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Comparative Study of Differential Transformation
Method (DTM) and Adomian Decomposition Method
(ADM) for Solving Ordinary Differential Equations

R.B. Ogunrinde

Abstract. In this paper, the Differential Transformation Method (DTM) and Adomian Decom-
position Methods (ADM) are studied and compared by applying them to linear and non-linear
Ordinary Differential Equations. The Transformation Method and Adomian Decomposition
Method provide their solutions as an infinite series in which each term is easily determined. Initial
Value Problems with known exact solutions were chosen to ease comparison. Numerical solutions
obtained from solved examples were compared with that of the exact solution. The absolute error
obtained from this comparison showed that the DTM has a lower error margin when compared to
the ADM for a predefined number of iterations and order. Tables for discrete and exact solutions
were presented to show the efficiency of the two methods. Numerical computation was aided by
the use of a digital computer and the solution obtained showed that DTM is a very accurate and
efficient method in contrast to ADM.
Key Words and Phrases: Adomian decomposition methods, Differential transformation
method, Ordinary differential equations.

1. Introduction

Advances in the sciences, engineering and even financial fields have initiated a nec-
essary involvement of mathematicians in helping to solve some of the complex problems
encountered as the economy becomes more complicated and technology even more sophis-
ticated. The differential transform method, was first introduced by Zhou in 1986. It is
a semi analytical-numerical technique that has been successfully used in electrical circuit
studies to solve linear and nonlinear initial value problems (Ayaz, 2003). Taylor series
expansions are used to construct analytical solutions in polynomial form (Catal, 2008;
Jang, 2010). The traditional Taylor series method requires symbolic computation of the
derivatives of the data functions and requires more computation time for large orders
while the DTM iteratively obtains analytic Taylor series solutions of differential equations
(Ayaz, 2003). Compared to the Taylor series, the DTM can easily handle highly nonlin-
ear problems (Ayaz, 2003). Applications of the DTM to various problems in the sciences
and engineering fields include solutions of the Blasius and difference equations (Arikoglu
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and Ozkol, 2005, 2006), vibration equations (Catal, 2008), convective straight fin problem
with temperature-dependent thermal conductivity (Joneidi et al., 2009) and the fractional
modified KdV equation by Kurulay and Bayram (2010), amongst others.

The Adomian decomposition method was developed by Adomian (Adomian 1976 ,1994
,1991). The idea is to split the given equation into its linear and nonlinear parts. The
highest derivative of the linear part is then inverted on both sides of the equation (Ado-
mian, 1976). The initial approximate solution of the ADM comprises of the initial and/or
boundary conditions together with terms involving the independent variables only (Chen
and Lu, 2004). The unknown function is then decomposed into a series whose components
are to be determined. Special polynomials called Adomian polynomials are used to de-
compose the nonlinear function (Allan, 2007). Using a recurrent relation in terms of the
Adomian polynomials, successive terms of the series solution are generated (Allan, 2007;
Bratsos et al., 2008, Fadugba et al. 2013).

In this paper, we compare DTM with ADM for the solution of ordinary differential
equations. The rest of the paper is organized as follows; Section Two presents the method-
ology. In Section Three, we consider some illustrative examples. Section Four consists of
results and general conclusion.

2. Methodology

2.1 Differential Transformation Method

2.1.1 DTM and Taylor series

The DTM is developed based on the Taylor series expansion. This method constructs an
analytical solution in the form of a polynomial.

Definition 2.1.1: A Taylor polynomial of degree n is defined as follows:

fn(x) =

n∑
k=0

1

k!
(y(k)(c))(x− c)k (2.1)

Theorem: 2.1.1: Suppose that the function y has (n + 1) derivatives on the interval
(c − r, c + r), for some r > 0 and limn−∞ Rn = 0, for all xε(c − r, c + r) where Rn(x)
is the error between fn(x) and the approximated function y(x). Then, the Taylor series
expanded about x = c converges to y(x). That is,

y(x) =

∞∑
k=0

1

k!
(y(k)(c))(x− c)k (2.2)

for all xε(c− r, c+ r).
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2.1.2 Method Description for Differential Transform

The Differential Transform Method (DTM) is a transformation technique based on the
Taylor series expansion and is a useful tool to obtain analytical solutions of differential
equations. In this method, certain transformation rules are applied, and the governing
differential equations and its initial or boundary conditions of the differential equation is
transformed into algebraic equations in terms of the differential transforms of the original
functions, and the solution of this algebraic equation gives the desired solution of the
problem. Consider a function y(x) which is analytical in domain D and let x = x0
represent any point in D. The function y(x) is then represented by a power series whose
center is located at x0. The differential transformation of the function y(x) is given by

Y (k) =
1

k!
(
dky(x)

dxk
)x=x0 (2.3)

where y(x) is the original function and Y [k] is the transformed function. The inverse
transformation is defined as

y(x) =
∞∑
k=0

(x− x0)kY (k) (2.4)

Combining equation (2.3) and equation (2.4), we get

y(x) =
∞∑
k=0

(x− x0)k

k!
(
dky(x)

dxk
)x=x0 (2.5)

which means that the rest of the series

y(x) =

∞∑
k=m+1

(x− x0)k

k!
(
dky(x)

dxk
)x=x0 (2.6)

is negligibly small. Here, the value of m depends on the convergence of natural frequencies.
The following basic operations of differential transformation can be deduced from equation
(2.3) and (2.5):
If,

