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Stress Relaxation Behavior of the Annular Sealing Ele-
ment - A Linear Modeling Approach
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Abstract. In the scope of this project, an annular sealing element was studied as a viscoelastic
material. The main focus was to analyze the stress relaxation behavior of the annular sealer and
investigate the performance of a linear viscoelastic mechanical model. Influence of viscoelastic
behavior of the annular sealing element on its sealing ability is realized based on the hypothesis
of elastic analogy. Based on a linear modeling approach a relationship allowing to determine the
axial load ensuring seal tightness depending on its physic-mechanical properties and dimensions
is established. The results of numerical calculations are represented in the form of graphs. It is
shown that, viscous-elastic properties of sealer’s material greatly influence on its sealing ability.
Relaxation data suggested that for constant value of axial deformation in the section of application
of external force with regard to heredity the stress greatly relaxes. This time stress relaxation for
different velocities of deformation occurs differently.
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1. Introduction

Mechanism achieving seal tightness is strongly influenced by the application of me-
chanical loading, deformation, applied stress/stain rate, temperature and time. The main
characteristic of their behavior is the viscoelastic response to the process achieving tight-
ness . Achieving tightness by applying a minimum external load to sealing elements would
improve their performance and determination of sealing parameters has an important sci-
entific value [1-5], [7-10]. A major problem with these studies arises from the ignoring
influence of edge effects and heredity and also, mechanism of achieving tightness was not
studied enough. The current investigations for sealing elements based on viscoelastic ma-
terials are susceptible to heredity which may lead to the device failure. As the experience
of using sealing elements shows, the edge effects and heredity have a significant influence
on their sealing ability. In dynamic or static loading conditions, the sealer’s materials
will progressively accumulate permanent deformation, which part of it is internal damage,
structure changes, due to qualitative changes [11-14].
In this paper, based on theoretical investigations, we will analyze the stress relaxation
behavior of the annular sealer and investigate the performance of a linear viscoelastic

http://journalcam.com 24 © 2011 JCAM All rights reserved.



mechanical model. We will determine the influence of viscous-elastic behavior of the
annular sealing element on the value of the axial load ensuring seal tightness when the
subject to unidirectional compression. Numerical calculations will be conducted under
different conditions, and the results of numerical calculations will be represented in the
form of graphs of contact pressure and external force necessary achieving tightness and
discussed.

Nomenclature

u, w deformations of the protruding part of the

sealing element in the radial and axial directions

εr, εθ, εz γrz radial, tangential, axial and shear deformations

σr, σz, τrz radial, axial and tangential stress

s hydrostatic pressure function

P axial load

h height of the protruding part of the annular sealing element

R1, R2 inner and outer radii of the sealer

∆ axial displacement of the contact surface of the sealer

EM instantaneous modulus of elasticity

E2 elasticity modulus

G shear modulus of the sealing material

µ friction coefficient between the smooth surface and the sealer

η dynamical viscosity of the material of the sealing element

δij Kronecker’s symbol

2. Statement of the problem. Elastic solution

Let as consider an annular sealing element in the form of a hollow cylinder, the lower part
of which is inserted into the seat of the rigid valve (Fig.1). The protruding part of the
annular sealing element creates contact pressure, leaning on a smooth rigid surface. When
the width of the annular sealing element is much smaller than its other dimensions, let
us assume that, the contact pressure, which is formed along the width, is systematically
distributed, and its deformation condition is axially-symmetric. Then, by accepting the
hypothesis of plane sections the axial deformation of the protruding part of the sealing
element can be obtained depending only on the coordinate z in the axial direction.
We locate the origin of the coordinate system in the center of the cross-section of the
sealing element, direct the coordinate axis z vertically-upwards, the axis r to the direction
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of increasing the radius (see Fig.1).

