notations are used. If we denote upper limit of m(k)−th �ber by
S+
m, the lower limit by S−

m, condition of full contact can be written as
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Here nm,±
j −normal vectors to the surfaceS±

m .

Assume that equation of the middle line of the m(2) �ller is given in the form

x
(2)
2m = Fm(x

(2)
1m) = ε · fm(x

(2)
1m) (3)

in (3) ε ∈ [1, 0)−is a small dimensionless constant.

Using assumption that width of �llers are constant and (3) we obtain the equation for S±
m

:

x
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1m = t1m ∓H(2)

m ·
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From (4) after some algebra we derive equations for the normal vectors to the surfaces in
the form

nm,±
1 = −dx

(2)±
2m

dt1m
· V ±(t1m);nm,±

2 =
dx

(2)±
1m

dt1m
· V ±(t1m); (5)
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In (4)-(6) t1m− is the parameter and −∞ < t1m < ∞; x
(2)±
1m ,x

(2)±
2m -coordinates of the S±

m;

H
(2)
m −half of the width of mth �ber.

Quantities that express stress strain state of any m-th �ber will be searched in the form
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Expression for x
(2)±
im and n

(m)±
i also written as a series in term of εand expression of each ap-

proximation of (7) expanded in placeCityTaylor series, and from (2) we obtain a necessary
relation for each approximation.

Generalized Hook's law for this three dimensional case produces
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in (8) used notation from [6].

The values of zero's approximation correspond to the stress strain distribution in the
composite material with horizontal (non curved) �bers and balances with force⟨p⟩.

σ
(1),0
11 = ⟨p⟩ ·

γ(1) + γ(2) ·
E

(2)
1

(
1−

(
ν
(1)
13

)2
· E

(1)
3

E
(1)
1

)
E

(1)
1

(
1−

(
ν
(2)
13

)2
· E

(2)
3

E
(2)
1

)

−1

;

σ
(2),0
11 =

E
(2)
1

(
1−

(
ν
(1)
13

)2
· E

(1)
3

E
(1)
1

)
E

(1)
1

(
1−

(
ν
(2)
13

)2
· E

(2)
3

E
(2)
1

) · σ(1),0
11 ; (9)

u
(k),0
1 =

1

E
(k)
1

(
1−

(
ν
(k)
13

)2
· E

(k)
3

E
(k)
1

)
· σ(k),0

11 · x(k)1 ;

u
(k),0
2 = − 1

E
(k)
1

(
ν
(k)
12 + ν

(k)
13 · ν(k)32

)
· σ(k),0

11 · x(k)2 + C(k);

C(k) = const; γ(k) =
H(k)

H(1) +H(2)



The Stress Distribution in the Composite... 39

The value of the �rst, second and the following approximations correspond to the stress
distribution with curved �bers. Using (9) and (1) we expand values of each approxima-

tions to the placeCityTaylor series around
(
t1m,±H

(k)
m

)
, after some algebra, from (2) we

obtain necessary relations for each approximation. Then, applying Fourier transform to
the system of di�erential equations and evaluations we obtain non-homogenous system of
linear equations with respect to unknown coe�cients.

In this article, stress distribution in composite materials with in�nite number of antiphased
and locally curved �bers is investigated. Since �bers are located periodically with the
period of 4

(
H(2) +H(1)

)
, from the composite materials we select only four �bers, denoted

as 1(1), 1(2), 2(1) and 2(2). Equation of the middle of the surface of 1(2)is taken in the form

x
(2)
21 = F1(x

(2)
11 ) = ε · f1(x(2)11 ) = A · exp(−(x

(2)
11 /L)

2) (10)

and equation of the middle of the surface 2(2)in the form

x
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(2)
12 ) = ε · f2(x(2)12 ) = −A · exp(−(x

(2)
12 /L)

2) (11)

In (10) and (11) A and L introduced to describe local characteristics of the �bers. And
new dimensionless parameter ε = A/Lis introduced.

Numerical results and discussions

Let us introduce γ = H(2)/L, that represents the concentration of layers.

We will use commonly accepted notation:

σ+
nn(σ

−
nn)-is the stress in the direction of the normal vector

→
nto the surface S+(S−)

σ
(1)+
ττ (σ

(1)−
ττ )-is the stress in the direction of the tangent vector

→
τ to the surface S+(S−)

σ+
nτ−is the stress in tangent direction to the surfaceS+

η(2)−is the concentration of the �ller in composite material

The concrete numerical investigations were carried out in the case, when the materials
of the matrix and �ller are homogeneous and anisotropic with elastic characteristics E

(Young's modulus) and ν(Poisson coe�cient). Before numerical analysis it is necessary to
note that, the values related to the S+will be denoted by the upper indices (+) and the
values related to S−-by the upper indices (-).

For numerical analysis it is assumed that ν
(2)
1 = ν(2) = ν(1) = 0.3; E

(2)
1 /E(1) = 50and

ε = 0.05

σ+
nn

(
σ
(1)+
ττ

)
, σ−

nn

(
σ
(1)−
ττ

)
-are stress components in the direction of

→
n
(→
τ
)
on the surfaces

S+and S−respectively, σ+
nτ -stress component in tangent direction of S+.

Let us analyze the impact of E(2)

E(1) ,
E(2)

G2
12
to the stress distribution of the stresses listed above,

Table 1, 2, and 3, are calculated for the case γ = 0.1 and η(2) = 0.5; 0.2; 0.1respectively.

In these tables values of σ+
nn/σ

(1),0
11 , σ−

nn/σ
(1),0
11 , σ−

ττ/σ
(1),0
11 are calcu-

lated at t1/L = 0.8, the value of σ+
nτ/σ

(1),0
11 at t1/L = 1.6.
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Analysis of the results shows that, with decreasing E(2)

E(1) and increasing E(2)

G2
12
the value of

σ+
nn/σ

(1),0
11 is decreasing. Impact of E(2)

G2
12
to the σ+

nn/σ
(1),0
11 is more signi�cant than impact of
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E(2)

E(1) . This conclusion is valid for allη
(2). For all η(2)increasing E(2)
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reduces the absolute value

of σ−
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(1),0
11 . Increasing the value of E(2)
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12
increases, decreasing of E(2)

E(1)decreases the absolute

value of σ+
nτ/σ

(1),0
11 . Increasing E(2)

G2
12
and decreasing E(2)

E(1) increases the value of σ
+
ττ/σ

(1),0
11 and

σ−
ττ/σ

(1),0
11 . Impact of E(2)

G2
12
to σ+

ττ/σ
(1),0
11 and σ−

ττ/σ
(1),0
11 is more signi�cant than E(2)

E(1) .

In this paper problem of stress distribution in the composite materials with curved layers
was investigated. Piecewise homogenous body model was considered, and by the use of
three-dimensional linearized theory, stress distributions in the composite materials with
antiphased locally curved layers, when external forces acted at in�nity considered. An-
alyzing results show that obtained results agree with the results found in the previous
investigations.
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