(a) y(x) = r(x)± p(x), Y (k) = R(k)± P (k)

(b) y(x) = αr(x), Y (k) = αR(k)

(c) y(x) =
dr(x)

dx
, Y (k) = (k + 1)R(k + 1)

(d) y(x) =
d2r(x)

dx2
, Y (k) = (k + 1)(k + 2)R(k + 2)

(e) y(x) =
dbr(x)

dxb
, Y (k) = (k + 1)(k + 2)...(k + b)R(k + b)
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(f) y(x) = r(x)p(x), Y (k) =

k∑
l=o

P (l)R(k − l)

(g) y(x) = xb, Y (k) = δ(k − b), δ(k − b){1, k=b
0, k 6=b

(h) y(x) = exp(λx), Y (k) =
λk

k!

(i) y(x) = (1 + x)b, Y (k) =
b(b− 1)...(b− k + 1)

k!

(j) y(x) = sin(jx+ α), Y (k) =
jk

k!
sin(

πk

2
+ α)

(k) y(x) = cos(jx+ α), Y (k) =
jk

k!
cos(

πk

2
+ α) (2.7)

2.2 Adomian Decomposition Method

2.2.1 Method Description for Adomian Decomposition

The Adomian Decomposition Method (ADM) is applied for solving a wide class of lin-
ear and non-linear ordinary differential equations,partial differential equations,algebraic
equations,difference equations,integral equations and integro-differential equations as well.
Consider the following equations:

Ly +Ny +Ry = g, (2.8)

where L is a linear operator, N represents a non-linear operator and R is the remaining
linear part. By defining the inverse operator of L as L−1, assuming that it exists, we get

y = L−1g − L−1Ny − L−1Ry. (2.9)

The Adomian Decomposition Method assumes that the unknown function y can be ex-
pressed by an infinite series of the form

y =
∞∑
n=0

yn, (2.10)

or equivalently
y = y0 + y1 + y2 + ..., (2.11)

where the components yn will be determined recursively. Moreover, the method defines
the nonlinear term by the Adomian polynomials More precisely, the ADM assumes that
the nonlinear operator N(y) can be decomposed by an infinite series of polynomials given
by

N(y) =

∞∑
n=0

An, (2.12)
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where An are the Adomian’s polynomials defined as An = An(y0, y1, y2, ..., yn). Substitut-
ing (2.10) and (2.12) into equation (2.9) and using the fact that R is a linear operator we
obtain

∞∑
n=0

yn = L−1g − L−1(
∞∑
n=0

R(yn))− L−1(
∞∑
n=0

An(y0, y1, y2, ..., yn)), (2.13)

or equivalently

y0 + y1 + y2 + ... = L−1g − L−1(
∞∑
n=0

R(yn))− L−1(A0 +A1 + ...) (2.14)

Therefore the formal recurrence algorithm could be defined by

yo = L−1g, ..., yn+1 = −L−1(R(yn))− L−1(An(y0, y1, ..., yn)), (2.15)

or equivalently,

y0 = L−1g, y1 = −L−1(R(y0))− L−1(A0(y0)), ... (2.16)

Consider the non-linear function f(y). Then, the infinite series generated by applying the
Taylor’s series expansion of y about the initial function y0 is given by

f(y) = f(y0) + f ′(y0)(y − y0) +
1

2!
f ′′(y0)(y − y0)2 + ... (2.17)

By substitution, we have:

f(y) = f(y0) + f ′(y0)(y1 + y2 + ...) +
1

2!
f ′′(y0)(y1 + y2 + ...)2 + ... (2.18)

Now, we expand equation(2.15) to obtain the Adomian polynomials, we need first to
reorder and rearrange the terms. Indeed, one needs to determine the order of each term
in (2.15) which actually depends on both the subscripts and exponents of the yn’s. For
instance, y1 is of order 1; y21 is of order 2; y32 is of order 6, and so on. In general, ykn
is of order kn. In case a particular term involves the multiplication of yn’s, its order s
determined by the sum of the terms of the yn’s in each term. For example, y32y

1
2 is of

order 8 since (3)(2) + (2)(1) = 8. As a result, rearranging the terms in expansion(2.18)
according to the order, we have

f(y) = f(y0)+f
′(y0)y1 + f ′(y0)y2 +

1

2!
f ′′(y0)y

2
1 + f ′(y0)y3+

2

2!
f ′′(y0)y1y2 +

1

3!
f ′′′(y0)y

3
1 + f ′(y0)y4 +

1

2!
f ′′(y0)y

2
2+

2

2!
f ′′(y0)y1y3 +

3

3!
f ′′′(y0)y

2
1y2 +

1

4!
f ′′′′(y0)y

4
1 + ...

