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Development and Implementation of a Computational
Algorithm for Solving Ordinary Differential Equations

R.B.Ogunrinde

Abstract. In this paper, we developed a numerical algorithm which aimed to solve some first
order initial value problems of ordinary differential equations. We explicitly present the breakdown
derivation of the new numerical algorithm. The implementation of this new numerical algorithm
is on some real life problems leading to first order initial value problem of ordinary differential
equations. Results comparison is also made with some existing methods.
Numerical Scheme, Ordinary Differential Equation, Scheme Development

1. Introduction

Different authors have developed lot of methods which are suitable for solving some
sets of Initial Value Problems (IVPS) in Ordinary Differential Equations (ODEs). But the
efficiency of any method in numerical analysis depends solely on the characterization of the
scheme such as: stability, accuracy, convergence and consistency properties of the method.
In numerical analysis, the accuracy properties of different methods are usually compared
by considering the order of convergence as well as the truncation error coefficients of the
various methods . Numerical analysts like, Fatunla (1987a), Ibijola, (1997 and 1998) and
Ogunrinde, (2010, 2012, 2013, 2015, and 2016) have developed numerical schemes for
solving initial value problems. In this paper, we improved on Ogunrinde, (2010) work
which was based on the local representation of the theoretical solution to initial value
problem of the form:

y' = f(z,9);y(a) =1
in the interval (zy,z(,41)) by interpolating function

F(x) =ag+ a1z + a2x2 + a3$3 + bRe(e(kx+“))

where ag, ajas, ag and b are real undetermined coefficients and k, pare complex parameters.
But in this paper, we shall be using the same assumptions but different interpolating
function such as:

F(x) = ap + alxr —+ CLQQEQ + a33§'3 + bee(e(k‘x-i-M))

where ag, aiag, ag and b are real undetermined coefficients and k, u are complex parameters.
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2. Derivation of the Scheme
Considering an interpolating function:
f(z) = ag + a1z + asx® + azx> + ba:Re(ek’H'“) (1)

Whereag a1,a2 a3 andbare real undetermined coefficients and k, ;1 are complex parameters.
Since kandu are complex parameters, then we have:

k= k1 + iko (2)

Also, pu = if , where i2 = —1,therefore putting this together with (2)in (1), we have the
Interpolating function to be:

f(x) = ap + a1z + aga’® + azx® + breM® cos(kax + o) (3)
Let us define R(x) and 6(z) as follows:
R(z) = 2" 0(z) = kox + 0 (4)
Putting (4) in (3), we have:
f(x) = ag + a1 + azz® + azz® + bR(z)cos(z) (5)

By assumption,y,is a numerical estimate to the theoretical solutiony(z,)and also f, =
f(@n,yn). Let our mesh points (self length) be define as follows:

Tn=a+nh;n=0,1,2...,a =0,2, =nh,x,y1 = (n+1)h (6)
Imposing the following constraints on the interpolating function (5), we have:

1. The interpolating function must coincide with the theoretical solution at x = z,, and
& = Xpy1. This required that:

f(@nt1) = ao + a1@pi1 + aoxi g + azxd 1 + bR(Tp41) cos(0(zn,)) (7)
That is, f(x,) = y(z,) and
f(@n41) = ao + arng1 + a2w g + azwy, g + OR(@p1) cos(O(zni1))  (8)
It implies that f(zp+1) = y(Tpt1)-
2. The first, second, third and fourth derivatives with respect to x of the interpolating

function respectively coincide with the differential equation as well as its first, second,
third and fourth derivatives with respect to xatz,, i.e.
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Fl(xn) = fn,F2($n) = frlzaF3($n) = fﬁaF4($n) = ffi

From equation (9) implies:

F () = fa + 2092, + 3aza? + [Cos(é?(xn))dd (bR(xy)) + bR(wn)di(cos 0(x))]

dx T
Where

di(bR(xn)) = di(bxek“”) =M p 4 b - ke = beM® 4 bk xekie
x x
= be1® + bk R(xy,)
d d :
. cos(@(wn))%[cos(kgx + 0)] = —kasin(0(zy,))
Putting (11) & (12) in (10) we have:

!

