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On extremality of a class of algebraic varieties

Leman G. Ismailova

Abstract. In this paper one studies extremality of a class of algebraic varieties given by all
multivariate monomials of degree not exceeding a natural number. One of conjectures of V. G.
Sprindzuk states that such varieties are extremal. We prove this conjecture using theorem on
convergence exponent for the special integral of Terry’s problem.
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1. Introduction

Let’s consider a set of all polynomials with integral coefficients of a degree not exceeding
a natural number n:

Π =

{
f(x) =

n∑
i=1

aix
i|ai ∈ R

}
.

A number

h(f) = max(|a0|, |a1|, ..., |an|)

is called to be the height of the polynomial f(x). Let a transcendental number α be
given (consequently, α is not a root of none of polynomials of Π). Let h > 0 be a real
number. For a given h > 0, we shall consider such polynomials the heights of which does
not exceed h (it is clear that the number of such polynomials is finite). Denote by ωn(α)
the supremum γ0 of such positive numbers γ > 0 for which the relation

|f(α)| < h−γ ; h = h(f) (1)

is satisfied for infinitely many polynomials from Π, when h → ∞; it means that for
any given ε > 0 there exists an unbounded and increasing sequence of positive numbers
h1, h1, ... such that for all hm we have

γ = γ0 + ε.
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This number was firstly studied by Mahler K. in [10, 11]. The conjecture γ0 = n sets up
a content of the problem B′ of the work [13, p. 433] of Sprindzuk V. G. The equality
γ0 = n is equivalent to the extremality of the variety defined by monomials of considered
polynomial, by the Khintchin’s transference principle.

Nowadays the conjecture of Sprindzuk V. G. is proven (more general result was estab-
lished by Kleinbock D. Y. and Margulis G. A. [9]). In this paper we prove the Sprindzuk’s
conjecture for real algebraic varieties by a new method, using estimations above for the
convergence exponent of the special integral of Terry’s problem. We prove the theorem
below.

Theorem 1.1. Let n be a natural number, P (x1, x2, ..., xk) a polynomial of degree not
exceeding n, i. e.

P (x1, x2, ..., xk) =
∑

0 ≤ i1, · · · , 0 ≤ ik
i1 + i2 + · · ·+ ik ≤ n

ai1i2···ikx
i1
1 x

i2
2 · · ·x

ik
k .

Define v(ω1, ω2, ..., ωk) as a supremum of such v > 0 for which there exist an infinite
set of polynomials with integral coefficients satisfying inequality

|P (ω1, ω2, ..., ωk)| < h−v,

h = max
(i1,i2,··· ,ik)

|ai1i2···ik | .

Then, for almost all ω̄ = (ω1, ω2, ..., ωk) can one state that

v(ω1, ω2, ..., ωk) = Ckn+k − 1?

2. Auxiliary statements

For establishing our results it is necessarily to pass to equivalent variant of the problem
expressing the question as a problem on extremality of varieties. To realize the last we
interpret relations above in the different form. Let we are given with some system of real
numbers β1, β2, ..., βn. Consider a system of inequalities:

‖b1β1 + b2β2 + · · ·+ bnβn‖ ≤ b−u, (2)

where ‖x‖ denotes the distance from x to the nearest integral number, b = max(|b1|,
..., |bn|), moreover, b > 0, u > 0. Denote by u(β1, β2, ..., βn) the supremum of such u > 0
for which (2) is satisfied for infinitely many integral vectors (b1, ..., bn).

We, simultaneously, consider following system of inequalities:

max (‖qβ1‖ , ‖qβ2‖ , ..., ‖qβn‖) ≤ q−v. (3)

Now we denote be v(β1, β2, ..., βn) the supremum of that v > 0 for which the condition
(3) satisfied for infinitely many integral numbers q > 0. There is a principle in the
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theory of Diophantine Approximations, called as Khintchin’s transference principle (see
[4, 12]), which states that the equalities u(β1, β2, ..., βn) = n and v(β1, β2, ..., βn) = 1/n
are equivalent. Again, in accordance with the Dirichlet’s principle, we have

v(β1, β2, ..., βn) ≥ 1/n.

Lemma 2.1. Let Aq, (q = 1, ..., n) be a sequence of measurable sets in Rn and

∞∑
q=1

mesAq <∞.

