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Energy Release Rate at the Front of Penny-shaped In-
terface Cracks Contained in the PZT/Elastic/PZT Sand-
wich Circular Plate under Action of the Normal Opening
Forces on the Cracks’ Edges

F.I. Cafarova

Abstract. This paper studies the Energy Release Rate (ERR) at the front of the penny-shaped
interface cracks contained in the PZT/Elastic/PZT sandwich circular plate-disc under action on
the cracks edges opening uniformly distributed normal forces. It is assumed that the rotationally
symmetric stress-strain state in the plate takes place and the investigations are made by utilizing
the exact field equations and relations of electro-elasticity for piezoelectric materials.The solution
to the corresponding boundary-value problem is made by utilizing the finite element method (FEM)
and the ERR is studied for various piezoelectric (PZT) materials of the face layers and for various
metal-elastic materials for the core layer of the plate. The main attention is focused on the
influence of the coupling effect of the mechanical and electrical fields on the ERR. At the same
time, numerical results on the effect of the geometrical parameters such as face layers thickness,
crack’s radius and etc. on the ERR are presented and discussed.

Key Words and Phrases: Energy Release Rate,piezoelectric material, penny-shaped interface
crack, sandwich circular plate.

1. Introduction

It is known that through Energy Release Rate (ERR) at crack tips or at a crack front the
fracture of the material or element of construction contained this crack, is determined. For
this purpose it is also used the Stress Intensity Factor (SIF) at the crack tips, however, to
use the ERR is more suitable for the cracks located completely in the piezoelectric material
or in the interface between the piezoelectric and elastic materials. Therefore, the study of
the ERR for the penny-shaped interface cracks located between the piezoelectric face and
metal-core layers of the PZT/Elastic/PZT circular sandwich plate, to which the present
work relates also, has a great significance in the estimation and prognostication of the
fracture mechanics of the smart layered systems.Note that the determination of the ERR
requires solving the corresponding boundary value problems for the PZT/Elastic/PZT
layered systems contained interface cracks in order to determine the stress-strain state
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in this system and define the ERR through these stresses and strains. Moreover, note
that under formulation and solution to these problems one of the main question is the
construction of the electrical conditions across the crack’s edges.

Now we consider a brief review of the related investigations and the formulation of the
conditions on the penny-shaped crack edges with respect to the electrical quantities. First,
we consider the paper by Kudryatsev et al. (1975) in which a special solution of the stress
and displacement fields is obtained for the penny shaped crack embedded in a piezoelectric
material.In this paper the so-called permeable condition on the crack edges is considered.
In other word, in this paper it is assumed that the electrical potential and the normal
components of the electrical displacements are continuous across the crack edge surfaces.
The same type of conditions on the crack’s edge are also used in the papers by Parton
(1976), Yang (2004) and other ones listed therein. Note that analyses in the papers by
Li, McMeeking and Landis (2008) and Li, Fengand Xu (2009) analyze the various types
of conditions formulated on the crack edges in the piezoelectric materials, which is differ
from the permeable condition.

In the related investigations besides permeable conditions, the corresponding impermeable
conditions are also used on the crack edges, according to which, it is assumed that the
electric displacements on the crack’s edge surfaces are equal to zero. Such conditions, for
instance is used in the paper by Li and Lee (2012) in which an axisymmetric penny-shaped
crack problem for the infinite piezoelectric layer in the case where the crack is in the middle
plane of the layer is studied. Moreover, the energetically consistent boundary condition,
which was proposed by Landis (2004), is also used under consideration the crack problems
for the piezoelectric materials (see, for instance, the papers by Zhong (2012), Eskandari
et al. (2010) and others).