(2.19)

The Adomian polynomials are constructed in a certain way so that the polynomial A1

consists of all terms in the expansion (2.16) of order 1, A2 consists of all terms of order 2,
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and so on. In general, An consists of all terms of order n. Therefore, the first nine terms
of Adomian polynomials are listed as follows:

A0 = f(y0),

A1 = f ′(y0)y1,

A2 = f ′(y0)y2+
1

2!
f ′′(y0)y

2
1,

A3 = f ′(y0)y3+
2

2!
f ′′(y0)y1y2 +

1

3!
f ′′′(y0)y

3
1,

A4 = f ′(y0)y4+
1

2!
f ′′(y0)(2y1y3 + y22) +

3

3!
f ′′′(y0)y

2
1y2 +

1

4!
f ′′′′(y0)y

4
1,

A5 = f ′(y0)y5+
1

2!
f ′′(y0)(2y1y4 + 2y2y3) +

1

3!
f ′′′(y0)(3y

2
1y3 + 3y1y

2
2)+

4

4!
f (4)(y0)y

3
1y2 +

1

5!
f (5)(y0)y

5
1,

A6 = f ′(y0)y6+
1

2!
f ′′(y0)(2y1y4 + 2y2y3) +

1

3!
f ′′′(y0)(3y

2
1y3 + 3y1y

2
2)+

4

4!
f (4)(y0)y

3
1y2 +

1

5!
f (5)(y0)y

5
1,

A7 = f ′(y0)y7+
1

2!
f ′′(y0)(2y1y4 + 2y2y3) +

1

3!
f ′′′(y0)(3y

2
1y3 + 3y1y

2
2)+

4

4!
f (4)(y0)y

3
1y2 +

1

5!
f (5)(y0)y

5
1,

A8 = f ′(y0)y8+
1

2!
f ′′(y0)(2y1y4 + 2y2y3) +

1

3!
f ′′′(y0)(3y

2
1y3 + 3y1y

2
2)+

4

4!
f (4)(y0)y

3
1y2 +

1

5!
f (5)(y0)y

5
1,

(2.20)

The Adomian polynomial An was first introduced by Adomian himself; it was defined via
the general formula

An(y0, y1, ..., yn) =
1

n!

dn

dλ.

[
N(

∞∑
k=0

ykλ
k)

]
λ=0

, n = 0, 1, 2, ... (2.21)

where N is the number of terms of the Adomian polynomials.

2.2.2 Decomposition of Linear ODEs

To apply the ADM for solving linear ordinary differential equations, we consider the
following general equation written in operator form:

L(y) +R(y) = g(x), (2.22)

where the linear differential operator L may be considered as the highest order derivative in
the equation,R is the remainder of the differential operator, and g(x) is an inhomogeneous
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term. If L is a first order operator defined by

L =
d

dx
(2.23)

Then, assuming that L is invertible, then the inverse operator L−1 is given by;

L−1(.) =

∫ x

0
(.)dx, (2.24)

so that

L−1Ly = y(x)− y(0). (2.25)

However, if L is a second order differential operator given by

L =
d2

dx2
, (2.26)

then the inverse operator L−1 is a two-fold integration operator by

L−1(.) =

∫ x

0

∫ x

0
(.)dxdx, (2.27)

Hence, we have

L−1Ly = y(x)− y(0)− xy′(0). (2.28)

In a parallel manner, if L is a third order differential operator, we can easily show that

L−1Ly = y(x)− y(0)− xy′(0)− 1

2!
x2y′′(0). (2.29)

For higher order ODEs, the latter equation can be generalized in a similar fashion. Now,
to implement the ADM, we proceed to first applying L−1 to both sides of equation (2.22)
and after rearranging the terms, we get

y(x) = Φ0 + L−1g(x)− L−1Ry, (2.30)

where, as explained above, we have if

Φ0 =y(0), then L =
d

dx

y(0) + xy′(0), then L =
d2

dx2

y(0) + xy′(0) +
1

2!
x2y′′(0), then L =

d3

dx3

y(0) + xy′(0) +
1

2!
x2y′′(0) +

1

3!
x3y′′′(0), then L =

d4

dx4

... (2.31)



70 R.B. Ogunrinde

and so on. The Adomian decomposition method admits the decomposition of y in the
form of an infinite series of components

y(x) =
∞∑
n=0

yn, (2.32)

where yn(x), n ≥ 0 are the components of y(x) that will be determined recursively. Sub-
stituting (2.31) into (2.32) gives

∞∑
n=0

yn = Φ0 + L−1g(x)− L−1R(

∞∑
n=0

yn). (2.33)

The various components yn of the solution y can be easily determined by using the recursive
relation

yo = Φ0 + L−1g(x),

yn+1 = −L−1Ryn, n ≥ 0. (2.34)

It is worth mentioning that the determination of the y0 term depends on the specified
initial conditions y(0), y′(0), y′′(0), y′′′(0),....

