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Maximal regularity of parameter dependent differential-
operator equations on the halfline
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Abstract. This paper focuses on boundary value problems for differential-operator equations in
half line. The equations and boundary conditions contain certain small and spectral parameters.
The uniform Lp− separability is obtained. Here the explicit formula for the solution is given and
behavior of solution is established with small parameter. It used to obtain singular perturbation
result for the convolution differential-operator equation.
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1. Introduction

It is well known that the differential equations with parameters play important role in
modelling of physical processes. Differential-operator equations (DOEs) with small param-
eters have also significant applications to the developed theory to problems in mathemat-
ical physics. Note that, DOEs are studied e.g., in [1− 3] , [5− 11], [21] and the references
therein. Moreover, convolution differential-operator equations have been studied e.g., in
[12− 17] .

The main aim of this paper is to show the uniform separability properties of boundary
value problems (BVPs) for the following DOE with parameters

−εu′′(t) +Aλu(t) = f(t), (1.1)

where Aλ = A+λI, A are linear operators in a Banach space E, a = a(t) is a scalar valued
function on (0;∞) , ε is a small and λ is a complex parameter, u(t) = u(ε, t).

We derive the representation of solution involving semigroup generated by operator A
which allows to obtain the maximal regularity properties of DOEs and the sharp coercive
Lp estimates of solution uniformly with respect to small and spectral parameter.

The treatment of the singular perturbation problem for the abstract integro-differential
equations studied e.g in [8] . In contrast to these, here uniform separability properties of
the problem (1.1) is derived in Lp(0,∞;E).
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Since the Banach space E and linear operator A are arbitrary, by chousing the space E
and operators A we can obtained different results which occur in a wide variety of physical
systems.

The present paper is organized as follows. The first section in this paper contains
an introduction. Section 2 collects definitions, some notations and basic propertis of
vector-valued function spaces, in particular, weighted Lp,γ−spaces and weighted multiplier
conditions. In section 3 we consider the corresponding homogeneous problem and prepares
for the proof of the main result of this paper. In section 4 by applying this results the
uniform Lp−separability of nonhomogeneous problem (1.1) is proved.

2. Notation and conventions

Let E be a Banach space and Lp (Ω;E) denotes the space of strongly measurable
E-valued functions that are defined on the measurable subset Ω ⊂ Rn with the norm

‖f‖Lp = ‖f‖Lp(Ω;E) = {.

∫
Ω

‖f (x)‖pE dx

 1
p

, 1 ≤ p <∞,ess sup
x∈Ω
‖f(x)‖E , p =∞.

Let N,R denote the sets of natural and real numbers, respectively.
Let C be the set of the complex numbers and

Sϕ = {λ; λ ∈ C, |arg λ| ≤ ϕ} ∪ {0} , 0 ≤ ϕ < π.

Let Ω be a domain in Rn. C(Ω, E) and C(m)(Ω;E) will denote the spaces of E -valued
bounded, uniformly strongly continuous and m -times continuously differentiable functions
on Ω, respectively.

A linear operator A is said to be ϕ-positive in a Banach space E with bound M > 0
if D (A) is dense on E and

‖R(−λ,A)‖B(E) =
∥∥∥(A+ λI)−1

∥∥∥
B(E)

≤M (1 + |λ|)−1 ,

for any λ ∈ Sϕ, 0 ≤ ϕ < π, where I is the identity operator in E. For convenience,
sometimes we write A+ λ instead of A+ λI and denoted by Aλ. It is known [19, §1.15.1]
that there exist the fractional powers Aθ of a positive operator A. Let E

(
Aθ
)

denote the
space D

(
Aθ
)

with the graph norm

‖u‖E(Aθ) =
(
‖u‖p +

∥∥∥Aθu∥∥∥p) 1
p
, 1 ≤ p <∞, −∞ < θ <∞.