It should be noted that in all the foregoing works it is assumed that the penny-shaped
crack is embedded completely in a piezoelectric material and therefore formulation of the
permeable, impermeable, energetically consistent, semi-consistent and other types of con-
ditions for the electrical quantities across the crack’s edge surfaces, becomes necessary.
However, in the cases where the penny-shaped crack is in the interface between piezoelec-
tric and elastic mediums the necessity for such conditions disappears and on the crack’s
edge face which relate to the piezoelectric medium, the ordinary ”electrically-open” (or
”open-circuit”) and ”electrically-shorted” (or ”short-circuit”) conditions are satisfied. We
recall that the ”electrically-open” (or ”open-circuit”) condition coincides with the afore-
mentioned impermeable condition.

At the same time, we note that the first attempt to study the problem related to the
interface penny-shaped crack between the piezoelectric layer and elastic half-space is made
in the paper by Ren et al. (2014). This study is carried out for the crack’s opening mode
in the case where on the crack face, which is in the piezoelectric layer, the “open-circuit”
condition is satisfied.With this, we complete the consideration the review of the related
works carried out during the last 10 years. Note that the review of the regarding works
carried out in earlier years can be found in the papers by Kuna (2006, 2010).

Analyzes of reviewed above works show that all the investigations carried out therein for
the penny-shaped cracks in piezoelectric materials and in the interface between piezo-
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electric and elastic materials have been made within the scope of the linear piezoelectric
fracture mechanics and within the scope of the assumptions that the layers’ dimensions
are infinite in the plane on which this crack lies. Namely, these infinities allow using the
Hankel integral transformation method for the solution to the corresponding boundary
value problems.
However, in the cases where the dimensions of the layers in the planes on which the cracks
are located, are finite, such as sandwich PZT/Metal/PZT circular plate-disc the radius
of which is commensurable with the radius of the penny-shaped crack, then the methods
based on the integral transformations, in general, is not applicable. As in the present
paper namely such a case is considered and therefore for a solution to the corresponding
boundary value problem the numerical method, i.e. the finite element method (FEM) is
employed. It should be noted that the corresponding buckling delamination problems were
considered in the papers by Cafarova et al. (2017), Akbarov et al. (2017) and Cafarova
and Rzayev (2016). Moreover, note that the corresponding buckling delamination and
crack problems for the plane-strain state were considered in the papers by Aklbarov and
Yahnioglu (2013, 2016).

2. Formulation of the problem

Consider a circular PZT/Metal/PZT sandwich plate with geometry illustrated in Fig. 1a
and assume that the thicknesses and piezoelectric materials of the face layers are the same,
and the material of the middle (core) layer is an elastic one. Also, we suppose that between
the core and face layers there are penny-shaped cracks whose locations are illustrated in
Fig. 1b.At the same time, Fig. 1b indicates the geometric parameters and the external
opening forces acting on the cracks edge surfaces.

a b

Fig. 1. The sketches of the PZT/Metal/PZT plate-disc (a), the geometry of
this disc, interface cracks and external opening forces

We associate with the lower face plane of the plate (Fig. 1a) the cylindri-
cal coordinate system Orθz, according to which, the plate occupies the region
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{0 ≤ r ≤ `/2; 0 ≤ θ ≤ 2π; 0 ≤ z ≤ h}(h = 2hF + hc) and the penny-shaped cracks occur
in {z = hF ± 0 ;0 ≤ r ≤ `0/2} and in {z = hC + hF ± 0 ;0 ≤ r ≤ `0/2}.

Within these framework, we suppose that on the cracks’ edges the uniformly rotational
symmetric distributed normal opening forces with intensity pact and it is required to
determine the ERR at the interface cracks’ front in the PZT/Elastic/PZT sandwich plate
caused with this mechanical forces. For this purpose, first, we consider formulation of the
problems for determination of the electromechanical quantities which appear in the plate
as a result of the action of the aforementioned mechanical forces.

As we are considering the rotationally axisymmetric deformation case, therefore under
the mathematical formulation of the corresponding problem we will use the corresponding
field equations related to this case.Moreover, below we will denote the values related to
the upper and lower face layers by upper indices (3) and (1), respectively, whereas the
values related to the core layer are denoted by upper index (2).

