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On the Noetherian Properties of Reduction System of
Words

Nacer Ghadbane

Abstract. For any set Σ of symbols, Σ∗ denotes the set of all words of symbols over Σ, including
the empty string ε. The set Σ∗ denotes the free monoid generated by Σ under the operation of
concatenation with the empty string serving as identity.
Let R ⊆ Σ∗×Σ∗ be a finite set. We define the binary relation⇒

R
as follows, where u, v ∈ Σ∗ : u⇒

R
v

if there exist x, y ∈ Σ∗ and (l,m) ∈ R with u = xly and v = xmy. The structure
(

Σ,⇒
R

)
is a

reduction system of words and the relation⇒
R

is the reduction relation. Let
(

Σ,⇒
R

)
be a reduction

system of words. The relation ⇒
R

is Noetherian if there is no infinite sequence w0, w1, ... ∈ Σ∗ such

that for all i ≥ 0, wi⇒
R
wi+1.

In this paper, we study properties of reduction systems of words and give conditions under which
a reduction system of word is Noetherian.

Key Words and Phrases: Free monoid, morphism of monoids, closure of a binary relation,
reduction system of words.
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A reduction system of words is a pair

(
Σ,⇒
R

)
where Σ is an alphabet and R is a

non-empty finite binary on Σ∗, we write xly⇒
R
xmy whenever x, y ∈ Σ∗ and (l,m) ∈ R.

We write u
∗⇒
R
v if there exists a words u0, u1, ..., un ∈ Σ∗ such that,

u0 = u, ui⇒
R
ui+1,∀0 ≤ i ≤ n− 1 and un = v.

If n = 0, we get u = v, and if n = 1, we get u⇒
R
v. Where

∗⇒
R

is the reflexive transitive

closure of ⇒
R

[7].

The reduction system of words (Σ,R) is Noetherian if there does not exist an infinite
chain w1⇒

R
w2⇒
R
w3⇒
R
... in Σ∗.

However, this property is said to be undecidable. It is not possible to find an algorithm
taking as input a reduction system of words and rendering true if and only if this reduction
system of words is Noetherian [8, 10].
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The remainder of this paper is organized as follows. In Section 2, some mathematical
preliminaries. In Section 3, we give some propositions on the noetherian propertie of
reductions systems of words.

1. Preliminaries

We formally define an alphabet as a non-empty finite set. A word over an alphabet
Σ is a finite sequence of symbols of Σ. Although one writes a sequence as (σ1, σ2, ..., σn),
in the present context, we prefer to write it as σ1σ2...σn. The set of all words on the
alphabet Σ is denoted by Σ∗and is equipped with the associative operation defined by
the concatenation of two sequences. The concatenation of two sequences α1α2...αn and
β1β2...βm is the sequence α1α2...αnβ1β2...βm [1, 4].

The concatenation is an associative operation. The string consisting of zero letters is
called the empty word, written ε. Thus, ε, α, β, ααβα, αααβα are words over the alphabet
{α, β}. Thus the set Σ∗ of words is equipped with the structure of a monoid. The monoid
Σ∗ is called the free monoid on Σ. The length of a word w, denoted |w|, is the number of
letters in w when each letter is counted as many times as it occurs. Again by definition,
|ε| = 0. For example |ααβα| = 4 and |αααβα| = 5. Let w be a word over an alphabet Σ.
For σ ∈ Σ, the number of occurrences of σ in w shall be denoted by |w|σ. For example
|ααβα|β = 1 and |αααβα|α = 4.

A mapping h : Σ∗ −→ ∆∗, where Σ and ∆ are alphabets, satisfying the condition

h(uv) = h(u)h(v), for all words u and v,

is called a morphism. To define a morphism h, it suffices to list all the words h (σ),
where a ranges over all the (finitely many) letters of Σ. If M is a monoid, then any
mapping f : Σ −→ M extends to a unique morphism h : Σ∗ −→ M . For instance, if M
is the additive monoid N, and f is defined by f (σ) = 1 for each σ ∈ Σ, then h (u) is the
length |u| of the word u [6, 7].

A binary reation on Σ∗ is a subset R ⊆ Σ∗ × Σ∗. If (x, y) ∈ R, we say that x is
related to y by R, denoted xRy. The relation IΣ∗ = {(x, x) , x ∈ Σ∗} is called the identity
relation. The relation (Σ∗)2 is called the complete relation.

Let R ⊆ Σ∗ ×Σ∗ and S ⊆ Σ∗ ×Σ∗ binary relations. The composition of R and S is a
binary relation S ◦ R ⊆ Σ∗ × Σ∗ defined by

x (S ◦ R) z ⇐⇒ ∃y ∈ Σ∗ such that xRy and ySz.

