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Abstract. Intuitionistic fuzzy normed space is defined using the concepts of t-norm and t-conorm.
The concepts of fuzzy completeness, fuzzy minimality, fuzzy biorthogonality, fuzzy basicity and
fuzzy space of coefficients are introduced. Weak completeness of fuzzy space of coefficients with
regard to fuzzy norm and weak basicity of canonical system in this space are proved. Weak basicity
criterion in fuzzy Banach space is presented in terms of coefficient operator.
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1. Introduction

The concept of the space of coefficients belongs to the theory of bases. As is known,
every basis in a Banach space has a Banach space of coefficients which is isomorphic
to an initial one (see, e.g., [1;2]). Every nondegenerate system (to be defined later) in
a Banach space generates the corresponding Banach space of coefficients with canonical
basis (see, e.g., [2;3]). Therefore, space of coefficients plays an important role in the study
of approximative properties of systems. It has very important applications in various
fields of science, such as solid body physics, molecular physics, multiple production of
particles, aviation, medicine, biology, data compression, etc (see, e.g., [4;5] and references
therein). All these applications are closely related to wavelet analysis, and there arose a
great interest in them lately [see, e.g., 5]. It is well known that many topological spaces
are nonnormable. Therefore, the study of various properties of the space of coefficients in
topological spaces is of special scientific interest.

Applications in various branches of mathematics and natural sciences have lately in-
duced a strong interest toward the study of different research problems in terms of fuzzy
structures. More details on this topic can be found in [6-9] and references therein. A
large number of research works is appearing these days which deal with the concept of
fuzzy set-numbers, and fuzzification of many classical theories has also been made. The
concept of Schauder basis in intuitionistic fuzzy normed space and some results related
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to this concept have recently been studied in [10-12] where the concepts of strongly and
weakly intuitionistic fuzzy (Schauder) bases in intuitionistic fuzzy Banach spaces (IFBS
in short) have been introduced and some of their properties have been revealed. The
concepts of strongly and weakly intuitionistic fuzzy approximation properties (sif-AP and
wif-AP in short, respectively) are also introduced in those works. It is proved that if the
intuitionistic fuzzy space has a wif-basis, then it has a wif-AP. All the results in those
works are obtained on condition that IFBS admits equivalent topology using the family
of norms generated by t-norm and t-conorm (we will define them later).

In our work, we define the basic concepts of classical basis theory in intuitionistic fuzzy
normed spaces (IFNS in short). Concepts of weak and strongly fuzzy spaces of coefficients
are introduced. Weak completeness of these spaces with regard to fuzzy norm and weakly
basicity of canonical system in them are proved. Weak basicity criterion in fuzzy Banach
space is presented in terms of coefficient operator.

In Section 2, we recall some notations and concepts. In Section 3, we state our main
results. We first define fuzzy space of coefficients and then introduce the corresponding
fuzzy norms. We prove that for nondegenerate system the corresponding fuzzy space of
coefficients is weakly fuzzy complete. Moreover, we show that the canonical system forms
a weak basis for this space.

2. Some preliminary notations and concepts

We will use the standard notation: N will denote the set of all positive integers, R will
be the set of all real numbers, C will be the set of complex numbers and K will denote a
field of scalars (K ≡ R, or K ≡ C), R+ ≡ (0,+∞). δnk is the Kronecker symbol. Here we
state some concepts and facts from IFNS theory to be used later.

One of the most important problems in fuzzy topology is to obtain an appropriate
concept of intuitionistic fuzzy normed space. This problem has been investigated by Park
[19]. He has introduced and studied a notion of intuitionistic fuzzy metric space. We recall
it.

Definition 1. A binary operation ∗ : [0, 1]2 → [0, 1] is a continuous t-norm if it satisfies
the following conditions:

(a) ∗ is associative and commutative;

(b) ∗ is continuous;

(c) a ∗ 1 = a, ∀a ∈ [0, 1];

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, ∀a, b, c, d ∈ [0, 1].

Example 1. Two typical examples of continuous t-norm are a ∗ b = ab and a ∗ b =
min {a; b}.

