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On ergodic distribution a cyclical inventory-queuing
model with delay
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Abstract. In this study, a inventory-queuing model with X(t) delay is investigated. Based on
shaper form of the renewal theorem under some assumptions, an asymptotic expansion for the
ergodic distribution of the stochastic process Wa(t) = X(t)/a is obtained, as a → ∞ and exact
expression of the limit distribution is derived.
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1. Introduction

It is known that inventory control theory is closely related to queuing theory. In recent
years, there have been many studies devoted on queuing-inventory systems. Such systems
are closely related to the inventory control model (s,S). Some interesting studies exist
in literature in this area. For instance, in paper Janssen et.al.(1998) an approximation
method to compute the reorder point s in inventory model with a service level restriction
was introduced, when demand is modeled as a compound Bernoulli process. In paper Sobel
and Zhang (2001) a periodic review inventory system with demand arriving simultaneously
from a deterministic source and a random source was considered and shown that the (s,S)
policy is optimal. In paper Nair and Jacob (2013) considered a multi server queuing model
with the special feature that the servers act as an inventory with standard (s,S) policy
and positive lead time. The demands are considered as arrivals and the time for serving
the inventory is considered as the service time. With each replenishment, the level of the
inventory is restocked to S (< ∞). The lead time follows an exponential distribution. We
assume that during stock out, new arrivals do not join the queue and customers being in
the system, wait until their service is completed.

In paper Nair and Jacob (2015) considered a multiserver Markovian queuing system
where each server provides service only to one customer. Arrival of customers is according
to a Poisson process and whenever a customer leaves the system after getting service, that
server is also removed from the system. Here the servers are considered as a standard (s,S)
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production inventory. The condition for checking ergodicity and the steady state solutions
are obtained using matrix analytic method.

In paper Ko (2016) is consider an (s,S) continuous inventory model with perishable
items, impatient customers, and random lead times. Two characteristic behaviors of
impatient customers are balking and reneging. Balking is when a customer departs the
system if the item they desire is unavailable. Reneging occurs when a waiting customer
leaves the system if their demand is not met within a set period of time. In study Melikov
et. al. (2017) Markov models of the queuing-inventory systems with variable order size
are investigated. Two classes of models, with instantaneous and non-zero service times of
customers are considered.

Unlike of the above mention studies, in the present paper we will be consider general-
ization of classical control model type of (s,S) with delay.

Let {ξn},{ηn} and {θn} - are independent sequences of random variables defined on
probability space (Ω,ℑ, P ), such that variables in each sequence independent and iden-
tically distributed. Suppose that ξn, ηn, θn and ζn take only positive values and these
distribution functions be denoted by

Φ(t) = P {ξ1 ≤ t} , t > 0, F (x) = P {η1 ≤ x} , x > 0,H(u) = P {θ1 ≤ u} , u > 0.

Let introduce also, sequence of random variables {ζn}, n ≥ 1which describes the dis-
crete interference of chance and form an ergodic Markov chain with stationary distribution
πa(z), z ≥ 0, depends on parameter a > 0, i.e., πa(z) ≡ P{ζ ≤ z} = lim

n→∞
P{ζn ≤ z}.

In particular, we assume that ζn = aζ̃n, a > 0, n = 1, 2, ... . In this case, πa(z) =
π1(z/a), where π1(z) ≡ P{ζ̃ ≤ z} = lim

n→∞
P{ζ̃n ≤ z} is a distribution function of the

variable ζ̃.
Define independent renewal sequence {Tn} and {Yn} as follows using the initial se-

quences of the random variables {ξn} and {ηn} as:

Tn =
n∑

i=1

ξi, Yn =
n∑

i=1

ηi, n = 1, 2, ...; T0 = Y0 = 0.

We also introduce following integer-valued random variables, which represent the num-
ber of jumps of the process X(t), before it passages the level 0:

N0 = 0,

N1 ≡ N(z) = min {k ≥ 1 : z − Yk < 0} ;

Nn ≡ Nn(ζn−1) = min {k ≥ Nn−1 + 1 : ζn−1 − (Yk − YNn) < 0} , n = 2, 3, ...

Let also introduce following random variables:

τ0 = 0, τ1 = TN1 , γ1 = τ1 + θ1,
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τ2 = γ1 + TN2 − TN1 , γ2 = τ2 + θ2,

...

τn = γn−1 + TNn − TNn−1 , γn = τn + θn, n = 1, 2, ...

Define also the counting process ν (t) as:

ν (t) = max {n ≥ 0 : Tn ≤ t} .

Thus the following stochastic process can be constructed using these notations:
X(t) = max{0 , ζn − Yν(t) + YNn } as γn ≤ t < γn+1, n = 0, 1, 2, ...

where ζ0 = z.
One of the realization of the considered process X(t) has the following form:

Figure 1: A trajectory of the process X(t).

In literature process X(t) is called control model of type (s,S), in case, if π1(z) has a spe-
cial distribution in between control level s and maximum stock level S and if P {θn = 0} = 1
(see, for example Prabhu (1980)). Process X(t) is closely related to the queuing system
G/G/1, since random variables ξn and ηn has the arbitrary distribution. Random variables
θn, n = 1, 2, ... describe delay times and γn, n = 1, 2, ... are the moments of beginning of
new cycle.

2. Asymptotic expansion for the ergodic distribution of the process
Wa(t)

In this section we will investigate ergodic distribution of the process X(t).

5



Let the initial sequences of the random variables {ξn}, {ηn}, {θn}and {ζn} , n ≥ 1 be
satisfied the following supplementary conditions:
1) random variables ξn, ηn and θn are independent;

2)Eξ1 < ∞;

3)m2 = Eη21 < ∞;

4)Eζ1 < ∞;

5)Eθ1 < ∞.