Then the measure of a set E of such points x̄ ∈ Rn which fall into infinite number of sets
Aq equals to zero.

This lemma is known as Borel-Kantelly’s lemma and plays an important role in the
questions concerning extremality of manifolds (see[12]). Following lemma belongs to
Kavalevskaya E. I. (see [3, 4, 7, 8]).

Lemma 2.2. Let m ≤ N , q be natural numbers, fj(x̄), j = 1, ..., N be a real measurable
functions defined in the cube. Denote by µ(q) the measure of a set of that x̄ ∈ Ω = [0, 1]r

for which

‖fj(x̄)‖ < q−rj (1 ≤ j ≤ N).

Then,

µ(q) << q−r
∑
|c1|<qr1

· · ·
∑

|cN |<qrN

∣∣∣∣∫
Ω
e2πi(c1f1(x̄)+···+cNfN (x̄))dx̄

∣∣∣∣ ,
where r = r1 + · · ·+ rN , and the constant in the symbol << depends on N only.

The proof of this lemma one can find in [2, 12].

3. Proof of the theorem

In accordance with the said above it suffices for us to show that the variety

Γ = (xi11 x
i2
2 · · ·x

ik
k ); 0 ≤ i1, · · · , 0 ≤ ik; 0 < i1 + · · ·+ ik ≤ n

is extremal. Let’s the monomials of the given polynomial order by some way (for example,
lexicographically) and accept notations fj(x̄) = qxi11 x

i2
2 · · ·x

ik
k for j = 1, ..., N . Take in the

lemma 2 rj = 1/N + δ with

N =
∑

0 ≤ i1, · · · , 0 ≤ ik
0 < i1 + · · ·+ ik ≤ n

1 = Ckn+k − 1
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expressing the number of monomials (here δ denotes an arbitrary small positive number).
From the lemma 2 one derives

µ(q) << q−r
∑
|c1|<qr1

· · ·
∑

|cN |<qrN

∣∣∣∣∫
Ω
e2πi(c1f1(x̄)+···+cNfN (x̄))dx̄

∣∣∣∣ .
As it is clear from the proof of the lemma 1 the set of points x̄ ∈ Rn which fall into

infinite number of sets Aq is possible represent as

A =

∞⋂
k=1

∞⋃
q=k

Aq.

Since the sets Aq are measurable then the set A is measurable also, independent of the
convergence of the series of this lemma. If now the set A is not of zero measure then
mesA > 0. In this case the set

A2h = A× · · · ×A

has positive measure in Ω2h for the integral h defined below. So, if we have proven that
mesA2h = 0 then our assumption mesA > 0 is false. We will use this reasoning to prove
the theorem 1. Define now the set Aq by the condition Aq = max ‖qfj(x̄)‖ ≤ (2h)−1q−rj .
It is obvious that for any pare of vectors x̄, ȳ ∈ Aq we have

max ‖q(gj(x̄1, ..., ȳh))‖ =

= max ‖q(fj(x̄1) + · · ·+ fj(x̄h)− fj(ȳ1)− · · · − fj(ȳh))‖ ≤ q−rj , (4)

where (x̄1, ..., x̄h, ȳ1, ..., ȳh) ∈ Ω2h and

gj(x̄1, ..., ȳh) = fj(x̄1) + · · ·+ fj(x̄h)− fj(ȳ1)− · · · − fj(ȳh).

Then, the set of points in Ω2h for which (4) is satisfied contains (Aq)
2h as a subset. By

the lemma 2, for the measure µq of the points satisfying conditions (4), one has:

(µ(q))2h ≤ µq << q−1−Nδ
∑
|c1|<qr1

· · ·
∑

|cN |<qrN
1×

×
∣∣∣∣∫

Ω
· · ·
∫

Ω
e2πi(c1qg1(x̄1,..,ȳh)+···+cN qgN (x̄1,..,ȳh))dx̄1 · · · dȳh

∣∣∣∣ =

= q−1−Nδ
∑
|c1|<qr1

· · ·
∑

|cN |<qrN

∣∣∣∣∣
(∫

Ω
e2πi(c1qf1(x̄)+···+cN qfN (x̄))dx̄

)h∣∣∣∣∣
2

.