Let S (Rn;E) denote the Schwartz class, i.e. the space of E-valued rapidly decreasing
smooth functions on Rn and F denote the Fourier transformation. If the map u→ Λu =
F−1Ψ (ξ)Fu, u ∈ S (Rn;E1) is well defined and extends to a bounded linear operator

Λ : Lp (Rn;E1)→ Lp (Rn;E2)



12 Hummet K. Musaev

then a function Ψ ∈ C (Rn;B (E1, E2)) is called a Fourier multiplier from Lp (Rn;E1) to
Lp (Rn;E2) . The set of all multipliers from Lp (Rn;E1) to Lp (Rn;E2) will be denoted by
Mp
p (E1, E2) .

Let Φh = {Ψh ∈Mp
p (E1, E2) , h ∈ Q} . We say that Wh is a collection of uniformly

bounded multipliers (UBM) if there exists a positive constant M independent on h ∈ Q
such that ∥∥F−1ΨhFu

∥∥
Lp(Rn;E2)

≤M ‖u‖Lp(Rn;E1) ,

for all h ∈ Q and u ∈ S (Rn;E1) ,where Q denote a set of some parameters.

A family of operators T ⊂ B (E1, E2) is called R-bounded ( see e.g. [4] , [19], [20] ) if
there is a constant C > 0 such that for all T1, T2, ..., Tm ∈ T and u1,u2, ..., um ∈ E1, m ∈ N
the inequality ∫

Ω

∥∥∥∥∥∥
m∑
j=1

rj (y)Tjuj

∥∥∥∥∥∥
E2

dy ≤ C
∫
Ω

∥∥∥∥∥∥
m∑
j=1

rj (y)uj

∥∥∥∥∥∥
E1

dy,

is valid, where {rj} is a sequence of independent symmetric {−1, 1}-valued random
variables on Ω. The smallest C for which the above estimate holds is called a R-bound of
the collection T and denoted by R{T}.

Let family of operators Th ⊂ B (E1, E2) depending on the parameter h ∈ Q. Here Th
is called uniformly R-bounded with respect to h if there is a constant C independent of
h ∈ Q, such that

sup
h∈Q

R{Th} ≤ C.

A Banach space E is said to be a space satisfying a multiplier condition if, for any
Ψ ∈ C(1) (R;B (E)) , the R-boundedness of the set{

|ξ|j DjΨ (ξ) : ξ ∈ R\ {0} , j = 0, 1
}
, (2.1)

implies that Ψ is a Fourier multiplier, i.e. Ψ ∈ Mp
p (E) for any p ∈ (1,∞) .

The ϕ-positive operator A is said to be R-positive in a Banach space E if the set{
ξ (A+ ξ)−1 : ξ ∈ Sϕ

}
, 0 ≤ ϕ < π,

is R-bounded.

The operator A (t) is said to be uniformly ϕ-positive in E with respect to t with bound
M > 0, if D (A (t)) is independent on t, dense in E, and∥∥∥(A (t) + λ)−1

∥∥∥ ≤ M

1 + |λ|
,

for all λ ∈ Sϕ, 0 ≤ ϕ < π,where M does not depend on t and λ.
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A positive operator A(t) is said to be a uniformly R-positive in a Banach space E if
there exists a ϕ ∈ [0, π) such that the set{

ξ (A+ ξI)−1 ; ξ ∈ Sϕ
}

is uniformly R-bounded.

Let E0 and E be two Banach spaces and E0 is continuously and densely embedded
into E. Let m is a positive integer. Wm

p (0,∞;E0, E) denotes the collection of E-valued

functions u ∈ Lp (0,∞;E0) that have the generalized derivatives u(m) ∈ Lp (0,∞;E) with
the norm

‖u‖Wm
p

= ‖u‖Wm
p (0,∞;E0,E) = ‖u‖Lp(0,∞;E0) +

∥∥∥u(m)
∥∥∥
Lp(0,∞;E)

<∞.