Assuming that the electro-mechanical state in the sandwich plate under consideration
appears within the scope of the linear theory of piezoelectricity for the face layers and the
linear theory of elasticity for the core layer, the corresponding field equations, according
to the monograph by Yang (2005), can be written as follows.

Equilibrium and electrostatic equations:
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Elasticity relations for the core layer material.
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Strain-displacement relations:
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Notethat the piezoelectric material exhibits the characteristics of orthotropic materials
with the corresponding elastic symmetry axes and becomes electrically polarized under
mechanical loads or mechanical deformation placed in an electrical field. According to
the monograph by Yang (2005) and other related references, the polled direction of the
piezoelectric material will change according to the position of the material constants in
the constitutive relations in (2). In the present paper, under numerical calculations, it is
assumed that the O z axis direction is the polarized direction. Moreover, in general, in
the theory of the piezoelectricity for simplicity the following notation is used.

c
(k)
1111 = c

(k)
11 , c

(k)
2211 = c

(k)
1122 = c

(k)
12 , c

(k)
3311 = c

(k)
1133 = c

(k)
13 , c

(k)
2222 = c

(k)
22 ,

c
(k)
3322 = c

(k)
2233 = c

(k)
23 , c

(k)
3333 = c

(k)
33 , c

(k)
1313 = c

(k)
55 , e

(k)
111 = e

(k)
11 , e

(k)
311 = e

(k)
31 ,

e
(k)
122 = e

(k)
12 , e

(k)
322 = e

(k)
32 , e

(k)
133 = e

(k)
13 , e

(k)
333 = e

(k)
33 , e

(k)
313 = e

(k)
35 , e

(k)
113 = e

(k)
15 . (5)

Thus, the equations and relations in (1) – (6) completes the writing of the field equations.
Now we consider mathematical formulation of the boundary conditions.

Boundary conditions on the cracks’ edges:
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Contact conditions between the layers in the areas which are out of the cracks:
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Boundary conditions on the face planes of the plate:
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Conditions on the lateral boundary of the plate:
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This completes the formulation of all the boundary and contact conditions for the problem
under consideration.

3. Method of solution. FEM modeling of the problem

As the analytical or approximate analytical solution to the problem under consideration
is impossible therefore the formulated problem is solved numerically by employing FEM.
For FEM modeling of the problem, according to Yang (2005) and others, the following
functional is introduced.
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where

Ω (1) = {0 ≤ r ≤ `/2; 0 ≤ z ≤ hF } − {z = hF − 0; 0 ≤ r ≤ `0/2} ;
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Equating to zero the first variation of the functional (10), i.e. from the relation
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anddoing well-known mathematical manipulations we obtain the equations in (1) and all
the corresponding boundary and contact conditions in (7) – (9) with respect to the forces
and electrical displacements. In this way it is proven that the equations in (1) are the
Euler equations for the functional (10), and the boundary and contact conditions in (7) –
(9) which are given with respect to the forces and electrical displacements, are the related
natural boundary and contact conditions.

As an usual procedureof FEM modelling, the solution domains indicated in (11) are di-
vided into a finite number of finite elements. For the considered problem, each of the finite
elements is selected as a standard rectangular Lagrange family quadratic finite element

with nine nodes and each node has three degrees of freedom, i.e. radial displacement u
(j)
r ,

transverse displacement u
(j)
z (j = 1, 2, 3) and electric potential ϕ(k)(k = 1, 2). We recall

that under FEM modelling of the region containing the crack’s tip, as did our predecessors,
we use ordinary (not singular) finite elements. This is because up to now finite elements
with oscillating singularity which appear at the interface crack tips have not been found.
Furthermore, as shown in the references Akbarov (2013), Akbarov and Yahnioglu (2016),
Akbarov and Turan (2009),Henshell and Shaw (1975) and other ones listed therein, un-
der calculation of the fracture characteristics of the element of construction (such as the
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critical forces, ERR and etc.) the results obtained by the use of the “ordinary” singular
finite elements coincide, with very high accuracy, with the results obtained by the use of
the ordinary finite elements.
Table 1The values of the mechanical, piezoelectrical and dielectrical constants of the se-
lected piezoelectric materials
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The algorithm and the programs to obtain the numerical results are coded within the
foregoing assumptions by the author in the FORTRAN programming language (FTN77).
Employing the standard Ritz technique detailed in many references, for instance, in the
book by Zienkiewicz and Taylor (1989), we determine the displacements and electrical
potential at the selected nodes. After this determination, according to the relation
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is the electro-mechanical strain enegy.
This completes the consideration the solution method of the problem through the FEM
modeling.

