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The generalized Shannon-McMillan theorems for second-
order nonhomogeneous Markov chains on the gambling
systems indexed by a double rooted tree

Kangkang Wang

Abstract. In this paper, our aim is to establish a generalized Shannon-McMillan theorem for
the second-order nonhomogeneous Markov chains indexed by a double rooted tree is discussed by
constructing a nonnegative martingale and using analytical methods. As corollaries, we achieve
some Shannon-Mcmillan theorems for the second-order nonhomogeneous Markov chains indexed
by a homogeneous tree and a second-order nonhomogeneous Markov chain. Some results which
have been gained are extended in a sense.

Key Words and Phrases: Shannon-McMillan theorem, double rooted tree, second-order Markov
chains, the entropy density, generalized gambling system.

2000 Mathematics Subject Classifications: 60F15

1. Introduction

We specify that a tree is a graph G = {T,E} which is connected and contains no
circuits. Given any two vertices σ, t( σ ̸= t ∈ T ), let σt be the unique path connecting σ
and t. Define the graph distance d(σ, t) to be the number of edges contained in the path
σt.

Let To be an arbitrary infinite tree that is partially finite (i.e. it has infinite vertices,
and each vertex connects with finite vertices) and has a root o. Meanwhile, we consider
another kind of double root tree T , that is, it is formed with the root o of To connecting
with an arbitrary point denoted by the root −1. For a better explanation of the double
root tree T , we take Cayley tree TC,N for example. It’s a special case of the tree To, the
root o of Cayley tree has N neighbors and all the other vertices of it have N +1 neighbors
each. The double root tree T

′
C,N (see Fig.1) is formed with root o of tree TC,N connecting

with another root −1.

Let σ, t be vertices of the double root tree T . Write t ≤ σ (σ, t ̸= −1) if t is on the
unique path connecting o to σ, and |σ| for the number of edges on this path. For any two
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vertices σ, t (σ, t ̸= −1) of the tree T , denote by σ∧ t the vertex farthest from o satisfying
σ ∧ t ≤ σ and σ ∧ t ≤ t.

The set of all vertices with distance n from root o is called the n-th generation of T ,
which is denoted by Ln. We say that Ln is the set of all vertices on level n and especially
root −1 is on the −1st level on tree T . We denote by T (n) the subtree of the tree T

containing the vertices from level −1 (the root −1) to level n and denote by T
(n)
o the

subtree of the tree To containing the vertices from level 0 (the root o) to level n. Denote
by t(̸= o,−1) the t-th vertex from the root 0 to the upper part, from the left side to the
right side on the tree. We denote the first predecessor of t by 1t, the second predecessor
of t by 2t, and denote by nt the n-th predecessor of t. Let XA = {Xt, t ∈ A}, and let xA

be a realization of XA and denote by |A| the number of vertices of A .
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Fig.1 Double root tree T
′

C,2

Definition 1. Let S = {s1, s2, · · · , sN} and P (z|y, x) be nonnegative functions on S3.
Let

P = (P (z|y, x)), P (z|y, x) ≥ 0, x, y, z ∈ S.

If ∑
z∈S

P (z|y, x) = 1,

then P is called a second-order transition matrix.

Definition 2. Suppose that T is a double rooted tree and S = {s1, s2, · · · , sN} is a
finite state space, and {Xt, t ∈ T} is a collection of S-valued random variables defined on
the probability space (Ω,F , P ). Let

P = (p(x, y)), x, y ∈ S (1)



The generalized Shannon-McMillan theorems 13

be a distribution on S2, and

Pt = (Pt(z|y, x)), x, y, z ∈ S, t ∈ T\{o}{−1} (2)

be a collection of second-order transition matrices. For any vertex t (t ̸= o,−1), if

P (Xt = z|X1t = y,X2t = x, and Xσ for σ ∧ t ≤ 1t)

= P (Xt = z|X1t = y,X2t = x) = Pt(z|y, x) ∀x, y, z ∈ S (3)

and

P (X−1 = x,Xo = y) = p(x, y), x, y ∈ S, (4)

then {Xt, t ∈ T} is called a S-valued second-order nonhomogeneous Markov chain indexed
by a tree T with the initial distribution (1) and second-order transition matrices (2), or
called a T -indexed second-order nonhomogeneous Markov chain.