For E0 = E it denotes by Wm
p (Ω;E) .

Let ε is a positive parameter. We define in the space Wm
p,ε (0,∞;E0, E) the following

parametrized norm

‖u‖Wm
p,ε(0,∞;E0,E) = ‖u‖Lp(0,∞;E0) +

∥∥∥εu(m)
∥∥∥
Lp(0,∞;E)

.

3. DOEs with small parameter

Consider the following BVP for elliptic differential-operator equation with small pa-
rameters

{.Lu = −εu′′(t) +Aλu(t) = f(t), t ∈ (0;∞) ,L1u = ε
p+1
2p αu′ (0) + ε

1
2pβu(0) = f0 (3.1)

where u (t) = u (ε, t) is a solution of (3.1), A are linear operator in a Banach space E,
Aλ = A+λI, a = a(t) is a scalar valued function on R+ = (0;∞) , f0 ∈ Ep = (E(A), E)θ,p ,
here (E(A), E)θ,p denotes the real interpolation space between E(A) and E, p ∈ (1,∞),

θ = 1+p
2p , α, β are complex numbers, ε is a small positive, and λ is a complex parameters,

i.e., ε ∈ (0, 1) .

For investigation of main problem first all of consider the corresponding homogeneous
problem

{.−εu′′(t) +Aλu(t) = 0L1u = f0. (3.2)

Condition 3.1. Assume the following conditions are satisfied:

1) E is a Banach space satisfying the uniformly multiplier condition for p ∈ (1,∞) ;

2) A is a R−positive operator in E for 0 ≤ ϕ < π.
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Theorem 3.1. Assume Condition 3.1 holds and −βα−1 ∈ Sϕ1 , 0 ≤ ϕ1 +ϕ < π. Then
the problem (3.2) for ∀f0 ∈ Ep has a unique solution u(t) ∈ W 2

p (R+;E(A), E) and the
coercive estimate

2∑
i=0

|λ|1−
i
2 ε

i
2

∥∥∥u(i)(t)
∥∥∥
Lp(R+;E)

+ ‖Au(t)‖Lp(R+;E) ≤ (3.3)

C
[
|λ|1−θ ‖f0‖E + ‖f0‖Ep

]
holds uniformly with respect to ε and λ ∈ Sϕ with sufficiently large |λ| .

Proof. We consider the BVP equivalent to (3.2)

{.−u′′(t) + ε−1Aλu(t) = 0L1u = f0. (3.4)

By definition of positive operator, ε−1Aλ is R−positive uniformly with respect to ε.

Then we have the estimate
∥∥∥(ε−1Aλ + µ

)−1
∥∥∥ ≤ C |µ|−1 , where |arg λ| ≤ ϕ, |argµ| ≤ ϕ1,

ϕ1 + ϕ < π and C independent of ε, depending on ϕ only. Then in view of [5] and [21]
an arbitrary solution of equation (3.4) belonging to the space W 2

p (R+;E(A), E) , has the
form

u(t) = e−tε
− 1

2A
1
2
λ g,

where g ∈ (E (A) , E) 1
2p
,p .

Taking into account boundary conditions we obtain that the representation of the
solution of the problem (3.4)

u(t) = ε
− 1

2p e−tε
− 1

2A
1
2
λ

[
−αA

1
2
λ + β

]−1

f0. (3.5)

Then in view of positivity of A we obtain from (3.5)

2∑
i=0

|λ|1−
i
2 ε

i
2

∥∥∥u(i)(t)
∥∥∥
Lp(R+;E)

+ ‖Au(t)‖Lp(R+;E) ≤

≤

∥∥∥∥∥ε− 1
2p |λ| e−tε

− 1
2A

1
2
λ

(
−αA

1
2
λ + β

)−1

f0

∥∥∥∥∥
Lp(R+;E)

