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Asymptotic Expansions for the Some Probability Char-
acteristics of the One Stochastic Process with a Heavy
Tailed Distributed Component Having Finite Variance

Rovshan Aliyev

Abstract. In present study, renewal reward process X(t) with a heavy tailed distributed rewards
having finite variance is considered. The asymptotic expansions as β = S− s→∞ for the ergodic
distribution and n-order moment of the process Wβ(t) ≡ 1

β (X(t)− s), based on the main result of

the study Geluk and Frenk (Renewal theory for random variables with a heavy tailed distribution
and finite variance. Statistics and Probability Letters, 2011, 81: 77–82), are obtained. Moreover,
special case, when reward sizes has Pareto distribution with parameter α > 2 is considered.
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1. Introduction and primarily discussions

The studies of renewal reward processes have an important role in the field of stochas-
tic process, because they have been used as a model in many applications, such as; stock
control, queuing, reliability and so on. There are many studies on renewal reward pro-
cesses in the literature. For example, in study Brown and Solomon (1975) was obtained
second order approximation for the variance of renewal reward process. Csenki (2000) con-
sidered renewal reward process with retrospective reward structure and found asymptotic
expansions for the expected value. Levy and Taqqu (2000) also considered the renewal
process with stable inter-renewal time intervals and stable rewards. Aliyev and Khaniyev
(2014), Aliyev et. al. (2009), Khaniyev et. al. (2013) was studied renewal reward process
with discrete interference of chance. Unlike of the above mention studies, in the present
paper we will be consider renewal reward process with discrete interference of chance and
a heavy tailed distributed rewards having finite variance.

Let {ξn},{ηn},{θn}, and {ζn}, n ≥ 1- are independent sequences of random variables
defined on probability space(Ω,=, P ), such that variables in each sequence independent
and identically distributed. Suppose that ξn, ηn, θn and ζn take only positive values and
these distribution functions be denoted by
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Φ(t) = P {ξ1 ≤ t} , t > 0, F ≡ F (x) = P {η1 ≤ x} , x > 0,

H(u) = P {θ1 ≤ u} , u > 0, π(z) = P {ζ1 ≤ z} , z ∈ [s, S] .

Let introduce also so called equilibrium distribution

F1(x) = 1
m1

∫ x
0 F̄ (u)du, where F̄ (u) = 1− F (u), m1 = E (η1) .

Define independent renewal sequence {Tn} and {Yn} as follows using the initial se-
quences of the random variables{ξn} and {ηn}as:

Tn =
n∑
i=1

ξi, Yn =
n∑
i=1

ηi, n = 1, 2, ...; T0 = Y0 = 0.

Define also sequence of integer valued random variables:

N(z − s) = min {k ≥ 1 : z − Yk < s} ;N0 = 0,

Nn ≡ Nn(ζn − s) = min
{
k ≥ Nn−1 + 1 : ζn − (Yk − YNn−1) < s

}
, n = 1, 2, ...

Let the random variables τn represents the nth time of the process drops below the
control level s and γn represents the nth moment exit from the level s:

τ0 = 0, τ1 = TN1 , γ1 = τ1 + θ1,

τ2 = γ1 + TN2 − TN1 , γ2 = τ2 + θ2,

. . .

τn = γn−1 + TNn − TNn−1 , γn = τn + θn, n = 1, 2, ...

Define also the counting process ν (t) as:

ν (t) = max {n ≥ 0 : Tn ≤ t} .

Thus the following stochastic process can be constructed using these notations:

X(t) = max{s , ζn+1 − Yν(t) + YNn } as γn ≤ t < γn+1, n = 0, 1, 2, ...

The considered process X(t) will be called renewal reward process with discrete inter-
ference of chance.

Our purpose in this paper is to investigate asymptotic behaviour as sufficiently large
values of parameter β = S−s of the ergodic distribution and n-order (n = 1, 2, ...) moment
of the process X(t), when ηn has a heavy tailed distribution and finite variance. Note that,
heavy tailed distributions play an important role in applied probability, especially when
modeling the samples where large values appear with non remissible probability. There are
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some important classes of heavy tailed distributions. One of the subclass of subexpanential
distributions was introduce by Chistyakov (1964).