2.2.3 Decomposition of Non-linear ODEs

Consider the following non-linear ordinary differential equation written in operator form:

Ly +Ry +N(y) = g(x), (2.35)

where the linear operator L is the highest order derivative, R is the remainder of the
differential operator, N(y) is the non-linear terms and g(x) expresses an inhomogeneous
term. Without loss of generality, let L be the first order differential operator

L =
d

dx
(2.36)

Then, assuming that L is invertible, then the inverse operator L−1 is given by;

L−1(.) =

∫ x

0
(.)dx, (2.37)

Therefore,

L−1Ly = y(x)− y(0). (2.38)

On the other hand, if L is a second order differential operator given by

L =
d2

dx2
, (2.39)
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then the inverse operator L−1 is given by

L−1(.) =

∫ x

0

∫ x

0
(.)dxdx, (2.40)

which means that

L−1Ly = y(x) = y(0) = xu′(0). (2.41)

While, if L is a third order differential operator, we can easily show that

L−1Ly = y(x)− y(0)− xy′(0)− 1

2!
x2y′′(0). (2.42)

and so forth. In general, if L is a differential operator of order n+ 1, we can easily show
that

L−1Ly = y(x)− y(0)− xy′(0)− 1

2!
x2y′′(0)− 1

3!
x3y′′′(0)− ...− 1

n!
xnyn(0). (3.43)

Applying L−1 to both side of (2.35) gives

y = Φo − L−1g(x)− L−1N(y)− L−1Ry, (2.44)

where

Φ0 =y(0), if L =
d

dx

y(0) + xy′(0), if L =
d2

dx2

y(0) + xy′(0) +
1

2!
x2y′′(0), if L =

d3

dx3

y(0) + xy′(0) +
1

2!
x2y′′(0) +

1

3!
x3y′′′(0), if L =

d4

dx4

y(0) + xy′(0) +
1

2!
x2y′′(0) +

1

3!
x3y′′′(0) + ...+

1

n!
xny(n)(0), if L =

d4

dx4

... (2.45)

The decomposition technique consists of decomposing the solution into a sum of an infinite
number of terms defined by the decomposition series

y(x) =

∞∑
n=0

yn, (2.46)

while the non-linear term N(y) is to be expressed by an infinite series of polynomials

N(y) =
∞∑
n=0

An, (2.47)
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where An are the Adomian’s polynomials. Equation (2.44) yields

∞∑
n=0

yn = Φ0 − L−1R(

∞∑
n=0

yn)− L−1(
∞∑
n=0

An + L−1g(x)). (2.48)

To construct the iterative scheme, we match both sides so that the yn term is expressed in
terms of the previously determined terms. More specifically, the Adomian decomposition
method gives the following iterative algorithm:

yo = Φ0 + L−1g(x),

yn+1 = −L−1Ryn − L−1An, n ≥ 0. (2.49)

This in turn gives

yo = Φ0 + L−1g(x), y1 = −L−1Ryn − L−1An,
y2 = −L−1Ryn − L−1An, ... (2.50)

3. Computation and Results

In this section, we apply the DTM and ADM to initial value problems for both linear
and non-linear ordinary differential equations. The examples considered are for the illus-
tration of the methods described for DTM and ADM and to confirm their applicability
and efficiency.The comparison will be made by separately applying the two methods.

3.1. Example 1

The first differential equation to be considered is the linear first order initial value
problem:

y′(x) = y, y(0) = 1. (3.1)

Note that y′, y′′, y′′′, y(4),... denote the first, second, third and fourth derivatives of
y(x). In general, yn denotes the nth derivative of y with respect to x. Equation (3.1)
denotes a function whose first derivative is also that function. The analytical solution for
equation(3.1) is given as:

y(x) = cex (3.2)

with c = 1 at y(0) = 1;

y(x) = ex (3.3)

which is as expected.

3.1.1. Differential Transform of Example 1

Applying DTM to the above equation, we have that;
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If

y(x) =
dn

dxn
, (3.4)

then,

Y (k) =
(k + n)!

n!
Y (k + n) (3.5)

Equation(3.4) implies that,
dy

dx
= y (3.6)

with n = 1. On Transformation, equation(3.1) becomes:

y(x) = Y (k)

dy

dx
=

(k + 1)!

1!
Y (k + 1) (3.7)

and also,

y(0) = 1 (3.8)

implies that

Y (0) = 1 (3.9)

substituting the transformed parts into equation(3.1) gives;

Y (k) = (k + 1)!Y (k + 1) (3.10)

Making Y (k + 1) the subject of formula gives the recurrence relation:

Y (k + 1) =
Y (k)

(k + 1)!
(3.11)

So that for k = 0, · · ·, 10, we have for Y (K)

Y (1) =
1

1!
, Y (2) =

1

2!
, Y (3) =

1

3!

Y (4) =
1

4!
, Y (5) =

1

5!
, ..., Y (n) =

1

n!
(3.12)

So that our series expansion becomes

y(x) =
0∑

k=10

xkY (k)

= 1 + x+
x2

2
+
x3

3
+
x4

4
+ ...+

x10

10
(3.13)

which is the required expansion.
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3.1.2 Adomian Decomposition of Example 1

In operator form, equation(3.1) can be written as:

Ly = y′,

y(0) = 1 ⇒ y0 = 1 (3.14)

where L is the first order differential operator

Ly = y′ (3.15)

It is clear that L−1 is invertible and is given by

L−1(∗) =

∫ x

0
dt (3.16)

Applying L−1 to both sides of equation (3.15) and using the given initial conditions

L−1Ly = y(x)− y(0)

L−1Ly = L−1y (3.17)

Combining gives,

y(x)− y(0) = L−1y

y(x) = y(0) + L−1y

y(x) = 1 + L−1y (3.18)