(11)

(12)

f(xn) = fn=a1+ 2a0z, + ?)ag,ﬂ:%[005(9(3:,1){bekl"r + bk1R(xn)} + bR(xy)(—ke sin0(zy,))]

= a1 + 2a9, + 3azx2 + [be"1 cos(0(z,)) + bk R (1) cos(0(z,)) — bR(z,)(—ko sin 8(z,))]

fn=a1 + 2a0x, + 3a3xi + b[eklx"cos(ﬂ(xn)
+ki1R(xy,) cos(0(xy)) — koR(xy,) sin(0(zy,))]

That is,
F/(xn) = fr%
F'(2,) = f} = 2091, + 6asz, + b[(eklm"i cos O(xy,) + cos H(xn)ieklm”)
" dx dx
—1—(k1R(ﬂvn)i cos 0(xy,) + cos H(xn)iklR(xn)
dx dz
d . , d
—(R(xn)a sin0(xy,) + sm(ﬂ(xn)ER(xn)))]
Where

d d
k1R(x,) = ky[zeFion] = kl(x@ek”” + eklx"@x) = klgeFtan 4 fpefan

= ki R(zn) + kreFten

Since
R(zyn) = zpefia, = e¥1%n 4k R(2,)

Putting (15) in (14)
F'(z,) = f,i = 2a9xy + 6azx, + b[{eklm"(— sin 6 (xy,) + cos H(xn)(kleklxn )+
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+0[{k1 R(x,) —sin (02, )+cos 0(x,) (k3 R () +ke® 2,) — R(xy, ) cos () +sin (2, ) (€7 + k1 R(x,))]}
F" () = 2a9+6a3x,4b[—e"1%" sin O (x,,)+k1eM1on cos 0z, )~k R(x,)sin?(0(z,)+ k3 R (2 ) cos ()]
+b[k1eX1n cos0 () — R(y) cos 0(xy,) — €15 sin 0(,) — ki R(zp)sin(0(xy,))]
fi = 2asy, + 6asxy, + b{—2¢"7 sin(0(xy,)) + 2k11% cos(6(x,,))
—2k1 R(x,) sin 0(zy,) + kI R(x,) cos O(xy,) — R(zy,)cosl ()} (16)
F"(x,) = f* = 6ag

d d
_ kixn 4 4 kixn
+b[—{+2e - sin 0(zy) + sin H(xn)dx + 2eMPn}

+{2k ekron %casﬂ(xn) + cosO(zy,) %le ehien)

d d
—leR(xn)% sin 6(x,,) + sin H(xn)%leR(xn)

d d
+H{E2R(2) %cose(ﬂvn) + cosf(xy,) %k%R(xn)}

_{R(mn)%cosﬁ(xn) + COSe(xn)%R(xn)}]

F" () = 6a3 + b[—(2e¥1%" cosB(x,,) + 2k1M% sin O(xy,)) + (2k1€M% (— sin 6(x,,))
+2k2eM T cos0(x,,) — 2k R(2p)cos0(xy)
+[2k1 M1 4 2k R ()] sin O(x,) + (K2R () (— sin 0(z,)
+k2ehn L k3 R(2,)cosb () — R(xn)(—sin0(zy,) 4+ (€¥1%7 + ki R(xy))cosb ()]
F"(x,) = 2 = 6ag + b[—3e"%"cosh(x,) — 6k1*1% sin O(zy,) + 3k2 R(zy,) sin 6(x,,)
—2k1 R(2p,)cos0(x,) + k3 R(x,,)cos0 ()
+R(zy) sin O(x,) — k1ek1% cosf(zy)] (17)

F(x,) = fg(xn)

= b[—3{eklm"% cos () + cos H(xn)%eklm"} — 6{ekrzn % sin 0(x,,) + sin H(xn)%ek”"}
—}—?)k:%{eklm"i cos O(xy,) + cos H(xn)ieklm"}
dz dx
—Z’)/E:%[R(xn)i sin 6(x,,) + sin H(xn)iR(xn)]
dx dz
—2/<:1{R(ulcn)i cos (xy,) + cos H(xn)iR(xn)}
dz dx

d d
3
+k{ R(xy,) T cost(xy,) + cost de(xn)
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d
T R()

d

—{—{R(mn)d— sin 0(xy,) + sin 0(zy,)
x

—kp {eFrn 4 cos O(zy,) + cosf(x )ieklx” H
dz " " dx

F®(z,) = b[4eM®n sin O(x,,) — 11k1eM1%m cosh () — 12k2 M5 sin O(x,,) + 4317 cos6 ()
—5kIR(x,,) cos O(xy,) — 4k R(xy,) sin 0(2,,) + 3k1 R(x,,) sin 0(2,)
+R(2,,) cos O(xy,) + ke sin 6(x,,)