Definition 1.1 (Chistyakov (1964)). A distribution F on [0,∞) is said to be subex-
ponential, written as F ∈, if F̄ (x) = 1− F (x) > 0 for all x > 0 and

F̄ ∗(2) (x)∼2F̄ (x) ,as x→∞,

where F ∗(2) (x)denote convolution product and F̄ ∗(2) (x) = 1− F ∗(2) (x).

Another subclass of heavy tailed distributions introduce in study Klppelberg (1988).

Definition 1.2 (Klppelberg (1988)). A distribution F on [0,∞) is said to belong to
the class L∗, if F (x) > 0 for all x > 0, m1 =

∫∞
0 F̄ (x)dx <∞, and∫ x

0 F̄ (x− t)F̄ (t) dt∼2m1F̄ (x), as x→∞.

The class L∗ forms an important subclass of the subexponential class . Klppelberg
(1988) first introduced the class L∗ and pointed out that the class L∗contains almost all
cited subexponential distributions with finite means. In recent studies in applied proba-
bility, researchers have discovered that the class L∗enjoys a lot of nicer properties than
the class L. The standard examples of subexponential distributions with a finite variance
such as the lognormal, Weibull with F̄ (x) = exp (−xα), 0 < α < 1 and Pareto distribution
(about class L∗see, Asmussen (2000), also, Foss, Korshunov, Zachary (2011)).

2. Ergodic distribution and n-order moment of ergodic distribution of
the process

In this section we will give exact formulas for the ergodic distribution and n-order
moment of ergodic distribution of the investigated processX(t).

Proposition 2.1. Let initial sequences {ξn},{ηn},{θn}, and {ζn}, n ≥ 1– satisfies the
following supplementary conditions:

1)Eξ1 <∞;

2)Eθ1 <∞;

3) distribution functionF (x)of the random variable η1is non-singular andF1 ∈ L∗;

4) random variables{ζn}, n ≥ 1has the uniform distribution on [s, S].

Then the process X(t) is ergodic and ergodic distribution function has the following explicit
form:

QX(x) = 1− 1 ∗ U(β − x+ s)

1 ∗ U(β) +Kβ
, β = S − s, s ≤ x ≤ S, (1)

whereK = Eθ1/Eξ1– delay coefficient, 1 ∗ U(t) =
∫ t

0 U(x)dx and U(x) =
∑∞

n=0 F
∗(n)(x)

– is a renewal function generated by the sequence {ηn}, n ≥ 1, F ∗(n)(x) is denoted n-
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fold convolution of the distribution function F (x)with itself and define as F ∗(n)(x) =∫ x
0 F

∗(n−1)(x− y)dF (y), n ≥ 1.

By using Proposition 2.1 can be obtain n-order (n = 1, 2, ...) moment of ergodic dis-
tribution of the process X(t).

Proposition 2.2. Let the conditions of Proposition 2.1 be satisied. If n-order moment
of the ergodic distribution of the process X̄(t) = X(t)− s exists and finite, then it can be
represented as follows:

E(X̄n) =
n (1 ∗ Un(β))

1 ∗ U(β) +Kβ
, (2)

where Un (β) ≡ βn−1∗U (β) =
∫ β

0 (z − t)n−1U(t)dt, n = 1, 2, . . ..

Proof. By using (1) it is not difficult to see that :

QX̄(x) = P
{
X̄ ≤ x

}
= P {X ≤ s+ x} = QX(s+ x) = 1− 1 ∗ U(β − x)

1 ∗ U(β) +Kβ
. (3)

Using (3) not difficult to see that,

E
(
X̄n
)

=

∫ S−s

0
xnP

{
X̄ ≤ x

}
= n

∫ β

0
xn−1 (1−QX̄(x)) dx =

=
n

1 ∗ U(β) +Kβ

∫ β

o
xn−1 (1 ∗ U(β − x)) dx. (4)

On the other hand∫ β

0
xn−1

∫ β

0
U (z− x) dzdx =

∫ β

0
xn−1

∫ β

x
U (z − x) dzdx

=

∫ β

0
xn−1

∫ β

x
U (z − x) dzdx =

∫ β

0
dz

∫ z

0
xn−1U (z − x) dx

=

∫ β

0

∫ z

0
(z − t)n−1U (t) dtdz =

∫ β

0
Un(z)dz = 1 ∗ Un (β) . (5)

Taking (5) into account in (4) can be obtained statement of Proposition 2.2.