4. Numerical results and discussions

In the present paper we consider only the numerical results related to the ERR and all the
numerical results are obtained for the piezoelectric materials PZT - 4 and PZT -5H which
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are selected for the face layers, however the metal materials - aluminum (Al) and steel (St)
are taken as the core layer materials. The values of the elastic, piezoelectric and dielectric
constants of the selected piezoelectric materials and the references used for this purpose
are given in Table 1. According to the monograph by Guz (2004), the values of Lame’s
constants of the core layer material are selected as follows: for the Al: λ = 48.1GPa and
µ = 27.1GPa; and for the St: λ = 92.6GPa and µ = 77.5GPa.

In order to analyze the coupling effects of the electro-mechanical fields on the ERR, the
numerical results are obtained for the following two cases:

Case 1.

e
(rn)
ij = 0, ε

(rn)
ii = 0, (15)

Case 2.

e
(rn)
ij 6= 0, ε

(rn)
ii 6= 0. (16)

Numerical results obtained in Case 1 (15) relate to the pure mechanical ERR, however the
numerical results obtained in Case 2 (16) relate to the total electro-mechanical ERR and
comparison of the results obtained in Case 2 with the corresponding ones obtained in Case
1 will give the information for estimation of the influence of the coupling electro-mechanical
effect on the studied quantities.

As noted above, in the present paper we consider the numerical results related to the
dimensionless ERR determined through the expression γ/(cPZT44 `) and the influence of the
problem parameters on this ERR. Under obtaining these results, the values of γ are cal-
culated through the expression (13) and under this calculation the following approximate
relation is used.

γ ≈ ∆U

π`0∆`0
; ∆U = U(`0 + ∆`0)− U(`0),∆`0/` = 10−8. (17)

Note that the number 10−8 shown in (17) for the ratio ∆`0/` is determined from the
corresponding convergence requirement which appears for the numerical calculation of the
derivative ∂U/∂`0.

Under obtaining all the numerical results illustrated in the present paper, we assume
that the piezoelectric materials are polarized along the plate thickness, i.e. the polarized
direction of the PZT materials coincides with the Oz axis. Moreover, all the numerical
results are obtained in the case where h/` = 0.2.

Under FEM modelling we use the symmetry of the problem with respect to the plane
z = hF +hC/2 and the axial symmetry with respect to the Oz (Fig. 1a) axis and according
to these symmetries, we consider only the region {0 ≤ r ≤ `/2; 0 ≤ z ≤ hF + hC/2}under
FEM modelling and divide this regioninto 500 finite elements along the radial direction
and 40 finite elements along the plate’s thickness direction. Under fixed numbers of the
finite elements, the NDOF depends on the length (or radius) of the penny-shaped crack
and the NDOF increases with increasing of this length. For instance, in the case where
`0/` = 0.5 we have 243499 NDOF, however, in the case where `0/` = 0.3 we have 242899
NDOF. All the corresponding PC programs are composed by the author of the paper.
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Table 2.Convergence of the numerical results with respect to the number of FE selected
in the radial direction in the case where `0/` = 0.5, hF /` = 0.05, and hC/` = 0.1and the
number of FE in the Oz axis direction is 12 for PZT-5H/Al/PZT-5H

Number of FE in
the radial direct.