Remark 1. Benjamini and Peres [9] have given the definition of the tree-indexed
homogeneous Markov chains. Here we improve their definition and give the definition of
the tree-indexed second-order nonhomogeneous Markov chains in a similar way.

It is easy to see that when {Xt, t ∈ T} is a T -indexed Markov chain,

P (xT
(n)

) = P (XT (n)
= xT

(n)
) = P (X−1 = x−1, Xo = xo)

∏
t∈T (n)\{o}{−1}

Pt(xt|x1t , x2t). (5)

Let T be a tree, {Xt, t ∈ T} be a stochastic process indexed by the tree T with the
state space S. Denote

P (xT
(n)

) = P (XT (n)
= xT

(n)
).

Let

fn(ω) = − 1

|T (n)|
logP (XT (n)

). (6)

fn(ω) will be called the entropy density of XT (n)
, where log is the natural logarithm. If

{Xt, t ∈ T} is a T -indexed Markov chain with the state space S defined by Definition 2,
we get by (5)

fn(ω) = − 1

|T (n)|
[logP (Xo, X−1) +

∑
t∈T (n)\{o}{−1}

logPt(Xt|X1t , X2t)], (7)

where |T (n)| represents the number of all the vertices from level −1 to level n.
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Definition 3. Suppose that {fn(x0, · · · , xn), n ≥ 0} is a set of real-valued functions defined
on Sn+1(n = 1, 2, · · · ), which will be called the generalized random selection functions if
they take values in an interval of [0, b]. We let

Y0 = y(y is an arbitrary real number)

Yt+1 = f|t|(X1t , X2t · · · , Xo, X−1), |t| ≥ 1, (8)

where |t| stands for the number of the edges on the path from the root −1 to the vertex t.
{Yt, t ∈ T (n)} is called the generalized gambling system or the generalized random selection
system indexed by a double rooted tree. The traditional random selection system[17] takes
values in the set of {0, 1}.

We first explain the conception of the traditional random selection, which is the crucial
part of the gambling system. We give a set of real-valued functions fn(x0, · · · , xn) defined
on Sn(n = 0, 1, 2, · · · ), which will be called the random selection function if they take
values in a two-valued set {0, 1}. Then let

Y0 = y(y is an arbitrary real number),

Yn+1 = fn(X0 · · · , Xn), n ≥ 0.

where {Yn, n ≥ 0} be called the gambling system or the random selection system.

In order to explain the real meaning of the notion of the random selection, we con-
sider the traditional gambling model. Let {Xn, n ≥ 0} be a second-order nonhomogeneous
Markov chain, and {gn(x, y, z), n ≥ 2} be a real-valued function sequence defined on S3.
Interpret Xn as the result of the nth trial, the type of which may change at each step.
Let µn = Yngn(Xn−2, Xn−1, Xn) denote the gain of the bettor at the nth trial, where
Yn represents the bet size, gn(Xn−2, Xn−1, Xn) is determined by the gambling rules, and
{Yn, n ≥ 0} is called a gambling system or a random selection system. The bettor’s
strategy is to determine {Yn, n ≥ 0} by the results of the last two trials. Let the en-
trance fee that the bettor pays at the nth trial be bn. Also suppose that bn depends on
Xn−1 and Xn−2 as n ≥ 2, and b0, b1 are constants. Thus

∑n
k=2 Ykgk(Xk−2, Xk−1, Xk)

represents the total gain in the first n trials,
∑n

k=2 bk the accumulated entrance fees, and∑n
k=2 [Ykgk(Xk−2, Xk−1, Xk) − bk] the accumulated net gain. Motivated by the classical

definition of ”fairness” of game of chance (see Kolmogorov[16]), we introduce the following
definition:

Definition 4. The game is said to be fair, if for almost all ω ∈ {ω :
∑∞

k=2 Yk = ∞}, the
accumulated net gain in the first n trial is to be of smaller order of magnitude than the
accumulated stake

∑n
k=2 Yk as n tends to infinity, that is

lim
n→∞

1∑n
k=2 Yk

n∑
k=2

[Ykgk(Xk−2, Xk−1, Xk)− bk] = 0 a.s. on {ω :
∑∞

k=2
Yk = ∞}.
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Definition 5. Suppose that {Yt, t ∈ T (n)} is a generalized gambling system defined by
(8), we call

Sn(ω) = − 1∑
t∈T (n) Yt

[Y0 logP (Xo, X−1) +
∑

t∈T (n)\{o}{−1}

Yt logPt(Xt|X1t , X2t)] (9)

the generalized entropy density of the T -indexed Markov chain {Xt, t ∈ T} on the general-
ized gambling system. Obviously, the generalized entropy density Sn(ω) is just the general
entropy density fn(ω) if Yt ≡ 1, t ∈ T (n).