+

∥∥∥∥∥ε− 1
2p |λ|

1
2

(
−A

1
2
λ

)
e−tε

− 1
2A

1
2
λ

[
−αA

1
2
λ + β

]−1

f0

∥∥∥∥∥
Lp(R+;E)

+

∥∥∥∥∥ε− 1
2pAλe

−tε−
1
2A

1
2
λ

[
−αA

1
2
λ + β

]−1

f0

∥∥∥∥∥
Lp(R+;E)

+
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2pAe−tε

− 1
2A

1
2
λ

[
−αA

1
2
λ + β

]−1

f0

∥∥∥∥∥
Lp(R+;E)

≤

≤ ε−
1
2p

{
C1

∥∥∥∥Ā 1
2
λ e
−tε−

1
2A

1
2
λ f0

∥∥∥∥
Lp(R+;E)

+ C2

∥∥∥∥A 1
2 e−tε

− 1
2A

1
2
λ f0

∥∥∥∥
Lp(R+;E)

}
≤

ε
− 1

2p

C1

 ∞∫
0

∥∥∥∥A 1
2
λ e
−tε−

1
2A

1
2
λ f0

∥∥∥∥p
E

dt

 1
p

+ C2

 ∞∫
0

∥∥∥∥A 1
2 e−tε

− 1
2A

1
2
λ f0

∥∥∥∥p
E

dt

 1
p

 .

By changing of variable tε−
1
2 = z redenoting and in view of Theorem 2.1 (see, [5]) we

obtain

∞∫
0

∥∥∥∥A 1
2
λ e
−tε−

1
2A

− 1
2

λ f0

∥∥∥∥p
E

dt ≤ C
[
|λ|1−θ ‖ f0‖pE + ‖ f0‖pEp

]
. (3.6)

On the other hand, by using of the positivity of operator A we have∥∥∥∥AA− 1
2

λ

∥∥∥∥ =

∥∥∥∥(Aλ − λ)A
− 1

2
λ

∥∥∥∥ =

∥∥∥∥A 1
2
λ − λA

− 1
2

λ

∥∥∥∥ ≤ (1 +
∥∥λA−1

λ

∥∥) ∥∥∥∥A 1
2
λ

∥∥∥∥ .
By using the similar technique as in (3.6) we have

∞∫
0

∥∥∥∥A 1
2 e−tε

− 1
2A

− 1
2

λ f0

∥∥∥∥p
E

dt ≤ C
[
|λ|1−θ ‖ f0‖pE + ‖ f0‖pEp

]
. (3.7)

The from (3.6) and (3.7) we obtain (3.3).
Note that the solution of the problem (3.2) dependes on the parameter ε, i.e., u =

u (x, ε) .

4. Separability properties of parameter dependent nonhomogeneous
differential-operator equation

Now we are ready to present our main result. Consider the following nonhomogeneous
problem

{.−εu′′(t) +Aλu(t) = f(t) L1u = f0 (4.1)

Theorem 4.1. Assume that the all conditions of Theorem 3.1 are satisfied. Then for
f(t) ∈ Lp (R+;E) , ∀f0 ∈ Ep and λ, with sufficiently large |λ| , the problem (4.1) has a
unique solution u ∈W 2

p (R+;E(A), E) and the following coercive uniformly estimate holds
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2∑
i=0

|λ|1−
i
2 ε

i
2

∥∥∥u(i)(t)
∥∥∥
Lp(R+;E)

+ ‖Au(t)‖Lp(R+;E) ≤ (4.2)

≤ C
[
‖f‖Lp(R+;E) + |λ|1−θ ‖f0‖E + ‖f0‖Ep

]
.

Proof. Let us define

f(t) = {.f(t), t ∈ [0,∞)0, t /∈ [0,∞).