NDOF γ/(cPZT−5H
44 `)

Case 1 Case 2

40 5039 5.17384 3,74138

60 7559 5.25945 3.80980

80 10079 5.31453 3.85354

100 12599 5.35750 3.88634

120 15119 5.39413 3.91292

140 17639 5.42579 3.93496

160 20159 5.45335 3.95347

200 25199 5.49826 3.98258

300 37799 5.56864 4.02635

400 50399 5.60464 4.04842

500 62999 5.62642 4.06177
Table 3.Convergence of the numerical results with respect to the number of FE selected
in the Oz axis direction in the case where `0/` = 0.5, hF /` = 0.05, and hC/` = 0.1and
the number of FE in the radial direction is 100 for PZT-5H/Al/PZT-5H

Number of the FE in
the Oz axis direc.

NDOF γ/(cPZT−5H
44 `)

Case 1 Case 2

12 12599 5.35750 3.88634

18 18599 5.33552 3.86970

20 20599 5.33017 3.86545

24 24599 5.32377 3.85928

28 28599 5.32045 3.85535

30 39599 5.31515 3.85174

40 40599 5.30807 3.84444
Now we consider the convergence of the numerical results with respect to the number
of finite elements (FE) selected in the radial and Oz axis directions. For this purpose,
consider the numerical results related to the dimensionless ERR, i.e. to the γ/(cPZT−5H

44 `)
for the PZT-5H/Al/PZT-5H plate. The results obtained for various values of the FE
selected in the radial direction (in the Oz axis direction) are given in Table 2 (in Table 3).
It follows from these tables that the convergence of the numerical results is more sensitive
with respect to the FE numbers selected in the radial direction. These and other similar
results which are not given here allow us to conclude that in the convergence sense of the
numerical results, it is enough to select 500 FE in the radial direction and 40 FE in the
Oz axis direction in order to obtain results, the relative errors of which are less than 0.4%.
Note that 40 FE in the Oz axis direction are divided in half between the face layer and
half thickness of the core layer.
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The convergence of the numerical results illustrated above gives some confidence on the
reliability of the calculation algorithm and PC programs. However, for more detailed
verification of the PC programs and FEM modelling used we consider a comparison of the
numerical results obtained within the scope of the present algorithm and PC programs
with the corresponding ones obtained within the scope of the analytical solution method
developed in the paper by Li and Lee (2012). We recall that the paper by Li and Lee (2012)
studies an axisymmetric penny-shaped crack problem for the infinite piezoelectric layer in
the case where the crack is in the middle plane of the layer and the new analytical method is
developed for determination of the corresponding fundamental solutions and, by employing
this method numerical results related to the ERR are presented and discussed. Let us
employ, in some particular cases, i.e. in the cases where on the crack edges the electric
displacements are equal to zero and these edges are loaded with uniformly distributed
mechanical opening forces with intensityσ0, our FEM modelling and the PC programs for
obtaining the numerical results considered in the by Li and Lee (2012). Note that under
FEM modelling of the problem considered in the paper by Li and Lee (2012) we assume
that ` = 1m, `0 = 0.003m and h = 0.02m. The values selected for `0 and h coincide with
the corresponding ones selected in the paper by Li and Lee (2012), however, the parameter
` does not exist in the paper by Li and Lee (2012) because in that paper it is assumed
that the length of the piezoelectric layer in the radial direction is infinite.

Thus, within the scope of the foregoing assumptions, we compare the numerical results
obtained with employing of the present FEM modelling with the corresponding ones ob-
tained in the paper by Li and Lee (2012) for the PZT-5H material. These results are given
in Table 4 and it follows from the corresponding comparison that the FEM modelling and
PC programs developed in the present paper are reliable enough.