Upon using the decomposition series for the solution y(x) results

∞∑
n=0

yn = 1 + L−1(
∞∑
n=0

yn) (3.19)

Upon matching both sides, this leads to the recursive relation,

y0 = 1 +

∫ x

0
1, y0 = 1

y0 = 1 + x, ..., yn+1 = L−1Ryn, n ≥ 0 (3.20)

The first few components are thus determined as follows:

y0 = 1, y1 = L−1(1) = x, y2 = L−1(x) =
x2

2
, ...

y(x) = 1 + x+
x2

2
+
x3

3
+
x4

4
+ ...+

xn

n
(4.21)
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3.2 Example 2

The second differential equation to be considered is the non-linear first order initial
value problem:

y′(x) = y(x)2,

y(0) = 1. (4.22)

whose exact solution at y(0) = 1 is given as,

y(x) =
1

1− x
(3.23)

3.2.1 Differential Transform of Example 2

Applying the transform method to equation(4.22) generates the following,

y′ = (k + 1)!Y (k + 1),

y(x) = Y (k), (3.24)

and,

y2(x) = y1(x)y2(x) (3.25)

so that,

y2(x) =
∑
k=0

∑
k1=0

Y1(k1)Y2(k − k1) (3.26)

Hence, equation(3.26) becomes,

(k + 1)!Y (k + 1) =
∑
k=0

∑
k1=0

Y1(k1)Y2(k − k1) (4.27)

let k1 = l be a constant with l = 0

(k + 1)!Y (k + 1) =
∑
k=0

∑
l=0

Y1(l)Y2(k − l) (3.28)

and we obtain the recursive relationship

Y (k + 1) =
1

(k + 1)!

∑
k=0

∑
l=0

Y1(l)Y2(k − l) (3.29)

Applying the initial conditions, with k = 0, ..., 10 and l = 0, ..., 10, we get the following
values for Y(k).

Y (1) =
1

1
= 1, Y (2) =

2

2
= 1, Y (3) =

3

3
= 1,
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Y (4) =
4

4
= 1, ..., Y (n) =

n

n
= 1 (3.30)

Now,

y(x) =
10∑
k=0

xkY (k). (3.31)

Since Y (k) = 1 for all k = 0, · · ·, 10,then

y(x) =
10∑
k=0

xk. (3.32)

So that,

y(x) = 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 (3.33)

3.2.2 Adomian Decomposition of Example 2

Consider the non-linear initial value problem in equation (3.22), and following the method
derived in chapter 3 for non-linear ADM, we define a linear operator

L =
d

dx
(3.34)

The inverse operator is then

L−1 =

∫ x

0
(.)dx (3.35)

Rewriting the differential equation (3.22) in operator form, we have

Ly = Ny (3.36)

where N is a non-linear operator such that

Ny = y2 (3.37)

Next, we apply the inverse operator for L to the equation on the left hand side of equation
(3.22) to obtain,

L−1Ly = y(x)− y(0) (3.38)

Using the initial conditions, this becomes

L−1Ly = y(x)− 1 (3.39)

Returning this decomposition to equation (3.22), we now have

y(x)− 1 = L−1(Ny) (3.40)
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or
y(x) = 1 + L−1(Ny) (3.41)

Next, we need to generate the Adomian polynomials, An. Let y be expanded as an infinite
series y(t) =

∑∞
n=0 yn(t) and define Ny =

∑∞
n=0An. Then

∞∑
n=0

yn(t) = 1 + L−1(

∞∑
n=0

An) (3.42)

To find An, we introduce the scalar λ such that,

y(λ) =
∞∑
n=0

λnyn. (3.43)

Then,

Ny(λ) =
∞∑
n=0

λn
∞∑
i=0

(yiyn−i). (3.44)

From the definition of the Adomian Polynomials,

An =
1

n

dn

dλn
(Ny(λ))|λ=0 (3.45)

We find the Adomian polynomials.

A0 = y20

A1 = 2y0y1

A3 = 2y0y3 + 2y1y2

A4 = 2y0y4 + 2y1y3 + y23

A5 = 2y0y5 + 2y1y4 + 2y2y3

A6 = 2y0y6 + 2y1y5 + 2y2y4 + y23

A7 = 2y0y7 + 2y1y6 + 2y2y5 + 2y3y4 (3.46)

Returning the Adomian polynomials, we can determine the recursive relationship that will
be used to generate the solution.

y0(x) = 1

yn+1(x) = L−1(An). (3.47)

Solving this yields

y0 = 1, y1 = x, y2 = x2, y3 = x3, y4 = x4, y5 = x5, y6 = x6, y7 = x7 (3.48)

We can see that the series solution generated by this method is

y(x) = 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + · · · =
∞∑
n=0

xn (3.49)
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which we recognize as the Taylor series for the exact solution

y(x) =
1

1− x
(3.50)

3.3 Example 3

Consider the first order non-linear initial value problem given as:

y′ + y2 = 1, y(0) = 0 (3.51)

with the exact solution

y(x) =
e2x − 1

e2x + 1
= tanh(x) (3.52)

The Taylor expansion of y(x) about x = 0 gives

y(x) = x− 1

3
x3 +

2

15
x5 − 17

315
x7 +

62

2835
x9 − · · · (3.53)