Definition 2. A binary operation ♦ : [0, 1]2 → [0, 1] is a continuous t-conorm if it satisfies
the following conditions:

(α) ♦ is associative and commutative;

(β) ♦ is continuous;
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(γ) a♦0 = a,∀a ∈ [0, 1] ;
(η) a♦b ≤ c♦d whenever a ≤ c and b ≤ d, ∀a, b, c, d ∈ [0, 1].

Example 2. Two typical examples of continuous t-conorm are a♦b = min {a+ b; 1}
and a♦b = max {a; b}.

Definition 3. Let X be a linear space over a field K. Functions µ ; ν : X × R → [0 , 1]
are called fuzzy norms on X if the following conditions hold:

1. µ (x; t) = 0 , ∀t ≤ 0 , ∀x ∈ X;

2. µ (x; t) = 1 , ∀t > 0⇒ x = 0;

3. µ (cx; t) = µ
(
x; t
|c|

)
, ∀c 6= 0 ;

4. µ (x; · ) : R→ [0, 1] is a non-decreasing function of t for ∀x ∈ X and lim
t→∞

µ (x; t) = 1,

∀x ∈ X;

5. µ (x; s) ∗ µ (y; t) ≤ µ (x+ y; s+ t) , ∀x, y ∈ X , ∀s, t ∈ R;

6. ν (x; t) = 1 , ∀t ≤ 0 , ∀x ∈ X;

7. ν (x; t) = 0, ∀t < 0⇒ x = 0;

8. ν (cx; t) = ν
(
x; t
|c|

)
, ∀c 6= 0 ;

9. ν (x; · ) : R→ [0, 1] is a non-increasing function of t for ∀x ∈ X and lim
t→∞

ν (x; t) = 0,

∀x ∈ X;

10. ν (x; s)♦ν (y; t) ≥ ν (x+ y; s+ t) ,∀x, y ∈ X , ∀s, t ∈ R;

11. µ (x; t) + ν (x; t) ≤ 1, ∀x ∈ X , ∀t ∈ R.

Then the 5-tuple (X;µ; ν; ∗; ♦) is said to be an intuitionistic fuzzy normed space
(shotly IFNS).

Example 3. Let (X ; ‖ · ‖) be a normed space. Denote a ∗ b = ab and a♦b =
min {a+ b; 1}, for ∀a, b ∈ [0, 1] and define µ and ν as follows:

µ (x; t) =

{ t
t+‖x‖ , t > 0,

0 , t ≤ 0 ,

ν (x; t) =

{
‖x‖
t+‖x‖ , t > 0,

1 , t ≤ 0 .

Then (X;µ; ν; ∗; ♦) is an IFNS.
The above concepts allow to introduce the following kinds of convergence (or topology)

in IFNS:
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Definition 4. Let (X;µ; ν) be a fuzzy normed space and let {xn}n∈N ⊂ X be some
sequence. Then it is said to be strongly intuitionistic fuzzy convergent to x ∈ X (denoted
by xn

s→x, n → ∞, or s- lim
n→∞

xn = x in short ) if and only if for ∀ε > 0, ∃n0 = n0 (ε) :

µ (xn − x; t) ≥ 1− ε, ν(xn − x; t) ≤ ε , ∀n ≥ n0 , ∀t ∈ R.

Definition 5. Let (X;µ; ν) be a fuzzy normed space and {xn}n∈N ⊂ X be some se-
quence. Then it is said to be weakly intuitionistic fuzzy convergent to x ∈ X (denoted by
xn

w→x, n → ∞, or w- lim
n→∞

xn = x in short) if and only if for ∀t ∈ R+ , ∀ε > 0, ∃n0 =

n0 (ε; t) : µ (xn − x; t) ≥ 1− ε, ν(xn − x; t) ≤ ε , ∀n ≥ n0 .