Table 4.Numerical results related to γ (N/m) (i.e. ERR) for the penny-shaped crack in
the middle plane of the infinite PZT-5H piezoelectric layer in the case where ` = 1m,
h = 0.02m and `0 = 0.003m

Sources of
the results

σ0

10Mpa 20Mpa 30Mpa

Present results 3.3164 13.2655 29.8473

Results obtained in
Li and Lee (2012)

3.2000 12.8000 29.4000
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Fig. 2. The graphs of the dependence between dimensionless ERR and crack
radius for the PZT-5H/Al/PZT-5H plate

Now we consider the results given in Figs. 2, 3 and 4 which illustrate how an increase in
the crack radius acts on the ERR. Note that these results relate to the PZT-5H/Al/PZT-
5H (Fig.2), PZT-4/Al/PZT-4 (Fig. 3) and PZT-5H/St/PZT-5H (Fig. 4) plates and show
the graphs between the dimensionless ERR (denoted as γ

/
(cPZT44 `)) and the dimensionless

crack radius (denoted as `0/`). Note that in these figures, the dashed lines relate to Case1,
however the solid lines relate to Case 2.

Fig. 3 The graphs of the dependence between dimensionless ERR and crack radius for
the PZT-4/Al/PZT-4 plate
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Fig. 4. The graphs of the dependence between dimensionless ERR and crack
radius for the PZT-5H/St/PZT-5H plate

Thus, it follows from Figs. 2, 3 and 4 that for all the cases under consideration the
piezoelectricity of the face layers causes to decrease the ERR in the front of the interface
penny-shaped crack and the magnitude of this decrease increase with the crack’s radius.
Moreover, the analyzes of the graphs given in these figures show that the values of the
ERR increase with decreasing of the face layers thickness.

5. Conclusions

Thus, in the present paper, the ERR at the penny-shape interface crack contained
in the PZT/Elastic/PZT sandwich plate-disc is studied within the scope of the exact
equations and relations of the electro-elasticity for the piezoelectric bodies. The axisym-
metric stress-strain state is considered and the corresponding boundary value problem is
solved numerically by employing FEM. Numerical results are presented and discussed for
the PZT-5H/Al/PZT-5H, PZT-5H/St/PZT-5H and PZT-4/Al/PZT-4 plates. The con-
vergence of the algorithm and PC programs is tested with respect to the concrete cases.
Moreover, the validation of the PC programs and algorithm used in the present investiga-
tion is examined with respect to the known results obtained in the paper by Li and Lee
(2012). According to analyzes of the aforementioned numerical results obtained for the
ERR it can be drawn the following concrete conclusions:

1. The piezoelectricity of the face layers’ materials causes to decrease the values of the
ERR;

2. The values of the ERR increase (decrease) with the ratio `0/` (with the ratio hF /`);
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3. The magnitude of the ERR depends not only on the electro-mechanical properties
of the face layers’ materials, but also on the mechanical properties of the elastic core
layer. For instance, the values of the ERR obtained for the plate with the St core
layer are significantly less than the corresponding ones obtained for the same plate
with the Al core layer.

References

[1] Akbarov, S.D. (2013), Stability Loss and Buckling Delamination: Three-Dimensional
Linearized Approach for Elastic and Viscoelastic Composites, Springer, Heidelberg,
New York, USA.

[2] Akbarov, S.D. and Yahnioglu, N. (2013), ”Buckling delamination of a sandwich plate-
strip with piezoelectric face and elastic core layers”, Appl. Math. Model.,37, 8029 –
8038.

[3] Akbarov, S.D. and Yahnioglu, N. (2016), ”On the total electro-mechanical potential
energy and energy release rate at the interface crack tips in an initially stressed
sandwich plate-strip with piezoelectric face and elastic core layers”, Int. J. Solids
Struct., 88-89, 119-130.

[4] Akbarov, S.D. and Turan, A. (2009), ”Mathematical modelling and the study of the
influence of initial stresses on the SIF and ERR at the crack tips in a plate-strip of
orthotropic material”, Appl. Math. Model.,33, 3682- 3692.

[5] Akbarov, S.D., Cafarova,F.I. and Yahnioglu, N.(2017) Buckling delamination of the
circular sandwich plate with piezoelectric face and elastic core layers under ro-
tationally symmetric external pressure. AIP Conference Proceedings 1815, 080001
(2017); doi: 10.1063/1.4976433 View online: http://dx.doi.org/10.1063/1.4976433,
Published by the American Institute of Physics: pp 080001-1 -080001-4

[6] Cafarova, F.I., Akbarov, S.D. and Yahnioglu, N. (2017), ”Buckling delamination
of the PZT/Metal/PZT sandwich circular plate-disc with penny-shaped interface
cracks”, Smart Struct. Syst., 19(2), 163-179.