3.3.1 Differential Transform of Example 3

Taking the Differential Transform, leads to

(k + 1)!Y (k + 1) = −
r∑

k=0

δ(k) (3.54)

Applying the initial conditions given,

y(0) = 0 =⇒ Y (0) = 0. (3.55)

Also, when k = r, δ(k) = 1 and when k 6= r, then δ(k) = 0 The recursive relation to
obtain values for Y (k) is

Y (k + 1) = − 1

(k + 1)!

r∑
k=0

δ(k). (3.56)

For k = 0, · · ·, 10,

Y (1) = 1, Y (2) = 0, Y (3) = −1

3
, Y (4) = 0, Y (5) =

2

15
, Y (6) = 0,

Y (7) = − 17

315
, Y (8) = 0, Y (9) =

62

2835
(3.57)

Therefore, the closed form of the solution can be easily written as

y(x) =
∞∑
k=0

Y (k)xk = x− x3

3
+

2x5

15
− 17x7

315
+

62x9

2835
− · · · (4.58)

which is also the Taylor’s series expansion.
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3.3.2 Adomian Decomposition of Example 3

Applying L−1 to both sides of the equation and using the initial conditions gives

y = y(0) + L−11− L−1y2 = L−1y2 + x. (3.59)

Using the decomposition series for y and the Adomian polynomials representation for the
non-linear term y2, gives

∞∑
n=0

yn = −L−1
∞∑
n=0

An + x, (3.60)

where the An’s are the Adomian polynomials for y2 as shown above. Matching both sides
of the equation results in the following ADM iterative scheme:

yo = x,

yn+1 = −L−1(An). (3.61)

This in turn gives

y0 = x

y1 = −L−1(A0) = −L−1(y20) = −x
3

3
,

y2 = −L−1(A1) = −L−1(2y0y1) =
2x5

15
,

y3 = −L−1(A2) = −L−1(2y0y1 + y21) = −7x7

315
... (4.62)

The solution in a series form is thus given by

y(x) = x− x3

3
+

2x5

15
− 7x7

315
+ · · ·, (3.63)

which clearly converges to the exact solution

y(x) = tanh(x) (3.64)

3.4 Example 4

We will now look at how the two methods handle second order ordinary differential
equations. For this example, our test problem is a linear second order initial value problem:

y′′ − y = 0, (3.65)

subject to the initial conditions

y(0) = 0, y′(0) = 1. (3.66)

The exact solution is given as: y(x) = ex − 1
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3.4.1 Differential Transform of Example 4

On transformation, we obtain:

(k + 2)!Y (k + 2)− Y (k) = δ(k) (3.67)

which gives the recursive formula

Y (k + 2) =
Y (k) + δ(k)

(k + 2)!
(3.68)

Applying the initial conditions given,

y(0) = 0 =⇒ Y (0) = 0,

y′(0) = 1 =⇒ Y (1) = 1. (3.69)

Also, δ(k) = 1 when k = 0,δ(k) = 0 when k ≥ 1. For k = 0, · · ·, 10

Y (2) =
1

2
, Y (3) =

1

3!
, Y (4) =

1

4!
, Y (5) =

1

5!
, Y (6) =

1

6!

Y (7) =
1

7!
, Y (8) =

1

8!
, Y (9) =

1

9!
, Y (10) =

1

10!
, Y (11) =

1

11!

Y (12) =
1

12!
(3.70)

Hence the series solution is given as:

y(x) = x+
x2

2
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+
x7

7!
+
x8

8!
+
x9

9!
+
x10

10!
+
x11

11!
+
x12

12!
(3.71)

3.4.2 Adomian Decomposition of Example 4

In operator form, equation(3.65) can be written as

Ly = 1 + y, y(0) = 0, y′(0) = 1, (3.72)

where L is the second order differential operator Ly = y′′. t is clear that L−1 is invertible
and is given by

L−1(.) =

∫ x

0

∫ x

0
(.)dxdx. (3.73)

Applying L−1 to both sides of (3.72) and using the initial conditions gives

y = y(0) + xy′(0) + L−11 = x+
x2

2
+ L−1y. (3.74)

Upon using the decomposition series for the solution of y(x), results

∞∑
n=0

yn = x+
x2

2
+ L−1(

∞∑
n=0

yn) (3.75)
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Upon matching both sides, this leads to the recursive relation

yo = x+
x2

2
, yn+1 = L−1(yn), n ≥ 0. (3.76)

The first few components are thus determined as follows:

y0 = x+
x2

2
, y1 =

x3

6
+
x4

24
, y2 =

x5

5!
+
x6

6!
. (3.77)

Consequently, the solution in a series form is given by

y(x) = x+
x2

2
+
x3

6
+
x4

24
+
x5

5!
+
x6

6!
+ · · · , (3.78)

and clearly in a closed form is given by

y(x) = ex − 1, (3.79)

which is the exact solution of the problem. This is another case where the ADM converges
to the solution.