A binary relation R on a set Σ∗ is said to be
• reflexive if xRx for all x in Σ∗.
• transitive if xRy and yRz imply xRz.
Let R be a relation on a set Σ∗. The reflexive closure of R is the smallest reflexive

relation Rr on Σ∗ that contains R, that is,
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• R ⊆ Rr
• if S is a reflexive relation on Σ∗ and R ⊆ S, then Rr ⊆ S.
The transitive closure of R is the smallest transitive relation R+ on Σ∗ that contains

R; that is,
• R ⊆ R+

• if S is a transitive relation on Σ∗ and R ⊆ S, then R+ ⊆ S.
The reflexive transitive closure of R is the smallest reflexive transitive relation R∗ on

Σ∗ that contains R; that is,
• R ⊆ R∗
• if S is a reflexive transitive relation on Σ∗ and R ⊆ S, then R∗ ⊆ S.
Let R be a relation on a set Σ∗. Then

R0 = R∪ IΣ∗ , R+ =
k=+∞⋃
k=1

Rk, R∗ =
k=+∞⋃
k=0

Rk [6].

Where Rk = R0 ◦ Rk−1, R0 is the identity relation, and ◦ denote composition of
relations.

Let R ⊆ Σ∗ × Σ∗be a finite set. We define the binary relation ⇒
R

as follows, where

u, v ∈ Σ∗ : u⇒
R
v if there exist x, y ∈ Σ∗ and (l,m) ∈ R with u = xly and v = xmy.

The structure

(
Σ,⇒
R

)
is a reduction system of words and the relation ⇒

R
is the reduction

relation. If u ∈ Σ∗ and there is no v ∈ Σ∗ suth that u⇒
R
v, then u is irreducible; otherwise,

u is reducible. The set of all irreducible elements of Σ∗ with respect to ⇒
R

is denoted

IRR

((
Σ,⇒
R

))
[2]. Let

(
Σ,⇒
R

)
be a reduction system of words, we write u

∗⇒
R
v if there

words u0, u1, ..., un ∈ Σ∗ such that,

u0 = u, ui⇒
R
ui+1,∀0 ≤ i ≤ n− 1 and un = v.

If n = o, we get u = v, and if n = 1, we get u⇒
R
v. Where

∗⇒
R

is the reflexive transitive

closure of ⇒
R

.

We say that

(
Σ,⇒
R

)
is Noetherian if there does not exist an infinite sequence of words

wi ∈ Σ∗ (i ∈ N) with w0⇒
R
w1⇒
R
w2⇒
R
.... For example (N, >) is Noetherian [5].
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2. Results

In this section, we study reduction systems and we provide conditions under which a
reduction system of word is Noetherian.

Theorem 1. [2, Theorem 2.2.4, p.42] Let

(
Σ1,⇒

R1

)
be a reduction system of words. Then

the following two statements are equivalent :

1.

(
Σ1,⇒

R1

)
is Noetherian;

2. There exists another reduction system of words

(
Σ2,⇒

R2

)
that is Noetherian and

the morphism ψ : Σ∗1 −→ Σ∗2 such that ψ(⇒
R1

) ⊆ +⇒
R2

.
+⇒
R2

is the transitive closure of ⇒
R2

.

Proposition 2. Let

(
Σ,⇒
R

)
be a reduction system of words and ϕ : Σ∗ −→ N the

morphism of monoids. Consider the mapping P : Σ∗ −→ N defined by :

P (w) =
i=|w|∑
i=1

ni × ϕ(w(i)), n ∈ N− {0} where w (i) is the i− th letter of w.

If for all (l,m) ∈ R,


|l| = |m| (C1)

and
P (l) > P (m) (C2)

, then

(
Σ,⇒
R

)
is Noetherian.

Proof. First, we show that, we have : ∀x, y ∈ Σ∗ : P (xy) = P (x) + n |x| × P (y). We have

P (xy) =
i=|xy|∑
i=1

ni × ϕ((xy) (i)) =
i=|x|∑
i=1

ni × ϕ((xy) (i)) +
i=|x|+|y|∑
i=|x|+1

ni × ϕ((xy) (i))

=
i=|x|∑
i=1

ni × ϕ((x) (i)) +
i=|y|∑
i=1

n |x|+i × ϕ((xy) (|x|+ i))

=
i=|x|∑
i=1

ni × ϕ((x) (i)) +
i=|y|∑
i=1

n |x|+i × ϕ((y) (i)) = P (x) + n |x| × P (y).

Let (l,m) ∈ R and x, y ∈ Σ∗, we show that P (xly) > P (xmy).
We have P (xly) = P (x(ly)) = P (x) + n |x| × P (ly) = P (x) + n |x|

(
P (l) + n |l| × P (y)

)
= P (x) + n |x| × P (l) + n |x|+|l| × P (y). A similar argument, we have P (xmy) = P (x(my))
= P (x) + n |x| × P (my) = P (x) + n |x|

(
P (m) + n |m| × P (y)

)
= P (x) + n |x|×P (m) + n |x|+|m|×P (y). According to the conditions (C1), (C2) described

above, we have P (xly) > P (xmy). Consequently

(
Σ,⇒
R

)
is Noetherian.