We now show that the problem (4.1) has a solution u ∈ W 2
p (R+;E(A), E) for all

f(t) ∈ Lp (R+;E) , f0 ∈ Ep and u(t) = u1(t) + u2(t), where u1(t) is the restriction on
[0,∞) of the solution u1(t) to the equation

−εu′′1(t) +Aλu1(t) = f(t), t ∈ (−∞; +∞) (4.3)

and u2(t) is a solution of the problem

{.−εu′′2(t) +Aλu2(t) = 0 L1u2 = f0 − L1u1

It is not hard to see that the solution of (4.3) is given by the formula

u1(t) = F−1L−1
0 (λ, ε, ξ)Ff,

where L0(λ, ε, ξ) = A+ εξ2 + λI and F denotes the Fourier transformation .

It follows from the expression above that

2∑
i=0

|λ|1−
i
2 ε

i
2

∥∥∥u(i)
1 (t)

∥∥∥
Lp(R;E)

+ ‖Au1(t)‖Lp(R;E) =

2∑
i=0

|λ|1−
i
2 ε

i
2

∥∥F−1ξiL−1
0 (λ, ε, ξ)Ff

∥∥
Lp(R;E)

+
∥∥F−1AL−1

0 (λ, ε, ξ)Ff
∥∥
Lp(R;E)

. (4.4)

Let us show that operator-functions AL−1
0 (λ, ε, ξ) and

2∑
i=0
|λ|1−

i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ) are

Fourier multipliers in Lp(R;E).

Taking into account positivity of A and [5, Lemma 2.3] we have∥∥L−1
0 (λ, ε, ξ)

∥∥
B(E)

=
∥∥∥(A+ εξ2 + λ

)−1
∥∥∥
B(E)

≤ C
(

1 + εξ2 + |λ|
)−1

,

∥∥AL−1
0 (λ, ε, ξ)

∥∥
B(E)

=
∥∥∥A (A+ εξ2 + λ

)−1
∥∥∥
B(E)

≤ C. (4.5)

It is known that
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ξ
d

dξ

[
A
(
A+ εξ2 + λ

)−1
]

= −2εξ2
(
A+ εξ2 + λ

)−1
A
(
A+ εξ2 + λ

)−1

The R−positivity of the operator A imply that the sets

{
−2εξ2

(
A+ εξ2 + λ

)−1
; ξ ∈ R\ {0}

}
,
{
A
(
A+ εξ2 + λ

)−1
; ξ ∈ R\ {0}

}
are R−bounded and it is R−bounds are independent on ε and λ.

Moreover, by using of additional and product properties and Kahane’s contraction
principle for family of R−bounded (see, [4]) operators we have the R−boundedness of

collection ξ ddξ

[
A
(
A+ εξ2 + λ

)−1
]
. This means that

sup
λ,ε

R

{
ξ
d

dξ

[
A
(
A+ εξ2 + λ

)−1
]

; ξ ∈ R\ {0}
}
≤ C.

Now, we prove the uniformly R−boundedness of the family of operator-functions

2∑
i=0

|λ|1−
i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ) .

It is clear to see that

∥∥∥∥∥
2∑
i=0

|λ|1−
i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ)

∥∥∥∥∥
B(E)

≤ C |λ|
2∑
i=0

[
ε

1
2 |ξ| |λ|−

1
2

]i ∥∥L−1
0 (λ, ε, ξ)

∥∥
B(E)

.

Then setting y = ε
1
2 |ξ| |λ|−

1
2 in the following well known inequality

yi ≤ C
(

1 + yk
)
, for y ≥ 0, i ≤ k,

we obtain

∥∥∥∥∥
2∑
i=0

|λ|1−
i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ)

∥∥∥∥∥
B(E)

≤ C
(
|λ|+ εξ2

) (
1 + εξ2 + |λ|

)−1 ≤ C. (4.6)

Due to R−positivity A, we get that the set{(
|λ|+ εξ2

)
L−1

0 (λ, ε, ξ) ; ξ ∈ R\ {0}
}

is uniformlyR−bounded. Then by Kahane’s contraction principle we have theR−boundedness
of set {

2∑
i=0

|λ|1−
i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ) ; ξ ∈ R\ {0}

}
.
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Since,

2∑
i=0

|λ|1−
i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ) =

[
2∑
i=0

|λ|1−
i
2 ε

i
2 ξi

] (
|λ|+ εξ2

)−1 (|λ|+ εξ2
)
L−1

0 (λ, ε, ξ) .