More details on these concepts can be found in [13-22].
Let (X;µ; ν) be an IFNS, and let M ⊂ X be some set. By L [M ] we denote the

linear span of M in X. The weakly (strongly) intuitionistic fuzzy convergent closure of
L [M ] will be denoted by Lw [M ] (Ls [M ]). If X is complete with respect to the weakly
(strongly) intuitionistic fuzzy convergence, then we will call it intuitionistic fuzzy weak
(strong) Banach space: (IFBwS or Xw (IFBsS or Xs) in short). Let X be an IFBwS
(IFBsS). We denote by X∗w (X∗s ) the linear space of linear and continuous in IFBwS
(IFBsS) functionals over the same field K .

Now we define the corresponding concepts of basis theory for IFNS. Let {xn}n∈N ⊂ X
be some system.

Definition 6. System {xn}n∈N is said w-complete (s-complete) in Xw (in Xs), if Lw
[
{xn}n∈N

]
≡

Xw (Ls
[
{xn}n∈N

]
≡ Xs).

Definition 7. System {x∗n}n∈N ⊂ X∗w ({x∗n}n∈N ⊂ X∗s ) is called w-biorthogonal (s-
biorthogonal) to the system {xn}n∈N , if x∗n (xk) = δnk , ∀n, k ∈ N , where δnk is the
Kronecker symbol.

Definition 8. System {xn}n∈N ⊂ Xw ({xn}n∈N ⊂ Xs) is called w-linearly (s-linearly)
independent in X, if

∑∞
n=1 λnxn = 0 in Xw (in Xs) implies λn = 0 , ∀n ∈ N .

Definition 9. System {xn}n∈N ⊂ Xw ({xn}n∈N ⊂ Xs) is called w-basis (s-basis) for Xw

(for Xs) if ∀x ∈ X, ∃! {λn}n∈N ⊂ K :
∑∞

n=1 λnxn = x in Xw (in Xs).

We will also need the following concept.

Definition 10. System {xn}n∈N ⊂ X is called nondegenerate if xn 6= 0, ∀n ∈ N .

3. Main results

3.1. Space of coefficients. Let X be an IFNS and let {xn}n∈N ⊂ X be some
system. Assume that

K w
x̄ ≡

{
{λn}n∈N ⊂ C :

∞∑
n=1

λnxn converges in Xw

}
;



74 F.A. Guliyeva

K s
x̄ ≡

{
{λn}n∈N ⊂ C :

∞∑
n=1

λnxn converges in Xs

}
.

It is not difficult to see that K w
x̄ and K s

x̄ are linear spaces with regard to component-
specific summation and component-specific multiplication by a scalar. Take ∀λ ≡ {λn}n∈N ∈
K w
x̄ and assume

µK
(
λ̄; t
)

= inf
m
µ

(
m∑
n=1

λnxn; t

)
; νK

(
λ̄; t
)

= sup
m
ν

(
m∑
n=1

λnxn; t

)
.

Let’s show that µK and νK satisfy the conditions 1)-11).
1) It is clear that µK

(
λ̄; t
)

= 0, ∀t ≤ 0.
2) Let µK

(
λ̄; t
)

= 1, ∀t > 0. Hence, µ (
∑m

n=1 λnxn; t) = 1, ∀m ∈ N, ∀t > 0.
Suppose that the system {xn}n∈N is nondegenerate. It follows from above-stated relations
that for m = 1 we have µ (λ1x1; t) = 1, ∀t > 0. Hence, λ1x1 = 0 ⇒ λ1 = 0. Continuing
this way, we get at the end of this process that λn = 0, ∀n ∈ N , i.e. λ̄ = 0;

3) The validity of relation µK
(
cλ̄; t

)
= µK

(
λ̄; t
|c|

)
, ∀c 6= 0, is beyond any doubt.

4) As µ (x; ·) is a non-decreasing function on R, it is not difficult to see that µK
(
λ̄; ·
)

has the same property. Let’s show that lim
t→∞

µK
(
λ̄; t
)

= 1.Take ∀ε > 0. Let Sm =∑m
n=1 λnxn and w- lim

m→∞
Sm = S ∈ Xw. It is clear that ∃t0 > 0 : µ (S; t0) ≥ 1− ε. Then it

follows from the definition of limw
m

that ∃m0 (ε; t0) : µ (Sm − S; t0) ≥ 1−ε, ∀m ≥ m0 (ε; t0).