Figure 1: Calculation scheme
In the paper [1] problem was solved in the elastic statement using the methods of elasticity
[4], [15]. For the potential energy of the annular sealing element, after its deformation with
regard to axisymmetry, we have the equality [2], [4], [18], [19]

Π = 4πG

∫ h

0

∫ R2

R1

(
ε2r + ε2θ + ε2z +

1

2
γ2rz

)
rdrdz −

∫ h

0
Pf ′ (z) dz, (1)

where h is height of the protruding part of the sealing element; R1, R2 are inner and outer
radii of the annular sealer; G is a shear modulus of the sealing material; P is axial load; εr,
εθ, εz and γrz are radial, tangential, axial and shear deformations, respectively [4], [15]:

εr =
∂u

∂r
; εθ =

u

r
; εz =

∂w

∂z
; γrz =

1

2

(
∂u

∂z
+
∂w

∂r

)
. (2)

where u, w are deformations of the protruding part of the sealing element in the radial
and axial directions accordingly.
The boundary conditions are as the follows:

u
∣∣
z=0

= 0, w |z=0 = 0, σr

∣∣∣
r=R2

= 0, τrz

∣∣∣
z=h

= µσz

∣∣∣
z=h

,

where σr, σz, τrz are radial, axial and tangential stress;µ is a friction coefficient between
the smooth surface and the sealer.
Based on the principle of variation [2], [16], [17], the dependence between the magnitude
of the axial load necessary for achieving tightness and geometrical sizes and character of
contract pressure distribution were determined in the elastic statement [1]:

P =
πG∆ k R2

2 (2µ sinh (kh) + k R2 cosh (kh))
[

1
1−ξ2 − 3

(
1− ξ2

)]
µ (cosh (kh)− 1) + kh

2 (2µ sinh (kh) + kR2 cosh (kh))
, (3)
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σk =
Gk∆

[
1

1−ξ2 − 3
(
1− ξ2

)]
(2µ sinh (kh)− kR2 cosh (kh))(

1− R2
1

R2
2

) (
µ (cosh (kh)− 1) + kh

2 (2µ sinh (kh) + kR2 cosh (kh))
) , (4)

where ∆ is the displacement of the contact surface of the sealer; ξ = R1
R2

;

k =
1

R2

√√√√√2
[

1
1−ξ2 − 3 (1− ξ2)

]
1−ξ4
4 + 1− ξ2 − ln ξ

;B =
µP0R

2
2

(
1−ξ4
4 + 1− ξ2 − ln ξ

)
(2µ sinh (kh) + kR2 cosh (kh))

[
1

1−ξ2−3(1−ξ2)

] ;

P0 =
P

πGR4
2

(
1−ξ4
4 + 1− ξ2 − ln ξ

) .
3. Viscoelastic modeling. A linear modeling approach

Accounting of viscous-elastic properties of the material of the sealing element on sealing
ability may be realized based on the hypothesis of elastic analogy [4], [14]. By this hypoth-
esis when passing from elastic calculation to viscous-elastic one, only dependence between
the stresses and strains change.
It should be noted that at elastic analogy, all stress components satisfy the dependence
between stresses and strain obtained on the basis of the chosen model for a uniaxial stress-
strain state.
The dependence between the stress-strain components for an arbitrary case of loading of
a model that describes best the viscoelastic behavior of the material of a sealing element,
is of the form [3], [4], [11], [12]

•
τ ij + λτij = G

[
2
(

•
εij + νεij

)
+ δij

(
•
s+ ν s

)]
, (5)

where E1 = EM , λ = E1+E2
η , ν = E2

η , η is dynamical viscosity of the material of the
sealing element, EM is instantaneous modulus of elasticity, E2 is an elasticity modulus,
τij are stress components, εij are relative strain components, δij is Kronecker’s symbol,
•
τ ij and

•
εij is a time derivative from stress and strain components.