Moreover, it is clear to see that

ξ
d

dξ

[
2∑
i=0

|λ|1−
i
2 ε

i
2 ξiL−1

0

]
= ξ

[
(|λ|+ |λ|

1
2 ε

1
2 ξ + εξ2)L−1

0

]′
ξ

=

=
(
|λ|

1
2 ε

1
2 ξ + 2εξ2

)
L−1

0 − 2(|λ|+ |λ|
1
2 ε

1
2 ξ + εξ2)L−1

0 (εξ2)L−1
0 =

=
(
|λ|

1
2 ε

1
2 ξ + 2εξ2

)
L−1

0 − 2 |λ|L−1
0 (εξ2)L−1

0 − 2(|λ|
1
2 ε

1
2 ξ + εξ2)L−1

0 (εξ2)L−1
0 ,

where

L−1
0 = L−1

0 (λ, ε, ξ) .

Taking into account well known inequality, as we mentioned before, we have

|λ|
1
2 ε

1
2 |ξ| = |λ| |λ|−

1
2 ε

1
2 |ξ| ≤ C |λ| (1 + ε |λ|−1 |ξ|2) = C(|λ|+ ε |ξ|2).

By using (4.5) and R−positivity of the operator A, in a similar way we obtain the
R−boundedness of the sets{
|λ|L−1

0 : ξ ∈ R\ {0}
}
,
{
εξ2L−1

0 : ξ ∈ R\ {0}
}
,
{(
|λ|+ εξ2

)
L−1

0 : ξ ∈ R\ {0}
}
.

In view of Kahane’s contraction principle, from the additional and product properties
of the family of R−bounded operators, for all ξi ∈ R, ui ∈ E, i = 1, n we have∫

Ω

∥∥∥∥∥
n∑
i=1

ri(y)ξ
d

dξ

(
2∑
i=0

|λ|1−
i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ)

)
ui

∥∥∥∥∥
E

dy ≤

C

∫
Ω

∥∥∥∥∥
n∑
i=1

[
|λ|L−1

0 (λ, ε, ξ) +
(
|λ|+ εξ2

)
L−1

0 (λ, ε, ξ) + εξ2L−1
0 (λ, ε, ξ)

]
ri(y)ui

∥∥∥∥∥
E

dy ≤

≤ C
∫
Ω

∥∥∥∥∥
n∑
i=1

ri(y)ui

∥∥∥∥∥
E

dy,
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where {ri(y)} of is sequence of independent symmetric {−1; 1}−valued random vari-
ables. It implies that the uniformly R−boundedness the family of operator-functions

ξ ddξ

[
2∑
i=0
|λ|1−

i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ)

]
, i.e.

sup
λ,ε

R

{
ξ
d

dξ

2∑
i=0

|λ|1−
i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ) : ξ ∈ R\ {0}

}
≤ C.

By virtue of definition of Fourier multiplier, from (4.5), (4.6) it follows that the

operator-functions AL−1
0 (λ, ε, ξ) and

2∑
i=0
|λ|1−

i
2 ε

i
2 ξiL−1

0 (λ, ε, ξ) are the uniform collection

of Fourier multipliers in Lp (R, E) . Then from (4.4) we obtain that there exists a unique
solution u1 ∈W 2

p (R;E(A), E) of (4.3) and the uniform estimate holds

2∑
i=0

ε
i
2 |λ|1−

i
2

∥∥∥u(i)
1

∥∥∥
Lp(R;E)

+ ‖Au1‖Lp(R;E) ≤ C
∥∥f ∥∥

Lp(R;E)
. (4.7)