6) η1 is non-arithmetic random variable.
Under conditions 1) – 6) in Aliyev (2015) ergodicity of the process X(t) is proved and

explicit form of the ergodic distribution function QX(x) ≡ lim
t→∞

P {X(t) ≤ x}is derived:

QX(x) = 1−
∫∞
x U (z) dπa(z)

EU(ζ) +K
,x > 0 (2.1)

Let us introduce the process Wa(t) = X(t)/a. From (2.1) is not difficult to obtain
ergodic distribution (QWa(x)) of the process Wa(t):

QWa(x) ≡ lim
t→∞

P {Wa(t) ≤ x} = 1−
∫∞
ax U (z − ax) dπa(z)

EU(ζ) +K
. (2.2)

where
K = Eθ1/Eξ1– delay coefficient,

EU(ζ1) =

∫ ∞

0
U(z)dπa(z),

U(z) =
∑∞

n=0 F
∗(n)(z) – is a renewal function generated by the sequence {ηn}, n ≥ 1,

F ∗(n)(z) is denoted n-fold convolution of the distribution function F (z) with itself and
define as F ∗(n)(z) =

∫ z
0 F ∗(n−1)(z − y)dF (y), n ≥ 1.

In this section we will study the asymptotic behavior of the ergodic distribution
(QWa(x)) of the process Wa(t) = X(t)/a, as a → ∞. Note that, analogical problem
consider in Aliyev (2015), when Cramer condition is hold, which equivalent exponential
decreasing of tail of distribution of the random variable η1:∫∞

0 eµydF (y) = E(eµη1) < ∞ for some µ > 0.
In case if Cramer condition holds, all moments of random variable η1 exist and finite.
In present paper, instead of the Cramer condition, we assume that satisfied condition

m2 = Eη21 < ∞.
We formulate this result in the form of the following theorem.

Theorem 2.1. Let the conditions 1)-6) be satisfied. Then as a → ∞ for the each x > 0
the asymptotic expansion for the ergodic distribution function (QWa(x)) of the process
Wa(t) = X(t)/a is as follows:
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QWa(x) = R(x) + ((m21 +Km1) (1−R(x))−m21 (1− π1(x)))
1

e1a
+ o

(
1

a

)
, (2.3)

where

R(x) =
1

e1

∫ x

0
(1− π1(z)) dz;

mk = Eηk1 , k = 1, 2,m21 =
m2

2m1
, e1 = Eζ̃1.

Proof. For the investigate asymptotic behavior ofQWa(x)we obtain asymptotic expansions
for the (EU(ζ1) +K)−1 and

∫∞
ax U(z − ax)dπa(z) in Eq.(2.2).

By using Proposition 4.3 from Aliyev et. al. (2016), we have:

EU(ζ) +K =
e1a

m1
+

m2

2m2
1

+K + o(1). (2.4)

From Eq.(2.4) can be obtained the following expansion, as a → ∞:

(EU(ζ) +K)−1 =
m1

e1a

(
1− (m21 +m1K)

1

e1a
+ o

(
1

a

))
. (2.5)

Now consider
∫∞
ax U(z − ax)dπa(z) from formula (2.2).

Since m2 = Eη21 < +∞, then using shaper form of the renewal theorem (see, Feller (1971),
p.415) as z → ∞ we can write:

U(z) =
z

m1
+

m2

2m2
1

+ g(z), (2.6)

where lim
z→∞

g(z) = 0.

Therefore, using (2.6) it is not difficult to see that:∫ ∞

ax
U(z − ax)dπa(z) =

1

m1

∫ ∞

ax
zdπa(z)−

1

m1
ax

∫ ∞

ax
dπa(z)

+
m2

2m2
1

∫ ∞

ax
dπa(z) +

∫ ∞

ax
g(z − ax)dπa(z) =

=
1

m1

(∫ ∞

0
zdπa(z)−

∫ ax

0
zdπa(z)− ax(1− πa(ax))

)
+

m2

2m2
1

(1− πa(ax)) + J(a, x) =

=
1

m1

(
ae1 −

∫ ax

0
(1− πa(z))dz

)
+

m2

2m2
1

(1− πa(ax)) + J(a, x), (2.7)

where J(a, x) =
∫∞
ax g(z − ax)dπa(z).

It is easy to see that when a → ∞ for arbitrary x > 0:

J(a, x) = o(1). (2.8)

Hence, from (2.7) and (2.8) we have, as a → ∞:∫ ∞

ax
U(z − ax)dπa(z) =

e1a

m1

(
1−R(x) +m21(1− π1(x))

1

e1a
+ o

(
1

a

))
, (2.9)
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where R(x) = 1
e1

∫ x
0 (1− π1(z)) dz.

Substituting (2.5) and (2.9) into (2.2) after the first the corresponding calculations as
a → ∞ we obtain (2.3). This completes the proof of Theorem 2.1.

From Theorem 2.1, for each x > 0, we have:

lim
a→∞

QWa(x) = R(x) ≡ 1

e1

∫ x

0
(1− π1(z)) dz. (2.10)

Example 2.1. Let us π1(z) = 1 − e−z, z > 0. In this case limit distribution R(x) from
(2.10) has the following form:

lim
a→∞

QWa(x) = 1− e−x, x > 0.

Example 2.2. Let us π1(z) = 1 − (1 + z)e−z, z > 0- second-order Erlang distribution
with parameter 1. In this case limit distribution R(x) from (2.10) has the following form:
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