The tree models have drawn increasing interests from specialists in probability, physics
and information theory in recent years. There have been some works on limit theorems
for tree-indexed stochastic process, among them the convergence of fn(ω) in a sense (L1

convergence, convergence in probability, or almost sure convergence) indexed by a tree is
called the tree-indexed Shannon-McMillan theorem or the asymptotic equipartition prop-
erty(AEP) in information theory. Shannon-McMillan theorems on the Markov chain have
been studied extensively(see[1],[2]). Liu has introduced a type of new analytical methods
for Shannon-McMillan theorems in his work (see[12]). In the recent years, with the de-
velopment of information theory scholars get to study the Shannon-McMillan theorems
for random field on the tree graph(see[3]). Berger and Ye (see[4]) have studied the exis-
tence of entropy rate for G-invariant random fields. Recently, Ye and Berger(see[5]) have
also studied the ergodic property and Shannon-McMillan theorem for PPG-invariant ran-
dom fields on trees. But their results only relate to convergence in probability. Liu and
Yang (see[6],[7]) have recently studied a.s. convergence of Shannon-McMillan theorem for
Markov chains indexed by a homogeneous tree and the generalized Cayley tree. Yang
and Ye (see[8]) have studied the asymptotic equipartition property for nonhomogeneous
Markov chains indexed by the homogeneous tree. Wang (see[13]) have also studied the
asymptotic equipartition property for mth-order nonhomogeneous Markov chains.

The conception of random selection derives from gambling. We consider a sequence of
Bernoulli trial, and suppose that at each trial the bettor has the free choice of whether
or not to bet. A theorem on gambling systems asserts that under any non-anticipative
system the successive bets form a sequence of Bernoulli trial with unchanged probability for
success. The importance of this statement was recognized by von Mises, who introduced
the impossibility of a successful gambling system as a fundamental axiom (see [14], [15]).
This topic was discussed still further by Kolmogrov (see[16]) and Liu and Wang (see [17]
and [18]).

In Liu and Yang’s works (see[1, 8]), they firstly construct a superior martingale, then
they scale inequalities to attain the Shannon-McMillan theorems by virtue of superior
limit and inferior limit properties. In this paper, we investigate Shannon-McMillan the-
orems for second-order nonhomogeneous Markov chains field on the tree by constructing
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the consistent distribution functions. We first give a series theorem by controlling the con-
vergence of a series. Correspondingly, a limit theorem for the random conditional entropy
is obtained by Kronecker’s lemma. The limit theorem shows that the difference of the log-
arithm logPt(Xt|X1t , X2t) relative to its expectation in the first n levels on the tree is to
be of smaller order of magnitude than the stochastic sequence

∑
t∈T (n)\{o}{−1}

Yt as n tends

to infinity. In particular, if Yt ≡ 1, t ∈ T (n)\{o}{−1}, the limit theorem for the random
conditional entropy on the gambling system becomes the Shannon-McMillan theorem for
second-order nonhomogeneous Markov chains field on the tree. Finally, when the tree
model degenerates into the chain model, the Shannon-McMillan theorem for second-order
nonhomogeneous Markov chains field on the tree is changed into the Shannon-McMillan
theorem for the general second-order nonhomogeneous Markov chain. Liu and Yang’s (see
[1, 8]) results are extended in fact.