Property 4) implies

µ (Sm; 2t0) = µ (Sm − S + S; t0 + t0) ≥ µ (Sm − S; t0) ∗ µ (S; t0) .

As a result we get

µ (Sm; t0) ≥ 1− ε, ∀m ≥ m0 (ε; t0) . (1)

As µ (x; ·) is a non-decreasing function of t, it follows from (1) that

µ (Sm; t) ≥ 1− ε, ∀m ≥ m0 (ε; t0) , ∀t ≥ t0. (2)

We have

µK
(
λ̄; t
)

= inf
m
µ (Sm; t) = min

{
µ (S1; t) ; ...;µ (Sm0−1; t) ; inf

m≥m0

µ (Sm; t)

}
, (3)

where m0 = m0 (ε; t0). As lim
t→∞

µ (Sk; t) = 1, for ∀k ∈ N , we have ∃tk (ε) ; ∀t ≥ tk (ε) :

µ (Sk; t) ≥ 1− ε , k = 1,m0 − 1. Let t0ε = max
{
tk (ε) , k = 1, m0 − 1

}
. Then it is clear

that

µ (Sk; t) ≥ 1− ε, ∀t ≥ t0ε. (4)
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It follows from (2) and (3) that

inf
m≥m0

µ (Sm; t) ≥ 1− ε, ∀t ≥ t0.

Let tε = max
{
t0; t0ε

}
. Hence we obtain from (3) and (4):

µK
(
λ̄; t
)
≥ 1− ε, ∀t ≥ tε.

Thus, lim
t→∞

µK
(
λ̄; t
)

= 1 , ∀λ̄ ∈ K w
x̄ .

5) Let λ̄, µ̄ ∈ K w
x̄

(
λ̄ ≡ {λn}n∈N ; µ̄ ≡ {µn}n∈N

)
and s, t ∈ R. We have

µK
(
λ̄+ µ̄; s+ t

)
= inf

m
µ

(
m∑
n=1

(λn + µn)xn; s+ t

)
= inf

m
µ

(
m∑
n=1

λnxn+

+
m∑
n=1

µnxn; s+ t

)
≥ inf

m

[
µ

(
m∑
n=1

λnxn; s

)
∗ µ

(
m∑
n=1

µnxn; t

)]
=

=

[
inf
m
µ

(
m∑
n=1

λnxn; s

)]
∗

[
inf
m
µ

(
m∑
n=1

µnxn; t

)]
= µ

(
λ̄; s

)
∗ µ (µ̄; t) .

6) As ν (x; t) = 1, ∀t ≤ 0, it is clear that νK
(
λ̄; t
)

= 1 , ∀t ≤ 0 , ∀λ̄ ∈ K w
x̄ .

7) Let the system {xn}n∈N be nondegenerate. Assume that νK
(
λ̄; t
)

= 0, ∀t > 0.
Then ν (

∑m
n=1 λnxn ; t) = 0, ∀t > 0, ∀m ∈ N . For m = 1 we have ν (λ1x1; t) = 0,

∀t > 0⇒ λ1x1 = 0⇒ λ1 = 0. Continuing this process , we get λn = 0, ∀n ∈ N ⇒ λ̄ = 0 .

8) Clearly, νK
(
cλ̄; t

)
= νK

(
λ̄; t
|c|

)
, ∀c 6= 0 .

9) It follows from the property 9) that ν (x ; ·) is a non-increasing function on R.
Therefore, νK

(
λ̄ ; ·

)
is a non-increasing function on R. Let us show that lim

t→∞
νK
(
λ̄ ; t

)
=

0. Let Sm =
∑m

n=1 λnxn and w- lim
m→∞

Sm = S ∈ X. Take ∀ε > 0. It is clear that

∃t0 > 0 : ν (S; t0) ≤ ε. Then it follows from the definition of limw
m

that ∃m0 = m0 (ε; t0) :

ν (Sm − S; t0) ≤ ε, ∀m ≥ m0. We have

ν (Sm; t0) = ν (Sm − S + S; t0 + t0) ≤ ν (Sm − S; t0) ♦ ν (S; t0) ≤ ε,∀m ≥ m0.

