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Abstract. The purpose of the current study is to examine Magnetohydrodynamic (MHD) bound-
ary layer flow having magnetic characteristics and behavior of electrically transmitted viscous in-
compressible fluids over a stretching sheet fixed in a porous medium.This porosity on the flow field
is typically analyzed under the effects of magnetic field(MF) and permeability. The results for
various prandtl numbers on temperature profile has also been observed. By using Darcy Model
in order to a variable MF, we have considered the flow of a viscous fluid through porous media.
The series solution of the non-linear boundary layer problem of flow field is obtained by using
DTM as well as by VIM along with Pade approximant(PA).For solving BVPs the combination of
DTM-Pade and VIM-Pade approximation is shown to be a powerful techniques.The methods are
effective and convenient subject to the comparison of the obtained results and with already avail-
able results shown in the literature.It is observed that both magnetic field and the permeability
parameter of porous medium impart to thinning of the boundary layer.Same in the case of thermal
effects,temperature profile decreases with the increment of Prandtl number.

Magnetohydrodynamics, DTM, VIM,Pade-approximation, Porous Medium, Magnetic field.

1. Introduction

The aim of the current work is to investigate porous medium for steady-state
incompressible viscous flow of an electrically conducting fluids under the influence of
MF . For this purpose, to overcome the difficulties concerning the closed form solution
in non linear boundary value problem we have used semi-analytical methods name as
Differential transformation method and Variational iteration method with the combi-
nation of PÀ[1]. Although there exists many other research studies with great interest
have largely been used such as Perturbation techniques , Homotopy P̀erturbation method
(H̀PM),Homotopy Ànalysis methods(H̀AM),Àdomian D̀ecomposition method(ÀDM) and
Successive approximation method. But this work mainly focuses on the behavior of
DTM ,VIM and PÀ [2, 3]. For the solution of linear and non linear Differential equations
(NLDE) these methods are strongly effective and reliable which can be directly applied
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to NLDE in physics, engineering and mathematics.They do not require any linearization
and perturbation.Although these methods has some drawbacks , they are applicable
in the small region but invalid in an unbound domain.To overcome this issue we have
consider PÀ . By using the above mentioned methods we obtain the solution in the form
of series, the series may diverge when the variable involved in the problem approaches to
infinity. For the settlement of this situation a combination of PÀ [2]has been used to get
approximate solutions.
In the manifestation of a MF the flow of an electrically conducting fluids having much
momentousness in multiple disciplines of technology and engineering such as M̀HD pumps,
M̀HD power generation and M̀HD flow meter etc.In many extents of engineering and
industrial areas of interest the porous media flow plays a significant role [3]. Moreover,in
polymer industries wide applications are to be found in particular flow on a stretching
sheet. A little while back,Mohammadreja et.al. and Peker et. al.have studied viscous
fluid flows on a stretching sheet with a constant rate of stretching and the fluid flow in
order to a variable MF. In their work, they did not consider the porous media.Later,a
stretching sheet with uniform matrix subjected to a MF strength fixed in a porous
medium propotional to x(n−1)/2 and non linear stretching sheet xn had been discussed[4].
Many authors used to consider the strength of MF as constant. In the current work we
have focused on the following two main objectives; the first one is the study of wedge flow
through porous media subjected to a MF leads towards a modified model of Falkner-skan
equation while the second purpose is to investigavte the stability of the DTM and V IM
empowered with PÀ[10, 12]. The following are the Prandtl Boundary layer(B.l) D̀arcian
flow equations,[1]

ux + vy = 0 (1)

uux + vuy = νuxx − σ
D2(x)u

ρ
−

uν

kp(x)
(2)

uTx + vTy = αTyy (3)

variable magnetic field D(x) and kp(x) variable Porosity are as follows,

D(x) = D0(x)x
n−1

2 , kp(x) = kp′x1−n

subject to the boundary conditions(BCs),























y = 0,

u = cxn, v = 0, T = Tw,

y → ∞,

u→ 0, T → T (∞),

Where c is stretching rate. The continuity equation is satisfied by choosing ψ(x, y) as a
stream f̀unction which is,

u = ψy
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and v = −ψx

Introducing similarity transformation,







η(x, y) = x
n−1

2 y
√

c(n+1)
2ν ,

ψ(x, y) = x
n+1

2 f(η)
√

2cν
(n+1)

u = cxnf ′ (4)

v = −

√

cν(n+ 1)

2
x

n−1

2 [f + (
n− 1

n+ 1
)ηf ′] (5)

so the transformed ODEs along their boundary conditions are

f ′′′ − (M +
1

kp
)f ′ + ff ′′ − βf ′2 = 0 (6)

1

Pr
θ′′ + θ′f = 0, (7)

{

f(0) = 0, f ′(0) = 1, f ′′(0) = 2α(say), f ′(∞) = 0, θ(0) = 1, θ(∞) = 0, θ′(0) = A(say),

M =
2σD2

0
(x)

ρc(n+1) , and
1
kp = 2ν

c(n+1)kp′ ,

where M stands for the m̀agnetic p̀arameter, kp stands for permeability parameter
, β is p̀ower index,
α and A are unknowns to be determined.