—kieM T cosO(x,) + kT R(x,) cos 0(z,)] (18)
_

where

T = M (4sin(0(xy,)) — 11k cos((zy)) — 12k2 sin(A(x,,))
+4K3 cos(0(xy,)) + k1 sin(@(zy,)) — kicos(0(xy,))) + R(xn)(—5kicos(0(xy,))
—4k3sin(0(zy,)) + 3k1sin(0(zn)) + cos(A(zn)) + ki cos((z,)))

From (17), we have:
[fn — b{—3eM%" cos O(zy,) — 6k1eM1 7 sinf(x,,) + 3k3 M cos O(zy,)

—3k2R(x,,) sin O(x,,) — 2k1 R(2,,) cos O(z,)
+k3R(xy) cos O(zy,) + R(zy,) sinO(z,) — ke cos 0(z,)}] (20)
Putting (19) in (20), we have:

3
=g |- 2] 1)
where
T = M0 (4sin((x,)) — 11ky cos((z,)) — 12k2 sin(A(x,)) + 4k3 cos((xy,))
+kysin(0(x,) — kicos(0(xy) + R(xn)(—5ki cos(B(xy,))
—4k3 sin(0(2,,))) + 3ky sin(0(2,,)) + cos(0(xn,) + kT cos(0(x,) (22a)

v = —3eM1% cos O(z,,) — 6k M2 sind(x,)
+3k2eM™n cos O(x,)
—3k2R(x,) sin O(x,,) — 2k R(2,,) cos O(,)
+k}R(y) cos O(x,) + R(xy)sinO(x,) — ke cos 0(x,,) (22b)

il ()
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From (16), we have:

-t (- (§) )0

u = —2eM%n sin O(x,,) — 2k1€F1%7 cos O(xy,)

where

—2k1 R(zy,) sin 0(z,,) + k3 R(x,,) cos O(x,) — R(2y,) cos ()
Putting (19) and (23) in (24) we have:

=g (- (F)) = ()]

a1 = fn — 2a92, — 3azz’ — bl cos?(0(x,)

n

From (13) we have:

+kiR(xy,) cos(0(xy,)) — R(xy) sin(0(z,,))]
Putting (19), (23) and (25) in (26), we have:

et (Bl

3
_ <%> [e¥17 cos(0(xn) + k1 R(xy) cos(B(x5)) — R(an) sin(6(an))]

where
A= f2 — (=3eMn cos O(x,) — 6k1eF1% sinf(z,)

+3k2ek1%n cos O(x,,) — 3k2R () sin 0(x,,)
—2k R(xy,) cos 0(z,,)) f2
D = —2eM%n sin0(x,,) — 2k €M% cos O(x,) — 2k1 R(2y,) sin 0(z,)

+k2R(xy,) cos 0(zy,) — R(x,) cos 0(x,)

(24)

(26)

(27)

(28)

(29)

For preservative of the scheme, then we can write the new scheme in a compact form as:

Ynt1 = Yn +arh + a’az(2n + 1) + h*az(3n® 4+ 3n + 1)

+bR, [hek1 h(cos 0, cos kah — sin 0, sin koh) — cos 6,,]

(30)

Putting aq,as and ag as derived above, we arrived at a new scheme. But to test the
scheme, we shall proceed to write a programme which will command the scheme to solve

some first order differential equations.
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3. Implementation of the Scheme

Problem 1
Let us consider the initial value problem of the form (Lambert 1973a, Fatunla 1988)

with the exact solution

y(z) = exp(x)
in the interval 0 < z < 1. The parameter pi,p2 and 6; were obtained with p; =
1.01009762, po = 0.72269428,0; = 1.04708743. Taking h = 0.01.The numerical experi-
ments are shown below
Note; The new method is named Olubunmi all through.

Table 1: At H = 0.01.

T | IBIJOLA 1997 | OGUNRINDE 2010 | THEORETICAL SOLUTION | OLUBUNMI
0 | 1000000D+01 1 1 1
1 | .1010050D+01 1.0100502 1.0100502 1.00999963
2 | .1020201D+01 1.0202013 1.0202013 1.02009833
3 | .1030454D+01 1.0304545 1.0304545 1.03029692
4 | .1040811D+01 1.0408108 1.0408108 1.04059637
5 | .1051271D+01 1.0512712 1.0512711 1.05099761
6 | .1061836D+01 1.0618367 1.0618366 1.06150162
7 | .1072508D+01 1.0725083 1.0725082 1.07210946
8 | .1083287D+01 1.0832872 1.0832871 1.08282208
9 | .1094174D+01 1.0941745 1.0941743 1.09364045
10 | .1105170D+01 1.1051712 1.1051710 1.10456562
12 H OGUNRINDE 2010
: H=0.01
1 M Theoretical
0.8 solution,
M Olubunmi
Figure 1: The Graphical representation of Table 1
Problem 2

The new cereal product was introduced into a company through an advertising campaign
to a population of 1 million potential customers. The rate at which the population hears
about the product is assume to be proportional to the number of people who are yet aware
of the product. By the end of 1 year, half of the population has heard of the product.
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Table 2: At H = 0.001.