3. Asymptotic behovior of ergodic distribution and n-order moment of
the process X(t)

In previous section the exact expressions for the ergodic distribution and its n-order
moment are obtained. It is very difficult to solve real world problems with exact formulas
because of the complexity in mathematics. Therefore, in this section, our aim is to obtain
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an asymptotic expansions as sufficiently large values of parameter β = S−s for the ergodic
distribution QWβ

(x) of the process Wβ(t) ≡ 1
β (X(t)− s), and its n-order moment.

From exact formulas (1) and (2) seen that both characteristics expressed by renewal
function U(x). For this we can use asymptotic expansions for the renewal function.

From renewal theory well-known the so-called sharper form of the renewal theorem in
case m2 = Eη2

1 < ∞ for the light tailed distributions (see, for example, Feller, (1971),
p.366) as x→∞:

U(x)− x

m1
→ m2

2m2
1

. (6)

This expansion is sufficient to obtain the asymptotic expansion for the characteristics
of the process with any light tailed rewards, which investigated in studies Aliyev et. al.
(2009), Khaniyev et.al. (2013), Aliyev and Khaniyev (2014) , Aliyev and Bayramov (2017)
and etc.

Quite a lot of studies have been done about heavy tailed distributions by now. For a
comprehensive survey see the books by Embrechts et. al. (1997), Asmussen (2000).

In study Geluk and Frenk (2011) asymptotic expansion (6) is extended for the some
subclass of the subexpanentional distributions.
Theorem 3.1. (Geluk and Frenk (2011)). Suppose F (x) is non-singular and F1 ∈ L∗,
then as x→∞:

U(x) =
x

m1
+

m2

2m2
1

− 1

m1
Ḡ1(x) +O

(
F̄1(x)

)
, (7)

where Ḡ1(x) =
∫∞
x F̄1(u)du, F1(x) = 1

m1

∫ x
0 F̄ (u)du, F̄ (u) = 1− F (u).

Note that, F1 ∈ L∗implies that m2 = Eη2
1 <∞.

Based on Theorem 3.1, we can state the first main result of this study as follows:
Theorem 3.2. Let the conditions of Proposition 2.1 be satisfied. Suppose F (x) is non-
singular andF1 ∈ L∗. Then for the each x ∈ (0, 1) as β →∞

QWβ
(x) = x(2− x) +B(x)

1

β
+ 2

(
1 ∗ Ḡ1(β(1− x))

) 1

β2
+O

(
1 ∗ F̄1(β(1− x)

β2

)
, (8)

where B(x) = 2(1− x) (Km1(1− x)−m21x).
Proof. Using (1) ergodic distribution function of process Wβ(t) ≡ 1

β (X(t) − s), can be
written as follows:

QWβ
(x) = 1− 1 ∗ U(β(1− x))

1 ∗ U(β) +Kβ
, (9)

where1 ∗ U(t) =
∫ t

0 U(x)dx, β ≡ S − s.
From (7) as β →∞ can be obtained:

1 ∗ U(β) =

∫ β

0
U(x)dx =

1

2m1
β2 +

m2

2m2
1

β − 1

m1

(
1 ∗ Ḡ1(β)

)
+ J1(β), (10)
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where J1 (β) =
∫ β

0 g (x) dx and g(x) = O
(
F̄1(x)

)
.

According to defination, g(x) = O
(
F̄1(x)

)
means that there are exist C > 0 such that

|g(x)| ≤ C
∣∣F̄1(x)

∣∣ = CF̄1(x). (11)

Taking (11) into account, can be written:

|J1 (β)| =
∣∣∣∣∫ β

0
g (x) dx

∣∣∣∣ ≤ ∫ β

0
|g (x)| dx ≤ C

∫ β

0
F̄1(x)dx = C

(
1 ∗ F̄1(β)

)
Conseqvently,

J1 (β) = O(1 ∗ F̄1(β)). (12)

Taking (12) into account, (10) can be rewritten as β →∞:

1 ∗ U(β) =

∫ β

0
U(x)dx =

1

2m1
β2 +

m2

2m2
1

β − 1

m1

(
1 ∗ Ḡ1(β)

)
+O(1 ∗ F̄1(β)). (13)

Using (13) as β →∞ can be obtained:

1 ∗ U(β) +Kβ =
β2

2m1

(
1 + 2 (m21 +Km1)

1

β2
− 2

(
1 ∗ Ḡ1(β)

) 1

β2
+O

(
1 ∗ F̄1(β)

β2

))
.