2. Main result and its proof

Theorem 1. Suppose that T is a double rooted tree, X = {Xt, t ∈ T} is a T -indexed
Markov chain with the state space S defined as before, Sn(ω) is defined as (9). Denote by
Ht(ω) the random conditional entropy of Xt relative to X1t, that is

Ht(ω) = −
∑
xt∈S

Pt(xt|X1t , X2t) logPt(xt|X1t , X2t), t ∈ T (n)\{o}{−1}. (10)

If
∑n

k=1 Yk = O(n), we have

lim
n→∞

∑
t∈T (n)\{o}{−1}

Yt[logPt(Xt|X1t , X2t) +Ht(ω)]∑t
k=1 Yk

< ∞. a.s. (11)

lim
n→∞

[Sn(ω)−
1∑

t∈T (n)\{o}{−1}
Yt

∑
t∈T (n)\{o}{−1}

YtHt(ω)] = 0. a.s. (12)

Proof. On the probability space (Ω,F ,P), let λ = 1 or λ = −1. Denote

µQ(λ;x
T (n)

) =

p(x0, x−1)
∏

t∈T (n)\{o}{−1}
Pt(xt|x1t , x2t) exp

{
λYt(logPt(xt|x1t ,x2t )+Ht(ω))∑t

k=1 Yk

}
∏

t∈T (n)\{o}{−1}
Ut(λ;xt)

,

(13)
where

Ut(λ;xt) = E

{
exp

{
λYt(logPt(Xt|X1t , X2t) +Ht(ω))∑t

k=1 Yk

}
|X1t = x1t , X2t = x2t

}

=
∑
xt∈S

exp

{
λYt(logPt(xt|x1t , x2t) +Ht(ω))∑t

k=1 Yk

}
· Pt(xt|x1t , x2t).
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t ∈ T (n)\{o}{−1}. (14)

By (14) and (13), in the case n ≥ 1 we can write∑
xLn∈SLn

µQ(λ;x
T (n)

)

=
∑

xLn∈SLn

p(x0, x−1)
∏

t∈T (n)\{o}{−1}
Pt(xt|x1t , x2t) exp

{
λYt(logPt(xt|x1t ,x2t )+Ht(ω))∑t

k=1 Yk

}
∏

t∈T (n)\{o}{−1} Ut(λ;xt)

= µQ(λ;x
T (n−1)

)

∑
xLn∈SLn

∏
t∈Ln

Pt(xt|x1t , x2t) exp
{

λYt(logPt(xt|x1t ,x2t )+Ht(ω))∑t
k=1 Yk

}
∏

t∈Ln
Ut(λ;xt)

= µQ(λ;x
T (n−1)

)

∏
t∈Ln

∑
xt∈S

Pt(xt|x1t , x2t) exp
{

λYt(logPt(xt|x1t ,x2t )+Ht(ω))∑t
k=1 Yk

}
∏

t∈Ln
Ut(λ;xt)

= µQ(λ;x
T (n−1)

)

∏
t∈Ln

Ut(λ;xt)∏
t∈Ln

Ut(λ;xt)
= µQ(λ;x

T (n−1)
). a.s. (15)

Therefore µQ(λ;x
T (n)

), n = 1, 2, · · · are a family of consistent distribution functions

on ST (n)
. Define

Tn(λ, ω) =
µQ(λ;X

T (n)
)

P (XT (n)
)

. (16)

Combining (5) with (13), we can rewrite (16) as

Tn(λ, ω) =

exp

{ ∑
t∈T (n)\{o}{−1}

λYt(logPt(Xt|X1t ,X2t )+Ht(ω))∑t
k=1 Yk

}
∏

t∈T (n)\{o}{−1}
Ut(λ;Xt)

, n ≥ 0. (17)

Since µQ(λ;X
T (n)

) and P (XT (n)
) are two distribution functions, we immediately know

that Tn(λ, ω) is a nonnegative sup-martingale from Doob’s martingale convergence theo-
rem. Therefore,

lim
n→∞

Tn(λ, ω) = T∞(λ, ω) < ∞. a.s. (18)

Denote Pt(xt|X1t , X2t) by Pt in brief, by (10) we can conclude∑
xt∈S

λYt[logPt(xt|X1t , X2t) +Ht(ω)]∑t
k=1 Yk

· Pt(xt|X1t , X2t) =
λYt[Ht(ω)−Ht(ω)]∑t

k=1 Yk
= 0. (19)

Taking into account (14), (19) and the inequality 0 ≤ ex − 1 − x ≤ (1/2)x2e|x|, the
entropy density inequality Ht(ω) ≤ logN , noticing that λ = ±1, 0 ≤ Yt ≤ b, we can write