T | OGUNRINDE 2010 | THEORETICAL SOLUTION | OLUBUNMI
0 1 1 1
1 1.0010005 1.0010005 1.00100005
2 1.002002 1.002002 1.00200105
3 1.0030046 1.0030046 1.00300312
4 1.0040081 1.0040081 1.00400615
5 1.0050126 1.0050125 1.00501013
6 1.0060182 1.006018 1.00601518
7 1.0070248 1.0070245 1.00702119
8 1.0080323 1.0080321 1.00802815
9 1.0090408 1.0090406 1.00903618
10 1.0100504 1.0100502 1.01004517

1.015 ——OGUNRINDE

1.01 o 2010 H=0.001

1.005 T e e _

1 I e —I—Theo.retu:al
solution,
0.995
099 \ OLUBUNMI
1234567 89101112

Figure 2: The Graphical representation of Table 2

Table 3: At H = 0.0001.

T

© 00 O Ttk W N+ O

—_
o

OGUNRINDE 2010
1
1.0001
1.0002
1.0003
1.0004001
1.0005001
1.0006001
1.0007002
1.0008004
1.0009005
1.0010006

THEORETICAL SOLUTION
1
1.0001
1.0002
1.0003
1.0004001
1.0005001
1.0000602
1.0007002
1.0008004
1.0009004
1.0010005

OLUBUNMI
1
1.00010002
1.00020003
1.00029993
1.00039995
1.00049996
1.00059998
1.00070012
1.00080013
1.00090015
1.00100029

How many will have heard of it by the end of 2 years? Mathematical Interpretation of
the Problem Let y be the number (in millions) of people at time ¢ who have heard of the
product. This means that 1 — y is the number of people who have not heard, and fl—?z is
the rate at which the population hears about the product. From the given assumption,
you can write the differential equation as follows.

dy _

o = k1-y)
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1.002

100} M_
1 -

0.999

=@§=0OGUNRINDE 2010 H=0.0001
Theoretical solution,

=e=0LUBUNMI H=0.0001

Figure 3: The Graphical representation of Table 3

Using separation of variables or a symbolic integration utility, you can find the general
solution to be
y=1—Ce "

To solve for the constant C' and k use the initial conditions. That is, because y = 0 when
t = 0, you can determine that C' = 1, similarly, because y = 0.5 when ¢ = 1, it follows
that 0.5 = 1 — e *, which implies that

k=1In2~0.693

So that the particular solution is obtained as

Y= 1 — 0693
You can determine that the number of people who have heard of the product after 2 years

1S

y—=1— ¢ 0693t

Table 4: At H = 0.1.

T | OGUNRINDE 2010 | THEORETICAL SOLUTION | OLUBUNMI
0 3 3 3

1 3 2.9900498 3

2 2.9789658 2.9607894 2.98030829
3 29377823 2.9139311 2.94229841
4 2.8786058 2.8521438 2.88866377
) 2.8046827 2.7788007 2.82338285
6 2.7200534 2.6976762 2.75192475
7 2.629179 2.6126263 2.68288875
8 2.5365391 2.5272923 2.64216757
9 2.4462538 2.4448581 2.35845251
10 2.3617744 2.3678794 2.31527181
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our subsequent research, we shall pay more attention on the implementation of this new
scheme to solve some second order initial value problems of ordinary differential equation
and also compare the results with the existing methods and thereafter examine the char-
acteristics properties such as the stability, convergence, accuracy and consistency of the
scheme.

[1] Fatunla, S. O., (1987a) an implicit Two-point Numerical Integration Formula for
Linear and Non-linear Stiff System of ODEs, Mathematics of Computation, 32: 1-11.
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1 2 3 4 5 6 7 & 9 10 11
== 0OGUNRINDE 2010 H=0.1 == Theoretical solution,

OLUBUNMI H=0.1

Figure 4: The Graphical representation of Table 4

4. Conclusion

We have developed a new numerical scheme which favourably compares with the ex-
isting methods for solving some initial value problems of ordinary differential equations.
Clearly, this paper has been able to show the development of the new numerical scheme,
the implementation of new scheme to solve some first order initial value problems of or-
dinary differential equations and also compare the results with the existing methods. In
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