Now we write: (∫
Ω
e2πi(c1qf1(x̄)+···+cN qfN (x̄))dx̄

)h
=

=

∫
Ω
· · ·
∫

Ω
e2πi(c1q(f1(x̄1)+···+f1(x̄h))+···+cN q(fN (x̄1)+···+fN (x̄h)))dx̄1 · · · dx̄h. (5)
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Making under the multiple integral exchange of variables we get, in accordance with
the lemmas from the works [5,6]:∫

Ω
· · ·
∫

Ω
e2πi(c1q(f1(x̄1)+···+f1(x̄h))+···+cN q(fN (x̄1)+···+fN (x̄h)))dx̄1 · · · dx̄h =

=

∫ h

0
· · ·
∫ h

0
du1 · · · duNe2πiq(c1u1+···+cNuN )

∫
Π(ū)

ds√
G
, (6)

where Π(ū) denotes the Gram determinant of the functions standing on the right hand
side of the system’s equations.

fj(x̄1) + · · ·+ fj(x̄h) = uj , j = 1, ..., N,

and G denotes the Gram determinant of gradients of functions standing on the left hand
sides of these equations. Representing the integral on the right side of the relation (6) as
a sum of Fourier coefficients of pieces of inner surface integral which is taken in improper
meaning defined in above works. For this purpose let’s dissect the integral at the right
side of (6) into the sum of integrals taken along unite cubes:∫ h

0
· · ·
∫ h

0
du1 · · · duNe2πi(c1qu1+···+cN quN )

∫
Π(ū)

ds√
G

=

=
h∑

h1=1

· · ·
h∑

hN=1

∫ h1

h1−1
· · ·
∫ hN

hN−1
g(u1, ..., uN )e2πi(c1qu1+···+cN quN )du1 · · · duN ,

where we have denoted

g(u1, ..., uN ) =

{ ∫
Π(ū)

ds√
G
, if Π(ū) is non-empty,

0, if else.

}
Consequently, at every fixed q we have the following relation, due to said above:∣∣∣∣∣

(∫
Ω
e2πi(c1qf1(x̄)+···+cN qfN (x̄))dx̄

)h∣∣∣∣∣
2

≤ hN×

h∑
h1=1

· · ·
h∑

hN=1

∣∣∣∣∫ h1

h1−1
· · ·
∫ hN

hN−1
g(u1, ..., uN )e2πi(c1qu1+···+cN quN )du1 · · · duN

∣∣∣∣2 .
Therefore,

(µ(q))2h ≤ µq << q−1−Nδ
h∑

h1=1

· · ·
h∑

hN=1

∑
|c1|<qr1

· · ·
∑

|cN |<qrN
1×

×
∣∣∣∣∫ h1

h1−1
· · ·
∫ hN

hN−1
g(u1, ..., uN )e2πi(c1qu1+···+cN quN )du1 · · · duN

∣∣∣∣2
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It is obvious that at the right hand side the multiple sum over (c1, ..., cN ) doesn’t exceed
the sum of all squares of absolute values for the Fourier coefficients of the surface integral.
Then, by the Parseval’s equality:

(µ(q))2h ≤ µq << q−1−Nδ×

×
h∑

h1=1

· · ·
h∑

hN=1

∫ h1

h1−1
· · ·
∫ hN

hN−1
du1 · · · duN

(∫
Π(ū)

ds√
G

)2

=

= q−1−Nδ
∫ h

0
· · ·
∫ h

0
du1 · · · duN

(∫
Π(ū)

ds√
G

)2

As it was established in [5, p. 78], the multiple integral at the right side is a special
integral of Terry’s problem with the polynomial

P (x1, x2, ..., xk) =
∑

0 ≤ i1, · · · , 0 ≤ ik
i1 + i2 + · · ·+ ik ≤ n

ai1i2···ikx
i1
1 x

i2
2 · · ·x

ik
k .

and here x(j) = xi11 x
i2
2 · · ·x

ik
k . This special integral can be written as

(2π)−N
∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣∣∫ 1

0
· · ·
∫ 1

0
e2πi(

∑N
j=1 αjx

(j))dx1 · · · dxk
∣∣∣∣2k dα1 · · · dαN .

As it was established in [1], the special integral converges if h > N max(n1, n2, ..., nk).
Then, the series

∞∑
q=1

µq

converges. Since the δ > 0 is any, then the theorem follows from the lemma 1. The
theorem is proven.
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