(14)
From (14) as β →∞ can be get:

(1 ∗ U(β) +Kβ)−1 =
2m1

β2

(
1− 2 (m21 +Km1)

1

β2
+ 2

(
1 ∗ Ḡ1(β)

) 1

β2
+O

(
1 ∗ F̄1(β)

β2

))
.

(15)
On the other hand, from (13) for the each x ∈ (0, 1) as β →∞ can be obtained:

1 ∗ U(β(1− x)) =

=
β2

2m1

(
(1− x)2 + 2m21 (1− x)

1

β
− 2

(
1 ∗ Ḡ1 (β (1− x))

) 1

β2
+O

(
1 ∗ F̄1 (β (1− x))

β2

))
.

(16)
Taking into account (15) and (16) in (6) can be obtained (8).
This completes the proof of Theorem 3.2.

Now investigate the asymptotic behavior as β →∞ of n-order moment of the ergodic
distribution of Wβ(t). For this aim, give the following lemma:
Lemma 3.1. Let the conditions of Theorem 3.2 be satisfied. Then asβ →∞

Un (β) =
1

m1n(n+ 1)
βn+1 +

m2

2m2
1n
βn − 1

m1

(
βn−1 ∗ Ḡ1(β)

)
+O

(
βn−1 ∗ F̄1(β)

)
, (17)
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whre βn−1∗Ḡ1 (β) ≡
∫ β

0 (β − t)n−1Ḡ1 (t) dt, n = 1, 2, . . .,mk = Eηk1 .

Ḡ1(β) =

∫ ∞
β

F̄1(u)du, F1(x) =
1

m1

∫ x

0
F̄ (u)du, F̄1(x) =

1

m1

∫ ∞
x

F̄ (u)du, F̄ (u) = 1−F (u).

Proof. Using asymptotic expansion (6) for the each n = 1, 2, . . . can be written:

Un (β) ≡ βn−1∗U (β) ≡
∫ β

0
(β − x)n−1U (x) dx =

=
1

m1

∫ β

0
(β − x)n−1xdx+

m2

2m2
1

∫ β

0
(β − x)n−1dx− 1

m1

∫ β

0
(β − x)n−1Ḡ1(x)dx+ Jn (β) =

=
1

m1n(n+ 1)
βn+1 +

m2

2m2
1n
βn − 1

m1

(
βn−1 ∗ Ḡ1(β)

)
+ Jn (β) , (18)

where Jn (β) =
∫ β

0 (β − x)n−1g (x) dx and g(x) = O
(
F̄1(x)

)
.

It is not difficult to see that

|Jn (β)| ≤
∫ β

0
(β − x)n−1 |g (x)| dx ≤ C

∫ β

0
(β − x)n−1F̄1(x)dx. (19)

From (19) for the each n = 1, 2, . . .

Jn (β) = O

(∫ β

0
(β − x)n−1F̄1(x)dx

)
= O

(
βn−1 ∗ F̄1(β)

)
. (20)

Taking into account (20) from (18) can be obtained (14).

This completes the proof of Lemma 3.1.

Now, we can state the second result of this study as follows:

Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied. Then as β → ∞ the
following asymptotic expansion for the n-order moment of the ergodic distribution of can
be written:

E(Wn
β ) =

2

(n+ 1)(n+ 2)
+

2m21

(n+ 1)
β−1−

(
1 ∗
(
βn−1 ∗ Ḡ1(β)

)) 2n

β2−n+O

(
1 ∗
(
βn−1 ∗ F̄1(β)

)
β2−n

)
.

(21)

Proof. Taking into account (17) as β →∞ can be obtained:

1 ∗ Un (β) =
1

m1

(
1

n(n+ 1)(n+ 2)
βn+2 +m21

1

n(n+ 1)
βn+1−

−1 ∗
(
βn−1 ∗ Ḡ1(β)

)
+O

(
1 ∗
(
βn−1 ∗ F̄1(β)

)))
, (22)
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Taking (15) and (22) into account, from (2) as β →∞ can be obtained:

E(Wn
β ) =

nβ−n [1 ∗ Un(β)]

1 ∗ U(β) +Kβ
=

=
nβ−n

m1

(
1

n(n+ 1)(n+ 2)
βn+2 +m21

1

n(n+ 1)
βn+1−

−1 ∗
(
βn−1 ∗ Ḡ1(β)

)
+O

(
1 ∗
(
βn−1 ∗ F̄1(β)

)))
2m1

β2

(
1− 2 (m21 +Km1)

1

β2
+ 2

(
1 ∗ Ḡ1(β)

) 1

β2
+O

(
1 ∗ F̄1(β)

β2

))
=

=
2

(n+ 1)(n+ 2)
+

2m21

(n+ 1)
β−1 −

(
1 ∗
(
βn−1 ∗ Ḡ1(β)

)) 2n

β2−n +O

(
1 ∗
(
βn−1 ∗ F̄1(β)

)
β2−n

)
.