3.5 Example 5

We now consider a third order linear ODE given as:

y′′′ = −y (3.80)

subject to the initial conditions;

y(0) = 1, y′(0) = −1, y′′(0) = 1. (3.81)

The Exact solution is given as: y(x) = exp−x

3.5.1 Differential Transformation of Example 5

Transforming equation (3.80) gives:

(k + 3)!Y (k + 3) = −Y (k) (3.82)

which resolves to the recursive formula on making Y (k + 3) subject of formula;

Y (k + 3) = − Y (k)

(k + 3)!
(3.83)

Applying the initial conditions given,

y(0) = 1 =⇒ Y (0) = 1, y′(0) = −1 =⇒ Y (1) = −1, y′′(0) = 1 =⇒ Y (2) =
1

2
. (3.84)
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For k = 0, · · ·, 10

Y (3) = − 1

3!
, Y (4) =

1

4!
, Y (5) = − 1

5!
, Y (6) =

1

6!
, Y (7) = − 1

7!
, Y (8) =

1

8!
,

Y (9) = − 1

9!
, Y (10) =

1

10!
, Y (11) = − 1

11!
, Y (12) =

1

12!
, Y (13) = − 1

13!
(3.85)

The series solution is given as:

y(x) = 1− x+
x2

2
− x3

3!
+
x4

4!
− x5

5!
+
x6

6!
− x7

7!
+
x8

8!

− x9

9!
+
x10

10!
− x11

11!
+
x12

12!
− x13

13!

(3.86)

3.5.2 Adomian Decomposition of Example 5

Given that L is a linear differential operator, R the remainder of the differential operator,
and g the inhomogeneous term. Let L be a third order operator as described in chapter(3)
for Adomian Decomposition of third order ODEs, then assuming that L is invertible, the
inverse operator L−1 is given by

L−1(.) =

∫ x

0

∫ x

0

∫ x

0
(.)dxdxdx (3.87)

Hence, we have

L−1Ly = y(x)− y(0)− xy′(0)− 1

2!
x2y′′(0) (3.88)

where,

Ly = −y
L−1Ly = L−1(−y), (3.89)

so that,

y(x) = 1− x+
x2

2!
+ L−1(−y). (3.90)

Upon using the decomposition series for the solution y(x), we get;

∞∑
n=0

yn = 1− x+
x2

2!
+ c(

∞∑
n=0

−yn) (3.91)

When both sides are matched, this leads to the recursive relation

y0 = 1− x+
x2

2!
+ L−1(−y0)

= 1− x+
x2

2!
− x3

3!
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yn+1 = L−1R(−yn), n ≥ 0 (3.92)

which gives the convergent series

y(x) = 1− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
+
x6

6!
. (3.93)

3.6 Numerical Results

Table 3.1: h=0.1

Absolute error obtained for Example 1 using ADM with three iterations and
DTM with k = 0..10

X DTM ADM Exact Error(DTM) Error(ADM)
0.0 1.0000000000 1.0000000000 1.0000000000 0.0000000000 0.0000000000
0.1 1.1051709180 1.1051709180 1.1051709180 0.0000000000 0.0000000000
0.2 1.2214027580 1.2214027590 1.2214027580 0.0000000000 0.0000000000
0.3 1.3498588080 1.3498588070 1.3498588080 0.0000000000 0.0000000000
0.4 1.4918246980 1.4918246980 1.4918246980 0.0000000000 0.0000000000
0.5 1.6487212710 1.6487212700 1.6487212710 0.0000000000 0.0000000000
0.6 1.8221188000 1.8221188010 1.8221188000 0.0000000000 0.0000000000
0.7 2.0137527070 2.0137527070 2.0137527070 0.0000000000 0.0000000000
0.8 2.2255409280 2.2255409270 2.2255409280 0.0000000000 0.0000000000
0.9 2.4596031110 2.4596031020 2.4596031110 0.0000000000 0.0000000000
1.0 2.7182818260 2.7182818030 2.7182818280 2.0000000000E-8 2.5000000000E-8

Table 3.2: h=0.1

Absolute error obtained for Example 2 using ADM with three iterations and
DTM with k = 0..10

X DTM ADM Exact Error(DTM) Error(ADM)
0.0 1.0000000000 1.0000000000 1.0000000000 0.0000000000 0.0000000000
0.1 1.1111111111 1.1111111111 1.1111111111 0.0000000000 0.0000000000
0.2 1.2499999740 1.2499999740 1.2500000000 2.6000000000E-8 2.6000000000E-8
0.3 1.4285688980 1.4285688980 1.4285714290 2.5310000000E-6 2.5310000000E-6
0.4 1.6665967620 1.6665967620 1.6666666670 6.9905000000E-5 6.9905000000E-5
0.5 1.9990234380 1.9990234380 2.0000000000 9.7656200000E-4 9.7656200000E-4
0.6 2.4909300740 2.4909300740 2.5000000000 9.0699260000E-3 9.0699260000E-3
0.7 3.2674224420 3.2674224420 3.3333333333 0.0659108910 0.0659108910
0.8 4.5705032700 4.5705032700 5.0000000000 0.0429496730 0.0429496730
0.9 6.8618940390 6.8618940390 10.000000000 3.1381059610 3.1381059610
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Table 3.3: h=0.1

Absolute error obtained for Example 3 using ADM with three iterations and
DTM with k = 0..10