0 ≤ Ut(λ;Xt)− 1
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=
∑
xt∈S

{
exp{λYt(logPt +Ht(ω))∑t

k=1 Yk
} − 1− λYt(logPt +Ht(ω))∑t

k=1 Yk

}
Pt

≤ 1

2(
∑t

k=1 Yk)
2

∑
xt∈S

Y 2
t (logPt +Ht(ω))

2 exp{|Yt|| logPt +Ht(ω)|∑t
k=1 Yk

}Pt

≤ 1

2(
∑t

k=1 Yk)
2

∑
xt∈S

b2(logPt +Ht(ω))
2 exp{b(− logPt + logN)∑t

k=1 Yk
}Pt. (20)

It is easy to know
t∑

k=1

Yk → ∞, as t → ∞ from
n∑

k=1

Yk = O(n). Moreover, there exists

a positive integer m such that
∑t

k=1 Yk ≥ 2b as t ≥ m. Hence as t ≥ m, according to (20)
and the entropy density inequality, we can reach

0 ≤ Ut(λ;Xt)− 1

≤ 1

2(
∑t

k=1 Yk)
2

∑
xt∈S

b2(logPt +Ht(ω))
2 exp{− logPt + logN

2
}Pt

≤ 1

2(
∑t

k=1 Yk)
2

∑
xt∈S

b2(logPt +Ht(ω))
2 exp{log(N/Pt)

1/2}Pt

≤ N

2(
∑t

k=1 Yk)
2

∑
xt∈S

b2(logPt +Ht(ω))
2P

1/2
t

≤ N

2(
∑t

k=1 Yk)
2

∑
xt∈S

b2[(logPt)
2P

1/2
t + 2Ht(ω) · P 1/2

t logPt + (Ht(ω))
2]

≤ N

2(
∑t

k=1 Yk)
2

∑
xt∈S

b2[(logPt)
2P

1/2
t − 2 logN · P 1/2

t logPt + (logN)2]. (21)

We can easily calculate that

M1 = max{x1/2(log x)2, 0 < x ≤ 1} = 16e−2;

M2 = max{−x1/2 log x, 0 < x ≤ 1} = 2e−1.

By use of (21), we get∑
t∈T (n)\{o}{−1}

(Ut(λ;Xt)− 1)

≤
∑

t∈T (n)\{o}{−1}

N

2(
∑t

k=1 Yk)
2

∑
xt∈S

b2[(logPt)
2P

1/2
t − 2 logN · P 1/2

t logPt + (logN)2]

≤
∑

t∈T (n)\{o}{−1}

∑
xt∈S

Nb2

2(
∑t

k=1 Yk)
2
[M1 + 2(logN)M2 + (logN)2]
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=
∑

t∈T (n)\{o}{−1}

b2N2

2(
∑t

k=1 Yk)
2
[16e−2 + 4e−1(logN) + (logN)2] < ∞, a.s. (22)

where we easily see
∑

t∈T (n)\{o}{−1}

1
(
∑t

k=1 Yk)2
< ∞ as n → ∞ in virtue of

t∑
k=1

Yk = O(t).

By the convergence theorem of infinite production, (22) implies that

lim
n→∞

∏
t∈T (n)\{o}{−1}

Ut(λ;Xt) converges. a.s. (23)

In virtue of (17), (18) and (23), we obtain

lim
n→∞

exp

 ∑
t∈T (n)\{o}{−1}

λYt(logPt(Xt|X1t , X2t) +Ht(ω))∑t
k=1 Yk

 = a finite number. a.s.

(24)
Letting λ = 1 and λ = −1 in (24), respectively, we attain

lim
n→∞

exp

 ∑
t∈T (n)\{o}{−1}

Yt[logPt(Xt|X1t , X2t) +Ht(ω)]∑t
k=1 Yk

 = a finite number. a.s.

(25)

lim
n→∞

exp

 ∑
t∈T (n)\{o}{−1}

−Yt[logPt(Xt|X1t , X2t) +Ht(ω)]∑t
k=1 Yk

 = a finite number. a.s.