This completes the proof of Theorem 3.2.

4. Special cases: Pareto distribution

In this section we will consider special case, when random variable η1 has Pareto distri-
bution. It is known that distribution function of the Pareto distribution with parameters
(α, λ)is

F (x) = 1−
(
λ

x

)α
, α > 0, x ≥ λ.

In case 0 < α ≤ 2 variance of the Pareto distribution does not exists. Therefore, we
assume that α > 2, such that in this case Pareto distributon belong to class L∗. For
the simplicity assume that λ = 1. Consequently, in our case tail function of the Pareto
distribution has the following form:

F̄ (x) = x−α, α > 2, x ≥ 1.

Now, we can state the following corollaries:
Corollary 4.1. Let the conditions of Proposition 2.1 be satisfied. Suppose F (x) has the
Pareto distribution with parameters (α, 1), α > 2. Then for the each x ∈ (0, 1) asβ →∞:

QWβ
(x) = x(2− x) +B(x)

1

β
+O

(
1

β2

)
, (23)

where B(x) = 2(1− x)
(
Kα(1−x)
α−1 − (α−1)x

2(α−2)

)
.

Proof. It is not difficult to see that tail of the equilibrium distribution of Pareto distri-
bution is
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F̄1(t) =
1

m1

∫ ∞
t

F̄ (u)du =
αt1−α

(α− 1)2 , α > 2.

Therefore,

∣∣Ḡ1(β)
∣∣ ≤ ∫ ∞

β

∣∣F̄1(t)
∣∣ dt =

1

m1

∫ ∞
β

t1−α

α− 1
dt =

αβ2−α

(α− 1)2(α− 2)
, α > 2.

Consequently,

Ḡ1(β) = O(β2−α), α > 2.

Analogically, it is not difficult to see that for the eachx ∈ (0, 1) as β →∞

1 ∗ Ḡ1(β(1− x)) = O(1)) and1 ∗ F̄1(β(1− x) = O(1)). (24)

Asymptotic expansion (23) can be obtained from Theorem 3.2, by using (24).
Corollary 4.2. Let the conditions of Proposition 2.1 be satisfied. Suppose F (x)has the
Pareto distribution with parameters (α, 1), α > 2. Then asβ →∞:

E(Wn
β ) =

2

(n+ 1)(n+ 2)
+

(α− 1)

(n+ 1)(α− 2)
β−1 +O

(
β−1

)
. (25)

Proof. Analogically, it is not difficult to see that as β →∞

1 ∗
(
βn−1 ∗ Ḡ1(β)

)
= O

(
βn+1

)
and 1 ∗

(
βn−1 ∗ F̄1(β)

)
= O

(
βn+1

)
. (26)

Asymptotic expansion (25) can be obtained from Theorem 3.3, by using (26).

5. Conclusions

In present study, renewal reward process X(t) with a heavy tailed distributed rewards
having finite variance is considered. Exact expressions for the ergodic distribution and
its n-order moment are obtained. But it is very difficult to solve real world problems by
using exact formulas because of the complexity of their mathematical structure. For an
alternative solving method, asymptotic method can be used.The asymptotic expansions as
β →∞ for the ergodic distribution and n-order moment of the processWβ(t) ≡ β−1(X(t)−
s) are obtained. The obtained results show that for the large values of parameterβ = S−s
the probability characteristics of the process Wβ(t), tends to respective characteristics of
the distribution function G(x) = x(2− x), x ∈ (0, 1). In other words, QWβ

(x)→ G(x) ≡
x(2− x), x ∈ (0, 1) and E

(
Wn
β

)
→ 1

(n+1)(n+2) , n ≥ 1 as β →∞ . Estimation of the rate

of convergence in this asymptotic results can be investigated in future studies.
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