X DTM ADM Exact Error(DTM) Error(ADM)
0.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.1 0.0996679946 0.0996679946 0.0996679946 0.0000000000 2.0000000000E-11
0.2 0.1973753204 0.1973753092 0.1973753202 2.0000000000E-10 1.1000000000E-8
0.3 0.2913126276 0.2913121971 0.2913126125 1.5100000000E-8 4.1540000000E-7
0.4 0.3799493114 0.3799435784 0.3799489623 3.4910000000E-7 5.3839000000E-6
0.5 0.4621210868 0.4620783730 0.4621171573 3.9295000000E-6 3.8784300000E-5
0.6 0.5370776284 0.5368572343 0.5370495670 2.8061400000E-5 1.9233270000E-4
0.7 0.6045139949 0.6036314822 0.6043677771 1.4621780000E-4 7.3629490000E-4
0.8 0.6646413099 0.6617060368 0.6640367703 6.0453960000E-4 2.3307330000E-3
0.9 0.7183918393 0.7099191514 0.7162978702 2.0939690000E-3 6.3787180000E-3
1.0 0.7679012345 0.7460317460 0.7615941560 6.3070780000E-3 0.0155624100

Table 3.4: h=0.1

Absolute error obtained for Example 4 using ADM with three iterations and
DTM with k = 0..10

X DTM ADM Exact Error(DTM) Error(ADM)
0.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.1 0.1051709181 0.1051709181 0.1051709180 1.0000000000E-10 1.0000000000E-10
0.2 0.2214027582 0.2214027556 0.2214027580 2.0000000000E-10 2.4000000000E-9
0.3 0.3498588076 0.3498587625 0.3498588080 4.0000000000E-10 4.0000000000E-10
0.4 0.4918246977 0.4918243556 0.4918246980 3.0000000000E-10 3.4240000000E-7
0.5 0.6487212708 0.6487196181 0.6487212710 2.0000000000E-10 1.6529000000E-6
0.6 0.8221188005 0.8221128000 0.8221188000 5.0000000000E-10 9.9000000000E-4
0.7 1.0137527070 1.0137348180 1.0137527070 5.0000000000E-9 1.7889000000E-5
0.8 1.2255409290 1.2254947560 1.2255409280 1.0000000000E-9 4.6172000000E-5
0.9 1.4596031110 1.4594963620 1.4596031110 0.0000000000 1.0674900000E-4
1.0 1.7182818300 1.7180555560 1.7182818280 2.0000000000E-9 2.2627200000E-4

Table 3.5: h=0.1

Absolute error obtained for Example 5 using ADM with three iterations and
DTM with k = 0..10
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X DTM ADM Exact Error(DTM) Error(ADM)
0.0 1.0000000000 1.0000000000 1.0000000000 0.0000000000 0.0000000000
0.1 0.9048374181 0.9048374181 0.9048374181 0.0000000000 0.0000000000
0.2 0.8187307532 0.8187307556 0.8187307532 0.0000000000 2.4000000000E-9
0.3 0.7408182206 0.7408182625 0.7408182206 0.0000000000 4.0900000000E-8
0.4 0.6703200461 0.6703203556 0.6703200461 0.0000000000 3.0950000000E-7
0.5 0.6065306598 0.6065321181 0.6065306598 0.0000000000 1.4583000000E-6
0.6 0.5488116361 0.5488168000 0.5488116361 0.0000000000 5.1639000000E-6
0.7 0.4965853039 0.4966003181 0.4965853039 0.0000000000 1.5014200000E-5
0.8 0.4493289640 0.4493667556 0.4493289640 0.0000000000 3.7791600000E-5
0.9 0.4065696598 0.4066548625 0.4065696598 0.0000000000 8.5202700000E-5
1.0 0.3678794412 0.3680555556 0.3678794412 0.0000000000 1.7611440000E-4

4. Discussion of Results and General Conclusion

4.1 Discussion Of Results

The effectiveness of DTM and ADM have been established by comparing different
types of Ordinary Differential equations, linear and non-linear, of first, second and third
order. The numerical solutions obtained in chapter Four show that the DTM has lower
absolute error when compared to the ADM. Three iterations for the ADM were compared
to obtained values for DTM with k = 0..10. By observing the results from the Tables
1 to 5, DTM is seen to be more suitable for dealing with ODE problems.Moreover, as
illustrated by examples, while ADM appears easily approachable, DTM is direct and fast
to compute.

4.2 General Conclusion

In this paper, we have introduced two semi-numerical methods, DTM and ADM, for
solving Ordinary Differential Equations. The methods have been used to solve different
ODE problems. A summary of the findings for each problem solved is given below. In
Section 3, we solved five ODE problems. In subsection 3.1, we considered a linear first
order ODE. The DTM and ADM results were compared against the exact results. It was
observed that both methods, DTM and ADM, provided series expansion of the exact solu-
tions. Subsection 3.2 to 3.5 produced similar results and hence showed that both methods
do capture the series expansion of the exact solutions. From this study we conclude that in
comparing Differential Transformation Method and Adomian Decomposition Method for
solving Ordinary Differential Equations, both methods are efficient, accurate and robust
but DTM has lower error estimate than the ADM. The equations solved ranged from lin-
ear to non-linear ODEs. However, comparison of the two methods need to be extended to
other types of equations such as; time-dependent evolution equations, partial differential
equations and difference equations.
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