1.1. Differential Transformation Method

Differential transformation method (DTM) was purposed by Zhou.The method was
developed to tackle initial value problems (IVP) in èlectric circuit theory. DTM is
based on Taylor series expansion.In this method we have applied some transformation
rules. The set of fundamental equations are reduced to Ordinary Differential equa-
tions(ODEs), then these equations along with boundary conditions are transformed
under the rules described by DTM to yields the desired solution of the problem. Basic
definitions and operations of DTM are introduced for the function f(η) as given below,[13]

F (r) =
1

r!

dr

dηr
f(η), (8)

Where basic original function is f(η) while transformed function is F (r) k̀nown as
S̀pectrum of f(η) at η = η0 in the rth d̀omain. Also the inverse of F (r) is given as,
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f(η) =

∞
∑

r=0

F (r)(η − η0)
r, (9)

On formulation of equation (10) and (11) f(η) is,

f(η) =

∞
∑

r=0

[
dr

dηr
f(η)](η=η0)

(η − η0)
r

r!
, (10)

Although the method is based on Taylor series èxpansion but it does not s̀ymbolically
calculate the derivatives .So, the desired derivatives are obtained by an iterative method,

In fact, f(η) in equation (9) is expressed by a finite series which c̀an be formu-
lated as,

f(η) =
N
∑

r=0

F (r)(η − η0)
r, (11)

where N is a series size. here we have considered the differential t̀ransformed
f̀unction(DTF) about the point η = 0 in table-1 and it is assumed that η0 = 0 in
this section.

1.2. V̀ariational Ìteration M̀ethod (V IM)

The V IM was proposed by Ji-Huan-He which is a modified general L̀agrange multiplier
used to handle a variety of homogeneous,inhomogeneous ,linear and non-linear,problems
with approximations which rapidly converges to exact solution.This method tackle both
linear and nonlinear problems with same manners and this method is free from any spec-
ification, linearization and purturbation such as ÀDM, H̀PM and H̀AM. The V̀IM gives
the series solution that converges to closed form solution if an analytical solution ex-
ists.If the analytical solution does not exist then the computed series is used for numerical
purposes.[3, 4] The main steps of the methods are as follows: consider the non-linear
equation

L1g +M1g = y(t) (12)

Where L1 is linear and M1 is non-linear operators and y(t) represents the inhomogeneous
term. The correction functional of above equation is

gn+1(x) = gn(x) +

∫ x

0
λ(t)(L1gn(t) +M1gn(t)− y(t))dt (13)
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Where λ is a Lagrange-multiplier and it may be constant or a function and gn is a restricted
to behave as a constant. The initial guess can be taken as follows































g0(x) = g(0), forg′n
g0(x) = g(0) + xg′(0), forg′′n
g0(x) = g(0) + xg′(0) + 1

2!x
2g′′(0), forg′′′n

. . .

. . .

the compact form of the solution is

g(x) = lim
n→∞

gn(x) (14)

1.3. P̀ade-Àpproximation

Suppose a p̀ower s̀eries
∑

∞

r=0 ârt
r r̀epresenting a f̀unction f(η) , this implies,

f(η) =
∞
∑

r=0

ârt
r, (15)

Basically,PÀ is a r̀ational f̀unction and the notation for such PÀ is,

[I, J ] =
SI(t)

QJ(t)
, (16)

where SI(t) is a polynomial of degree at most I and QJ(t) is a polynomial of degree at
most J ,we have,

f(η) = â0 + â1t+ â2t
2 + â3t

3 + â4t
4 + ...., (17)

SI(t) = ŝ0 + ŝ1t+ ŝ2t
2 + ŝ3t

3 + ŝ4t
4 + .... + ŝI(t)

I , (18)

QJ(t) = q̂0 + q̂1t+ q̂2t
2 + q̂3t

3 + q̂4t
4 + ....+ q̂J(t)

J , (19)

equation (16) reveals that I+1 numerator coefficients and J +1 denomenator coefficients
are there. since we can clearly multiply numerator and denomenator by a constant and
[I, J ] remains unvaried Now imposing the normalized conditions,[8, 9]

QJ(0) = 1 = q̂0 (20)

so, there are I + 1 independent numerator coefficients and J independent denomenator
coefficients making I + J + 1 unknown coefficients.This number gives [I, J ] ought to fit
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the power series with the orders,

1, t, t2, t3, t4, ...., tI+J ,

The formal power series is,

∞
∑

r=0

ârt
r =

ŝ0 + ŝ1t+ ŝ2t
2 + ŝ3t

3 + ŝ4t
4 + ....+ ŝI(t)

I

q̂0 + q̂1t+ q̂2t2 + q̂3t3 + q̂4t4 + ....+ q̂J(t)J
+O(tI+J+1), (21)

by cross multiplication and comparing we will get the following set of equations,











































â0 = ŝ0,

â1 + â0q̂1 = ŝ1,

â2 + â1q̂1 + â0q̂2 = ŝ2,

.