As ν (x ; ·) is a non-increasing function, it is clear that

ν (Sm; t) ≤ ε, ∀m ≥ m0,∀t ≥ t0. (5)

We have

νK
(
λ̄; t
)

= sup
m
ν (Sm; t) = max

{
ν (S1; t) ; ...; ν (Sm0−1; t) ; sup

m≥m0

ν (Sm; t)

}
.
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As lim
t→∞

ν (Sk; t) = 0 for ∀k ∈ N , we have ∃tk (ε) ; ∀t ≥ tk (ε) : ν (Sk; t) ≤ ε, k =

1,m0 − 1. Let t0ε = max
{
tk (ε) , k = 1, m0 − 1

}
. It is clear that ν (Sk; t) ≤ ε, ∀t ≥ t0ε. It

follows from (5) that sup
m≥m0

ν (Sm; t) ≤ ε, ∀t ≥ t0. Let tε = max
{
t0; t0ε

}
. Then it is clear

that νK
(
λ̄; t
)
≤ ε, ∀t ≥ tε ⇒ lim

t→∞
νK
(
λ̄; t
)

= 0 .

10) Let λ̄, µ̄ ∈ K w
x̄

(
λ̄ ≡ {λn}n∈N ; µ̄ ≡ {µn}n∈N

)
and s, t ∈ R. We have

νK
(
λ̄+ µ̄; s+ t

)
= sup

m
ν

(
m∑
n=1

(λn + µn)xn; s+ t

)
≤ sup

m

[
ν

(
m∑
n=1

λnxn; s

)
♦

ν

(
m∑
n=1

µnxn; t

)]
=

[
sup
m
ν

(
m∑
n=1

λnxn; s

)]
♦

[
sup
m
ν

(
m∑
n=1

µnxn; t

)]
=

= νK
(
λ̄; s

)
♦ νK (µ̄; t) .

11) µK
(
λ̄; t
)

+ νK
(
λ̄; t
)

= inf
m
µ (
∑m

n=1 λnxn; t) + sup
m
ν (
∑m

n=1 λnxn; t) ≤

≤ sup
m

[
µ

(
m∑
n=1

λnxn; t

)
+ ν

(
m∑
n=1

λnxn; t

)]
≤ 1,∀λ̄ ∈ K w

x̄ , ∀λ ∈ R.

Thus, we have proved the validity of the following

Theorem 1. Let (X;µ; ν) be a fuzzy normed space and let {xn}n∈N ⊂ X be a nonde-
generate system. Then the space of coefficients (K w

x̄ ;µK ; νK) is also weakly fuzzy normed
space.

The following theorem is proved in absolutely the same way.

Theorem 2. Let (X;µ; ν) be a fuzzy normed space and let {xn}n∈N ⊂ X be a nondegen-
erate system. Then the space of coefficients (K s

x̄ ;µK ; νK) is also strongly fuzzy normed
space.

3.2. Completeness of the space of coefficients. In the sequel, we assume that
(X;µ; ν) is IFBS. Let us show that (K w

x̄ ;µK ; νK) is a weakly fuzzy complete normed
space. First we prove the following

Lemma 1. Let x0 6= 0 , x0 ∈ X, and let {λn}n∈N ⊂ R be some sequence. If w-
lim
n→∞

(λnx0) = 0, i.e. for ∀ε > 0, ∃n0 = n0 (ε; t): µ (λnx0 ; t) > 1 − ε (ν (λnx0 ; t) < ε),

∀n ≥ n0; then λn → 0 , n→∞.

Proof. As x0 6= 0, it is clear that ∃t0 > 0 : µ (x0 ; t0) < 1 (this follows from the Property

1). For ∀t > 0 we have µ (λnx0 ; t) = µ
(
x0 ; t

|λn|

)
, if λn 6= 0. Let the {λn}n∈N does not

converge to zero. Then ∃ {λnk
}k∈N and ∃δ > 0 : |λnk

| ≥ δ , ∀k ∈ N ⇒ t

|λnk |
≤ t

δ . As

µ (x0 ; · ) is a nondecreasing function of t, then µ

(
x0; t

|λnk |

)
≤ µ

(
x0; t

δ

)
, ∀t ∈ R+. Take
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t̃ = δ t0. We have µ
(
λnk

x0 ; t̃
)
≤ µ (x0 ; t0) < 1, ∀k ∈ N . So we came upon a contradiction

which proves the Lemma.