[7] Cafarova F.I. and Rzayev, O.A. (2016). Stability loss of the PZT/Metal/PZT sand-
wich circulsar plate-discunder “open-circuit” condition. Transactionsof NAS of Azer-
baijan, Issue Mechanics, 36 (4), pp. 50-59.

[8] Eskandari, M., Moeini-Ardakani, S.S. and Shodja, H.M. (2010), ”An energetically
consistent annular crack in a piezoelectric medium”, Eng. Fract. Mech., 77, 819-831.

[9] Guz, A.N. (1999), Fundamentals of the Three-Dimensional Theory of Stability of
Deformable Bodies, Springer-Verlag, Berlin, Heidelberg, Germany.

[10] Guz, A.N. (2004), Elastic Waves in Bodies With Initial (Residual) Stresses, “A.C.K.”,
Kiev, Ukraine.



Energy Release Rate at the Front of Penny-shaped Interface Cracks... 39

[11] Henshell, R.D. and Shaw, K.G. (1975), ”Crack tip finite elements are unnecessary”,
Int. J. Numer. Meth. Eng., 9, 495-507.

[12] Kuna, M. (2006), ”Finite element analysis of cracks in piezoelectric structures: a
survey”, Arch. Appl. Mech., 76, 725-745.

[13] Kuna, M. (2010), ”Fracture mechanics of piezoelectric materials – where are we right
now?”,Eng. Fract. Mech., 77, 309-326.

[14] Kudryatsev, B.A., Parton, V.Z. and Rakitin, V.I. (1975), ”Breakdown mechanics of
piezoelectric materials – axisymmetric crack on boundary with conductor”, Prikl.
Math. Mekh.,39, 352 – 362.

[15] Landis, C.M. (2004), ”Energetically consistent boundary conditions for electro-
mechanical fracture”, Int. J. Solids Struct., 41, 6291-6315.

[16] Li, Y.D. and Lee, K.Y. (2012), ”Three dimensional axisymmetric problems in piezo-
electric media: Revisited by a real fundamental solutions based new method”, Appl.
Math. Model.,36, 6100-6113.

[17] Li, Y.S., Feng, W.J. and Xu, Z.H. (2009), ”A penny-shaped interface crack between
a functionally graded piezoelectric layer and a homogeneous piezoelectric layer”,
Mecanica, 44(4) 377-387.

[18] Li, W., McMeeking, R,M. and Landis, C.M. (2008), ”On the crack face boundary con-
ditions in electro-mechanical fracture and an experimental protocol for determining
energy release rates”, Eur. J. Mech. A/Solids, 27, 285-301.

[19] Parton, V.Z. (1976), ”Fracture mechanics of piezoelectric materials”, Acta Astronaut,
3(9-10), 671-683.

[20] Ren, J.N., Li, Y.S. and Wang, W. (2014), ”A penny-shaped interfacial crack between
piezoelectric layer and elastic half-space”, Struct. Eng. Mech., 62(1), 1-17

[21] Yang, F. (2004), ”General solutions of a penny-shaped crack in a piezoelectric material
under opening mode loading”, Q. J. Mech. Appl. Math., 57(4), 529-550.

[22] Yang, J. (2005), An Introduction to the Theory of Piezoelectricity, Springer, New
York, USA.

[23] Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method: Basic For-
mulation and Linear Problems. Vol. 1., Fourth Ed., McGraw-Hill Book Company,
Oxford, UK.

[24] Zhong, X.C. (2012), ”Fracture analysis of a piezoelectric layer with a penny-shaped
and energetically consistent crack”, Acta Mech., 223, 331-345.



40 F.I. Cafarova

Fazile I. Cafarova
Genje State University, Genje, Azerbaijan
E-mail:fazile.cafarova@mail.ru