Note that the u1(t) is the restriction on [0,∞) of the solution u1(t) the eqution (4.3).
From (4.7) implies that u1(t) ∈W 2

p (0,∞;E(A), E). By using of embedding theorems (see
[18] and [19,§1.8] we get u′1(0) ∈ Ep and u1(0) ∈ Ep. Hence L1u1 ∈ Ep. Then by virtue of
Theorem 3.1 we obtain the problem

{.−εu′′2(t) +Aλu2(t) = 0 L1u2 = f0 − L1u1

has a unique solution u2(t) that belongs to the space W 2
p (0,∞;E(A), E) for f ∈

Lp (R+;E) . Consequently, for sufficiently large |λ| we have

2∑
i=0

ε
i
2 |λ|1−

i
2

∥∥∥u(i)
2

∥∥∥
Lp(R+;E)

+ ‖Au2‖Lp(R+;E) ≤ C(‖f0‖Ep + |λ|1−θ ‖f0‖E +

+εθ
∥∥u′1∥∥C(R+;Ep)

+ εθ |λ|1−θ ‖u1‖C(R+;E)

)
.

Moreover, from (4.7) for |arg λ| ≤ ϕ we obtain

2∑
i=0

ε
i
2 |λ|1−

i
2

∥∥∥u(i)
1

∥∥∥
Lp(R+;E)

+ ‖Au1‖Lp(R+;E) ≤ C ‖f‖Lp(R+;E) . (4.8)

By using of [18] and by estimate (4.8) we obtain

εθ
∥∥u′1(0)

∥∥
Ep
≤ C ‖u1‖W 2

p,ε(R+;E(A),E) ≤ C ‖f‖Lp(R+;E) ,

εθ ‖u1(0)‖Ep ≤ C ‖u1‖W 2
p,ε(R+;E(A),E) ≤ C ‖f‖Lp(R+;E) .

From [18] it follows
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|ξ| εθ
∥∥u′(0)

∥∥ ≤ C

(
|ξ|

1
p ‖u‖

W2
p,ε(R+;,E)

+ |ξ|2+ 1
p ‖u‖Lp(R+;E)

)
,

|ξ|2 εθ ‖u(0)‖ ≤ C

(
|ξ|

1
p ‖u‖

W2
p,ε(R+;E)

+ |ξ|2+ 1
p ‖u‖Lp(R+;E)

)
.

For λ = ξ2 we obtain

|λ|1−θ εθ
∥∥u′(0)

∥∥ ≤ C

(
‖u‖

W2
p,ε(R+;E)

+ |λ| ‖u‖Lp(R+;E)

)
, (4.9)

|λ|1−
1
2p εθ ‖u(0)‖ ≤ C

(
‖u‖

W2
p,ε(R+;E)

+ |λ| ‖u‖Lp(R+;E)

)
.

Then (4.8) and (4.9) we have estimate for u′1(0) and u1(0), i.e.

|λ|1−θ εθ
∥∥u′1(0)

∥∥ ≤ C

(
‖u1‖

W2
p,ε(R+;E)

+ |λ| ‖u1‖Lp(R+;E)

)
≤ C ‖f‖Lp(R+;E) , (4.10)

|λ|1−
1
2p εθ ‖u1(0)‖ ≤ C

(
‖u1‖

W2
p,ε(R+;E)

+ |λ| ‖u1‖Lp(R+;E)

)
≤ C ‖f‖Lp(R+;E) .

From estimates (4.7)-(4.10) we have

2∑
i=0

ε
i
2 |λ|1−

i
2

∥∥∥u(i)
2

∥∥∥
Lp(R+;E)

+ ‖Au2‖Lp(R+;E) ≤

C
(
‖f‖Lp(R+;E) + ‖f0‖Ep + |λ|1−θ ‖f0‖E

)
.

Finally, using the estimate (4.8) and from the above estimate we have (4.2).
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