.

âI + âI−1q̂1 + ...+ â0q̂I = ŝI

(22)

and































âI+1 + âI q̂1 + ...+ âI−J+1q̂J = 0,

âI+2 + âI+1q̂1 + ...+ âI−J+2q̂J = 0,

.

.

âI+J + âI+J−1q̂1 + ...+ âI q̂J = 0,

(23)

ân = 0 for n < 0 and q̂M1
= 0 for M1 > J . for non-singular solution of equation (22) and

(23) then the direct solution is,
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[I, J ] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

âI−j+1 âI−j+2 · · · âI+1

...
...

. . .
...

âI âI+1 · · · âI+J

∑I
M1=J âM1−Jt

I
∑I

M1=J−1 âM1−J+1t
M1 · · ·

∑I
M1=0 âM1

tM1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

âI−j+1 âI−j+2 · · · âI+1

...
...

. . .
...

âL1
âL1+1 âI+J

tJ tJ−1
· · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(24)

In PÀ , every choice of I and J (the degree of numerator and denominator re-
spectively) leads to an approximant. In order to find a best approximant we have
considered I = J to avoid any complexity regarding the shape of the solution. We
directly apply PÀ about the point x = 0, by using the s̀ymbolic c̀omputational
s̀oftware MAPLE. It is essential to get the best convergence of the truncated series
to employ the PÀ,without using this technique the semi-analytical solution obtained
by VIM and DTM can not satisfy the boundary conditions in an infinite domain. Al-
though to get desired accuracy ,the higher order approximation procedure is required,[5, 6]

16



η
0 0.2 0.4 0.6 0.8 1 1.2 1.4

f'(
η
)

0

0.2

0.4

0.6

0.8

1

Velocity Distribution for β=0.5 and kp=100 by DTM

M=1

M=2

M=3

η0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1
Velocity distribution for β=0.5 and kp=100by VIM

M=1

M=2

M=3

η

0 0.5 1 1.5 2

θ
(η

)

0

0.5

1
Temperature profile for β=0.5 and kp=100 by DTM

M=1

M=2

M=3

η0 0.5 1 1.5 2

θ
(η

)

0

0.5

1
Temperature profile for β=0.5 and kp=100 by VIM

M=1

M=2

M=3

Figure 1: Velocity and Temperature profile for various values of Magnetic parameter M by DTM and VIM

Table-1: Some fundamental operations of DTM
Sr.no Orignal Function T ransformed Function
1 s(η) = λt(η) S(k) = λT (k)
2 s(η) = αt(η) ± βu(η) S(k) = αT (k)± βU(k)

3 s(η) = dr

dηr
t(η) S(k) = (k+r)!

k! T (k + r)

4 s(η) = t(η)u(η) S(k) =
∑k

r=0 T (r)U(k − r)

5 s(η) = t(η) d2

dη2u(η)
∑k

r=0(k − r + 1)(k − r + 2)T (r)U(k − r + 2)
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Figure 2: Velocity profile kp=0.5,kp=1,kp=100 by DTM and VIM
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Table-2: Comparison between the numerical results of velocity distribution

obtained by DTM and VIM when M = kp = β = 0.5
η f(η),DTM f(η),V IM
0.0 0.0000000000 0.0000000000
0.1 0.0911529382 0.0911529382
0.2 0.1663892400 0.1663892427
0.3 0.2280668237 0.2280668491
0.4 0.2781691442 0.2781691674
0.5 0.3183491031 0.3183484809
0.6 0.3499694111 0.3499648276
0.7 0.3741380536 0.3741186098
0.8 0.3917372430 0.3916754343
0.9 0.4034433232 0.4032818451
1.0 0.4097333975 0.4093706527