Based on elastic analogy we represent

ε (x, t) = ε (x) ε (t) . (6)

Substituting expression (6) in formula (5), we get

•
τ ij + λτij = G (2εij (x) + δijs (x))

(
•
εij (t) + νεij (t)

)
. (7)

Integrating expression (7) with the initial condition τij (x, 0) = G (2εij (x) + δijs (x)) we
get

τij = (2εij (x) + δijs (x)) G

[
e−λt +

∫ t

0

(
•
ε (ξ) + νε (ξ)

)
e−λ(t−ξ)dξ

]
. (8)
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Introducing the denotation

G = G

[
e−λt +

∫ t

0

(
•
ε (ξ) + νε (ξ)

)
e−λ(t−ξ)dξ

]
, (9)

we can represent the expression (8) in the form

τij = G [2εij (x) + δijs (x)] . (10)

For the considered case, when the sealing element at initial moment of deformation
w (z, t)|t=0 = w∗ (z).

w (z, t) = w∗ (z̄) w (t) , w (t) = 1. (11)

Then allowing for (11), from expression (9) we get

Ḡ = G

[
e−λ t + ν

∫ t

0
e−λ( t−ξ)dξ

]
= G

[(
1− ν

λ

)
e−λ t +

ν

λ

]
. (12)

Allowing for the expression (12), from the expression (3) we get formula for the axial load

P = πG∆ k R2
2

[(
1− ν

λ

)
e−λ t +

ν

λ

] (2µ sinh (kh) + k R2 cosh (kh))
[

1
1−ξ2 − 3

(
1− ξ2

)]
µ (cosh (kh)− 1) + kh

2 (2µ sinh (kh) + kR2 cosh (kh))
.

(13)
Allowing for the expression (12), from the expression (4) we get for the contact stress

σk =
Gk∆ (2µ sinh (kh)− kR2 cosh (kh))

[
1

1−ξ2 − 3
(
1− ξ2

)] [(
1− ν

λ

)
e−λ t + ν

λ

](
1− R2

1

R2
2

) (
µ (cosh (kh)− 1) + kh

2 (2µ sinh (kh) + kR2 cosh (kh))
) .

(14)

4. Stress relaxation depending on stain rate

We now consider the case when the sealing element deforms at a steady rate till the fixed
time T and then it stays stable. Based on the elastic analogy [3], [4], [14] accepting the
deformation of cross sections of the sealer in the form (Fig. 3)

ε (z, t) = ε (z) · ε (t) , (15)

ε1 (t) = w1 (t) =
t

T
[H (t)−H (t− T )] +H (t− T ) , (16)

where H (t) is a Heaviside function, T is time of deformation of the protruding part of the
sealing element.
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Figure 2: Graph of time dependence of relative axial strain of the protruding section

From formulas (9) and (16) we get

Ḡ = G

{
e−λ t +

∫ t

0

[
1

T
(H (ξ)−H (ξ − T )) +

ξ

T
(δ (ξ)− δ (ξ − T )) + δ (ξ − T ) +

+ν

(
ξ

T
(H (ξ)−H (ξ − T )) +H (ξ − T )

)]
e−λ ( t−ξ)dξ

}
, (17)

where δ (t) is Dirac’s function.

Integrating formula (17), we get

Ḡ =
G

λ2T
{(ν − λ) (H (−T )−H (t− T )) exp (−λ (t− T )) +

+ [−λ− ν λ (t− T ) + ν]H (t− T ) + [(−ν − ν λT + λ)H (−T ) +

+ (ν − λ) H (t) + λ2T
]

exp (−λ t) + (−ν + ν λ t+ λ) H (t)} . (18)

Then, allowing for formula (18) following from the expression (3) we get

P =
πG∆ k R2

2

λ2T
{(ν − λ) (H (−T )−H (t− T )) exp (−λ (t− T )) +

+ [−λ− ν λ (t− T ) + ν]H (t− T ) +

+ [(−ν − ν λT + λ)H (−T ) + (ν − λ) H (t) + λ2T
]

exp (−λ t) +

+ (−ν + ν λ t+ λ) H (t)}
(2µ sinh (kh) + k R2 cosh (kh))

[
1

1−ξ2 − 3
(
1− ξ2

)]
µ (cosh (kh)− 1) + kh

2 (2µ sinh (kh) + kR2 cosh (kh))
. (19)

From the expression (19) we define the axial load ensuring seal tightness depending on its
physic-mechanical properties and dimensions.
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Substituting formulas (18) in expression (4) for the contact stress with regard to heredity,
we get