(26)
(25) and (26) imply that

lim
n→∞

∑
t∈T (n)\{o}{−1}

Yt[logPt(Xt|X1t , X2t) +Ht(ω)]∑t
k=1 Yk

converges. a.s. (27)

Hence (11) holds. By virtue of (27) and Kronecker’s lemma, we achieve

lim
n→∞

1∑|T (n)|
k=1 Yk

∑
t∈T (n)\{o}{−1}

Yt[logPt(Xt|X1t , X2t) +Ht(ω)] = 0. a.s. (28)

Moreover, from (9) and (28) we gain

lim
n→∞

1∑
t∈T (n)\{o}{−1}

Yt

∑
t∈T (n)\{o}{−1}

Yt[logPt(Xt|X1t , X2t) +Ht(ω)]

= − lim
n→∞

1∑
t∈T (n)\{o}{−1}

Yt

∑
t∈T (n)\{o}{−1}

[−Yt logPt(Xt|X1t , X2t)− YtHt(ω)]
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= − lim
n→∞

[Sn(ω)−
1∑

t∈T (n)\{o}{−1}
Yt

∑
t∈T (n)\{o}{−1}

YtHt(ω)] = 0. a.s. (29)

(12) follows from (29) immediately.

3. Some Shannon-McMillan theorems for second-order
nonhomogeneous Markov chains on the homogeneous tree

Corollary 1. Suppose that X = {Xt, t ∈ T} is a second-order nonhomogeneous Markov
chain indexed by a homogeneous tree, fn(ω) and Ht(ω) be defined as (7) and (10). Then

lim
n→∞

∑
t∈T (n)\{o}{−1}

[logPt(Xt|X1t , X2t) +Ht(ω)]

t
< ∞, a.s. (30)

lim
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o}{−1}

Ht(ω)] = 0. a.s. (31)

Proof. We let T be a homogeneous tree, that is on the tree each vertex has M neigh-
boring vertices. Let Yt ≡ 1, t ∈ T (n), we reach

∑t
k=1 Yk = t,

∑
t∈T (n)\{o}{−1}

Yt = |T (n)| − 2,

Sn(ω) = fn(ω). Hence
∑n

k=1 Yk = O(n) holds obviously. (30) and (31) follow from (11)
and (12) directly.

Remark 2. When the second-order nonhomogeneous Markov chain indexed by a tree
degenerates into a common nonhomogeneous Markov chain indexed by the tree, we obtain
Pt(Xt|X1t , X2t) = Pt(Xt|X1t). Equation (31) is a result of Yang and Ye (see[8]).

When the successor of each vertex on the tree has only one vertex, the second-order
nonhomogeneous Markov chain on the tree degenerates into the general second-order non-
homogeneous Markov chain.

Corollary 2. Suppose that {Xn, n ≥ 0} is a second-order nonhomogeneous Markov
chain with the initial distribution and the transition probabilities as follows:

p(i, j) > 0, i, j ∈ S.

Pt(k|i, j) > 0, i, j, k ∈ S, t = 1, 2, · · · .

We denote

fn(ω) = − 1

n+ 2
[logP (X0, X−1) +

n∑
t=1

logPt(Xt|Xt−1, Xt−2)], (32)

Ht(ω) = −
∑
xt∈S

Pt(xt|Xt−1, Xt−2) logPt(xt|Xt−1, Xt−2). (33)
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Then
∞∑
t=1

logPt(Xt|Xt−1, Xt−2) +Ht(ω)

t
< ∞, a.s. (34)

lim
n→∞

[fn(ω)−
1

n+ 2

n∑
t=1

Ht(ω)] = 0. a.s. (35)

Proof. At present the second-order nonhomogeneous Markov chain X = {Xt, t ∈ T}
indexed by a tree is changed into the general second-order nonhomogeneous Markov chain
{Xn, n ≥ 0}, we reach Pt(Xt|X1t , X2t) = Pt(Xt|Xt−1, Xt−2), |T (n)| = n + 2. (32)-(35)
follow from (7), (10), (30) and (31), respectively.

Remark 3. When the second-order nonhomogeneous Markov chain degenerates into an
ordinary nonhomogeneous Markov chain, we obtain Pt(Xt|Xt−1, Xt−2) = Pt(Xt|Xt−1).
Equation (35) is just Theorem 2 of Liu and Yang (see[1]).
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