Table-3: Numerical analysis of results obtained by DTM and VIM when

M = kp = β = 0.5

η f ′(η),DTM f ′(η),V IM θ(η),DTM θ(η),V IM
0.0 1.00000 1.0000000000 1.0000000000 1.0000000000
0.1 0.8276814941 0.8276814963 0.9643221086 0.9643221087
0.2 0.6809667103 0.6809667961 0.9289630514 0.9289630519
0.3 0.5558833678 0.5558837292 0.8941832201 0.8941831843
0.4 0.4489111212 0.4489099215 0.8601839810 0.8601837706
0.5 0.3569532942 0.3569376075 0.8271142983 0.8271135457
0.6 0.2772946240 0.2772191571 0.7950776250 0.7950758469
0.7 0.2075451639 0.2072965134 0.7641377641 0.7641355735
0.8 0.1455646023 0.1449166342 0.734217077 0.7342545255
0.9 0.08935417176 0.08793396542 0.7056161362 0.7056511922
1.0 0.03689496702 0.03419985184 0.6779519531 0.6780950993

Table-4: Analysis of s̀kin friction¸ c̀oefficient f ′′(0) and and the rate of heat

transfer θ′(0) by DTM and VIM

β M kp f ′′(0),DTM f ′′(0),V IM θ′(0),DTM θ′(0),V IM
0.5 1 100 -1.381589474 -1.381589474 -0.7238040090 -0.7238040090
0.5 2 100 -1.720476298 -1.720476298 -0.5812343950 -0.5812343950
0.5 3 100 -2.005888928 -2.005888928 -0.4985320902 -0.4985320902
1 2 100 -1.801186973 -1.801186973 -0.5551894470 -0.5551894470
5 2 100 -2.389820330 -2.389820330 -0.4184414985 -0.4184414985
0.5 3 0.5 -2.479707362 -2.479707362 -0.4032733924 -0.4032733924
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1.4. Results and Discussion

Under the usual Boundary layer approximations, the boundary layer equations such
as continuity equation,momentum equation and energy equation are transformed in to
ODEs. This set of nonlinear ODEs along with the boundary conditions are calculated
by using semi-analytical techniques DTM and V IM by systematic guessing of f ′′(0) and
θ′(0) by PÀ until the boundary conditions are satisfied at infinity with the help of com-
puter softwares. Figure (1) by DTM and VIM depicts that the velocity and temperature
profiles for different values of Magnetic parameter. From graphical representation it is ob-
served that in the boundary layer region, the velocity profiles decreases when the magnetic
parameter M increases. This result validates the physical behavior of Magnetic field. But
transverse effects are observed on the Temperature profiles for varoius values of Magnetic
parameter M.Clearly using the two methods it can be seen in figures,as the M increases
through 1 to 3 the temperature boundary layer thickness also increases. It is also noticed
that graphically both the methods are in well agreement. In figures 2 and 3 when the per-
meability parameter kp increases from 0.5 to 100 the velocity profile thickness increases
due to more injection or suction of the fluid. But increase in the permeability parameter
(kp) leads to decrease in fluid temperature profile,which is due the fact the Darcian body
force transfers heat from solid surface to the fluid layers.The DTM and V IM shows g̀ood
agreement that can be seen in velocity profile as well as in temperature profiles.The ve-
locity profile is also calculated for various values of β as shown in figure 4 by applying the
two methods under consideration and it is observed that the velocity profile reduces at all
points when β varies from 0.5 to 5.These values of β leads to ǹon-linear v̀ariation of p̀late
velocity as well as MF strength. While β = 1 corresponds the linear v̀ariation of velocity
as well as constant MF.From this we conclude that, to increase the fluid velocity, v̀ariation
of plate velocity contributes more than the MF strength.Also it is useful to mention that
the temperature profile increases with the increment of the values of β. Effects of Prandtl
number on thermal boundary layer can be seen via figure.5 which reveals that fluid with
larger prandtl number have a thinner thermal boundary layer,due to more heat transfer
between the stretching sheet and viscous fluid.In Table (2) the skin friction coefficient is
also computed by DTM and VIM.It is observed that in the existence of porous media and
MF the magnitude of skin friction increases but adverse effects are to be seen due to the
power index of MF.

1.5. Conclusion

In this paper, DTM and V IM along with PÀ has been employed to investigate the
heat and mass transfer of a steady MHD flow. We have seen that the obtained results
are in good agreement with the previous work. The velocity and temperature profiles
are obtained by DTM and VIM along with PÀ.In this work to avoid the complexity,we
have considered the diagonal pade [2/2] that is the about η5.It is quite obvious as the
order increases it will yeild better approximation and produces higher accuracy.It is
observed that due to resistive force of electromagnetic which is lorentz force the velocity
decreases.Also the velocity profile at all the points reduces under the influence of power
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index and increases with the increase in the permeability parameter. Due to magnetic
field and permeability the shear stress increases but the power index of magnetic field
shows reverse effects.Same as in the case of thermal profile,an increase in magnetic
parameter M will increase the thermal boundary layer but reverse effects are to be seen
in the case of permeability parameter (kp) Also as expected,by increasing the prandtl
number the temperature profile gets thinner.
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