In the sequel, we also assume that the following condition is fulfilled.
12) The functions µ (x ; ·), ν (x ; ·) : R→ [0, 1] are continuous for ∀x ∈ X.

Take w-fundamental sequence
{
λ̄n
}
n∈N ⊂K w

x̄ , λ̄n ≡
{
λ

(n)
k

}
k∈N

. Then lim
n,m→∞

µK
(
λ̄n − λ̄m ; t

)
=

1,∀t ∈ R, i.e.

lim
n,m→∞

inf
r
µ

(
r∑

k=1

(
λ

(n)
k − λ

(m)
k

)
xk; t

)
= 1,∀t ∈ R.

Take ∀k0 ∈ N and fix it. We have

(
λ

(n)
k0
− λ(m)

k0

)
xk0 =

k0∑
k=1

(
λ

(n)
k − λ

(m)
k

)
xk −

k0−1∑
k=1

(
λ

(n)
k − λ

(m)
k

)
xk.

Then from Property 5) we get

µ
((
λ

(n)
k0
− λ(m)

k0

)
xk0 ; t

)
≥ µ

(
k0∑
k=1

(
λ

(n)
k − λ

(m)
k

)
xk;

t

2

)
∗µ

(
k0−1∑
k=1

(
λ

(n)
k − λ

(m)
k

)
xk ;

t

2

)
.

It follows directly from this relation that

lim
n,m→∞

µ
((
λ

(n)
k0
− λ(m)

k0

)
xk0 ; t

)
= 1,∀t ∈ R.

As xk0 6= 0, Lemma 1 implies lim
n,m→∞

∣∣∣λ(n)
k0
− λ(m)

k0

∣∣∣ = 0, i.e. sequence
{
λ

(n)
k0

}
n∈N

is fun-

damental in R. Let λ
(n)
k0
→ λk0 , as n → ∞. Denote λ̄ ≡ {λn}n∈N . Let us show that

lim
n→∞

µK
(
λ̄n − λ̄; t

)
= 1, ∀t ∈ R. Take ∀ε > 0, ∀t > 0. It is clear that

∃n0 = n0 (ε; t) : µK
(
λ̄n − λ̄n+p; t

)
> 1− ε, ∀n ≥ n0 , ∀p ∈ N.

Consequently

inf
r
µ

(
r∑

k=1

(
λ

(n)
k − λ

(n+p)
k

)
xk; t

)
> 1− ε,∀n ≥ n0 , ∀p ∈ N.

Hence

µ

(
r∑

k=1

(
λ

(n)
k − λ

(n+p)
k

)
xk; t

)
> 1− ε,∀n ≥ n0 , ∀r, p ∈ N. (6)

As shown above, lim
n,m→∞

µ
((
λ

(n)
k − λ

(m)
k

)
xk; t

)
= 1, ∀t ∈ R. Now let’s take into account

the fact that lim
m→∞

µ
(
λ

(m)
k xk; t

)
= µ (λkxk; t), ∀t ∈ R+. Indeed, if λk = 0, then µ (0 ; t) =
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1, ∀t ∈ R+, and clearly, lim
m→∞

µ
(
λ

(m)
k xk; t

)
= 1, ∀t ∈ R+. If λk 6= 0, then for sufficiently

large values of m we have λ
(m)
k 6= 0, and as a result

µ
(
λ

(m)
k xk; t

)
= µ

xk; t∣∣∣λ(m)
k

∣∣∣
m→∞→ µ

(
xk;

t∣∣λk∣∣
)

= µ (λkxk; t) , ∀t ∈ R+.