Example 3. Consider the reduction system of words

(
Σ,⇒
R

)
with Σ = {α, β, γ} and

R = {(βα, αβ) ; (γβ, βγ)}. Let the morphism ϕ : Σ∗ −→ N, defined by ϕ (α) = 3,
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ϕ (β) = 2, ϕ (γ) = 1 and the mapping P : Σ∗ −→ N, where P (w) =
i=|w|∑
i=1

2 i×ϕ(w(i)). For

the condition (C1), we have |βα| = |αβ| = 2 and |γβ| = |βγ| = 2. For the condition (C2),
we show that P (βα) > P (αβ) and P (γβ) > P (βγ).

We have P (βα) =
i=2∑
i=1

2 i × ϕ(βα(i)) = 2× ϕ (β) + 22 × ϕ (α) = 16.

Similarly, P (αβ) =
i=2∑
i=1

2 i×ϕ(αβ(i)) = 2×ϕ (α) + 22×ϕ (β) = 14, then P (βα) > P (αβ).

We have P (γβ) =
i=2∑
i=1

2 i × ϕ(γβ(i)) = 2× ϕ (γ) + 22 × ϕ (β) = 10.

Similarly, P (βγ) =
i=2∑
i=1

2 i × ϕ(βγ(i)) = 2× ϕ (β) + 22 × ϕ (γ) = 8, then P (γβ) > P (βγ).

Consequently

(
Σ,⇒
R

)
is Noetherian.

Proposition 4. Let

(
Σ,⇒
R

)
be a reduction system of words and ϕ : (Σ∗, ·) −→ (N,+) with

a morphism of monoids, the mapping P : Σ∗ −→ N defined by : P (w) =
i=|w|∑
i=1

i × ϕ(w(i)),

where w (i) is the i− th letter of w.

If for all (l,m) ∈ R,


|l| = |m| (C1)

and
P (l) > P (m) (C2)

and
ϕ (l) > ϕ (m) (C3)

, then

(
Σ,⇒
R

)
is Noetherian.

Proof. First, we show that, we have : ∀x, y ∈ Σ∗ : P (xy) = P (x) + P (y) + |x| × ϕ (y).

We have P (xy) =
i=|xy|∑
i=1

i × ϕ(xy(i)) =
i=|x|∑
i=1

i × ϕ(xy(i)) +
i=|x|+|y|∑
i=|x|+1

i × ϕ(xy(i))

=
i=|x|∑
i=1

i × ϕ(x(i)) +
i=|y|∑
i=1

(|x|+ i)× ϕ((xy) (|x|+ i))

=
i=|x|∑
i=1

i × ϕ((x) (i)) +
i=|y|∑
i=1

(|x|+ i)× ϕ((y) (i))

= P (x) + P (y) + |x| × ϕ (y).
Let (l,m) ∈ R and x, y ∈ Σ∗, we show that P (xly) > P (xmy).
We have, P (xly) = P (x(ly)) = P (x) + P (ly) + |x| × ϕ (ly)
= P (x) + P (l) + P (y) + |l| × ϕ (y) + |x| × (ϕ (l) + ϕ (y))
= [P (x) + P (y) + |x| × ϕ (y)] + [P (l) + |l| × ϕ (y) + |x| × ϕ (l)].
On the other hand, P (xmy) = [P (x) + P (y) + |x| × ϕ (y)] +
[P (m) + |m| × ϕ (y) + |x| × ϕ (m)].
According to the conditions (C1), (C2), (C1) described above,we have P (xly) > P (xmy).
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Finally

(
Σ,⇒
R

)
is Noetherian.

Example 5. Let Σ = {α, β, γ} and R = {(βα, βγ) ; (αβ, αγ)}. We define the morphism
of monoids ϕ : Σ∗ −→ N, by ϕ (α) = 2, ϕ (β) = 1, ϕ (γ) = 0. We consider the mapping

P : Σ∗ −→ N, where P (w) =
i=|w|∑
i=1

i× ϕ(w(i)).

For the condition (C1), we have |βα| = |βγ| = 2 and |αβ| = |αγ| = 2.
For the condition (C2), we show that P (βα) > P (βγ) and P (αβ) > P (αγ).

We have P (βα) =
i=2∑
i=1

i× ϕ(βα(i)) = 1× ϕ (β) + 2× ϕ (α) = 5.

A similar argument, we have P (βγ) =
i=2∑
i=1

i× ϕ(βγ(i)) = 1× ϕ (β) + 2× ϕ (γ) = 1,

then P (βα) > P (βγ). And P (αβ) =
i=2∑
i=1

i× ϕ(αβ(i)) = 1× ϕ (α) + 2× ϕ (β) = 4.

Similarly, P (αγ) =
i=2∑
i=1

i× ϕ(αγ(i)) = 1× ϕ (α) + 2× ϕ (γ) = 2., then P (αβ) > P (αγ).

For the condition (C3), we show that ϕ(βα) > ϕ(βγ) and ϕ(αβ) > ϕ(αγ).
We have ϕ(βα) = 3, ϕ(βγ) = 1, ϕ(αβ) = 3, ϕ(αγ) = 2.

Consequently

(
Σ,⇒
R

)
is Noetherian.

3. Conclusion

In this paper, we give some give conditions under which a reduction system of word is
Noetherian.
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