Passage to the limit in the inequality (6) as p→∞ yields

µ

(
r∑

k=1

(
λ

(n)
k − λk

)
xk; t

)
≥ 1− ε, ∀n ≥ n0 , ∀r ∈ N. (7)

We have

µ

(
r+p∑
k=r

(
λ

(n)
k − λk

)
xk; t

)
= µ

(
r+p∑
k=1

(
λ

(n)
k − λk

)
xk −

r−1∑
k=1

(
λ

(n)
k − λk

)
xk; t

)
≥

≥ µ

(
r+p∑
k=1

(
λ

(n)
k − λk

)
xk ;

t

2

)
∗ µ

(
r−1∑
k=1

(
λ

(n)
k − λk

)
xk ;

t

2

)
≥ 1− ε,

∀n ≥ n0 , ∀r, p ∈ N.

As λ̄n ∈ K w
x̄ , it is clear that ∃m(n)

0 : ∀m ≥ m(n)
0 , ∀p ∈ N :

µ

(
m+p∑
k=m

λ
(n)
k xk; t

)
> 1− ε.

We have

µ

(
m+p∑
k=m

λkxk; t

)
= µ

(
m+p∑
k=m

(
λk − λ

(n)
k

)
xk +

m+p∑
k=m

λ
(n)
k xk ; t

)
≥

≥ µ

(
m+p∑
k=m

(
λk − λ

(n)
k

)
xk ;

t

2

)
∗ µ

(
m+p∑
k=m

λ
(n)
k xk ;

t

2

)
≥ 1− ε,∀m ≥ m(n)

0 , ∀p ∈ N.

It follows that the series
∑∞

k=1 λkxk is weakly fuzzy convergent in Xw, i.e. ∃w- lim
m→∞∑m

k=1 λkxk. Consequently, λ̄ ∈K w
x̄ and the relation (7) implies that lim

n→∞
µK
(
λ̄n − λ̄; t

)
=

1,∀t ∈ R+. It can be proved in similar way that lim
n→∞

νK
(
λ̄n − λ̄; t

)
= 0, ∀t ∈ R+. As a

result we obtain that the space (K w
x̄ ;µK ; νK) is weakly fuzzy complete. Thus, we have

proved the following
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Theorem 3. Let (X;µ; ν) be a fuzzy Banach space with condition 12) and let{xn}n∈N ⊂ X
be a nondegenerate system. Then the space of coefficients (K w

x̄ ;µK ; νK) is a weakly fuzzy
complete normed space.

Consider operator T : K w
x̄ → X, defined by

T λ̄ =
∞∑
n=1

λnxn, λ̄ ≡ {λn}n∈N ∈ K w
x̄ .

Let w- lim
n→∞

λ̄n = λ̄, in K w
x̄ , where λ̄n ≡

{
λ

(n)
k

}
k∈N
∈ K w

x̄ . We have

µ
(
T λ̄n − T λ̄ ; t

)
= µ

( ∞∑
k=1

(
λ

(n)
k − λk

)
xk ; t

)
≥ inf

m
µ

(
m∑
k=1

(
λ

(n)
k − λk

)
xk ; t

)
=

= µ
(
λ̄n − λ̄ ; t

)
.

It follows directly that w-limT
n→∞

λ̄n = T λ̄, i.e. the operator T is weakly fuzzy continuous.

Let λ̄ ∈ KerT , i.e. T λ̄ = 0 ⇒
∑∞

n=1 λnxn = 0, where λ̄ ≡ {λn}n∈N ∈ K w
x̄ . It is clear

that if the system {xn}n∈N is w-linearly independent, then λn = 0, ∀n ∈ N , and, as a
result, KerT = {0}. In this case ∃T−1 : ImT → K w

x̄ . If, in addition, ImT is w-close in
X, then T−1 is also continuous.

Denote by {ēn}n∈N ⊂K w
x̄ a canonical system in K w

x̄ , where ēn = {δnk}k∈N ∈ K w
x̄ .

Obviously, T ēn = xn, ∀n ∈ N . Let us prove that {ēn}n∈N forms an w-basis for K w
x̄ . Take

∀λ̄ ≡ {λn}n∈N ∈ K w
x̄ and show that the series

∑∞
n=1 λnēn is weakly fuzzy convergent in

K w
x̄ . In fact, the existence of w- lim

m→∞

∑m
n=1 λnxn in Xw implies that ∀ε > 0, and ∀t > 0,

∃m0 = m0 (ε; t) ∈ N :

µ

(
m+p∑
n=m

λnxn; t

)
> 1− ε, ∀m ≥ m0 , ∀p ∈ N.

We have

µK

(
m+p∑
n=m

λnēn; t

)
= inf

r

(
r∑

n=m

λnxn; t

)
≥ 1− ε,∀m ≥ m0 , ∀p ∈ N.

It follows that the series
∑∞

n=1 λnēn is weakly fuzzy convergent in K w
x̄ . Moreover,

µK

(
λ̄−

m∑
n=1

λnēn; t

)
= µK ({ 0; ...; 0; λm+1; ...} ; t) = inf

r
µ

(
r∑

n=m+1

λnxn; t

)
≥ 1− ε,

∀m ≥ m0 , ∀t ∈ R+.
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Consequently, w- lim
m→∞

∑m
n=1 λnēn = λ̄, i.e. λ̄

w
=
∑∞

n=1 λnēn. Consider the functionals

e∗n
(
λ̄
)

= λn, ∀n ∈ N . Let us show that they are w-continuous. Let w- lim
n→∞

λ̄n = λ̄, where

λ̄n ≡
{
λ

(n)
k

}
k∈N

∈ K w
x̄ . As established in the proof of Theorem 3, we have λ

(n)
k → λk,

as n → ∞, i.e. e∗k
(
λ̄n
)
→ e∗k

(
λ̄
)
, as n → ∞, for ∀k ∈ N . Thus, e∗k is w-continuous in

K w
x̄ for ∀k ∈ N . On the other hand, it is easy to see that e∗n (ēk) = δnk, ∀n, k ∈ N , i.e.
{e∗n}n∈N is w-biorthogonal to {ēn}n∈N . As a result we obtain that the system {ēn}n∈N
forms an w-basis for K w

x̄ . So we get the validity of the following

Theorem 4. Let (X;µ; ν) be a fuzzy Banach space with condition 12) and {xn}n∈N ⊂ X
be a nondegenerate system. Then the corresponding space of coefficients (K w

x̄ ;µK ; νK) is
weakly fuzzy complete with canonical w-basis {ēn}n∈N .

Suppose that the system {xn}n∈N is w- linearly independent and ImT is closed. Then
it is easily seen that {xn}n∈N forms an w-basis for ImT , and, in case of its w-completeness
in Xw, it forms an w-basis for Xw. In this case, K w

x̄ and Xw are isomorphic to each
other, and T is an isomorphism between them. The opposite of it is also true, i.e. if
the above-defined operator T is an isomorphism between K w

x̄ and Xw, then the system
{xn}n∈N forms an w-basis for Xw. We will call T a coefficient operator. Thus, the
following theorem holds.

Theorem 5. Let (X;µ; ν) be a fuzzy Banach space with condition 12), {xn}n∈N ⊂ X be
a nondegenerate system, (K w

x̄ ;µK ; νK) be a corresponding weakly fuzzy complete normed
space and T :K w

x̄ → Xw be a coefficient operator. System {xn}n∈N forms an w-basis for
Xw if and only if the operator T is an isomorphism between K w

x̄ and Xw.

4. Conclusion

We arrive at the following conclusion: Let 5-tuple (X;µ; ν; ∗; ♦) be an IFBwS. Then:

1. this structure generates the corresponding concepts for the theory of approximation;

2. every nondegenerate system {xn}n∈N ⊂ X generates a corresponding weakly fuzzy
complete normed space (K w

x̄ ;µK ; νK) of coefficients;

3. canonical system {ēn}n∈N forms a weak basis for K w
x̄ ;

4. system {xn}n∈N generates a coefficient operator T : K w
x̄ → X ;

5. system {xn}n∈N forms a weak basis for X if and only if T is an isomorphism between
K w
x̄ and X .

Note that many results of this work are new in classical case, too.
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