σk =
Gk∆

[
1

1−ξ2 − 3
(
1− ξ2

)]
(2µ sinh (kh)− kR2 cosh (kh))

λ2T
(

1− R2
1

R2
2

) (
µ (cosh (kh)− 1) + kh

2 (2µ sinh (kh) + kR2 cosh (kh))
)×

× {(ν − λ) (H (−T2)−H (t− T2)) exp (−λ (t− T2)) +

+ [−λ− ν λ (t− T2) + ν]H (t− T2) + [(−ν − ν λT2 + λ)H (−T2) +

+ (ν − λ) H (t) + λ2T2
]

exp (−λ t) + (−ν + ν λ t+ λ) H (t)} . (20)

5. Numerical calculation and discussion

The numerical calculation was made by formulas (13), (14) (19) and (20). Parameters
and corresponding values are listed in Table 1. The results of numerical calculations are
represented in the form of graphs of contact pressure and external force necessary achieving
sightless (Fig.3 - Fig.10).
Table 1: The values of parameters

Variable Unit Value

R2, the outer radius of the sealer m 5 · 10−2

ξ, ξ = R1
R2

- 0.8÷0.95

∆, axial displacement of the contact

surface of the sealer m 0.25 · 10−3 ÷ 2 · 10−3

h, the height of the protruding part

of the annular sealing element m 1, 2, 5 · 10−5

G, the shear modulus of the sealing material Pa 1.3 · 108

µ , the friction coefficient between the washer

and the end of the sealer - 0.5

ν, ν = E2
η - 0.01

λ, λ = E1+E2
η - 0.1

T , the time of deformation of the protruding

part of the annular sealing element s 10, 20, 30, 40, 50, 60

Fig.3 – Fig.5 shows the axial load/time dependence for the different values of the param-
eters ∆, h, ξ in the linear viscoelastic modeling under instantaneous loading.
Figure 3: Axial load/time dependence for the different value of the axial
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displacement of the contact surface of the sealer (h = 10−5m, ξ = 0.8)

Fig.3 shows the axial load/time dependence for the different value of the axial displacement
of the contact surface of the sealer. It follows from Fig.3 that for every ∆, the value of
the axial load decreases at a decreasing rate. With increasing the value of the ∆ axial
displacement both the value of the axial load and its relaxing rate increase.

Figure 4: Axial load/time dependence for the different value of the

height of the protruding part of the sealer (∆ = 10−3m, ξ = 0.8)

Fig.4 shows the relaxing of the axial load for the different value of the height of the
protruding part of the annular sealing element. The axial load ensuring seal tightness
relaxes by the time and for 30 second its value at the point of application of the external
force decreases, and then stabilizes. While the element’s height increases, the value of the
axial load for tightness and its relaxing rate decrease, due to Fig.4.
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Figure 5: Axial load/time dependence for the different ratio of the

inner and outer radii of the sealer (h = 10−5m,∆ = 10−3m)

For Fig.5, the value at the point of application of the external load ensuring seal tightness
relaxes at a decreasing rate by the time. With increasing the ratio of the sealer’s inner and
outer radii both the value of the axial load for tightness and its relaxing velocity increase.

The model stress relaxation response under instantaneous loading are shown in Fig.6 –
Fig.8 at different values of parameters∆, h, ξ (Table 1). As is seen from the curves contact
stress relaxes at a decreasing rate by time.

Figure 6: Stress relaxation curve for the different value of the axial

displacement of the contact surface of the sealer (h = 10−5m, ξ = 0.8)
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Figure 7: Stress relaxation curve for the different value of the

height of the protruding part of the sealer (∆ = 10−3m, ξ = 0.8)

Figure 8: Stress relaxation curve for the different ratio of the

inner and outer radii of the sealer (h = 10−5m,∆ = 10−3m)

The value of the contact stress and its relaxing rate increase by rise the value of the ∆
axial displacement (Fig.6), but they decrease by increasing the values of the parameters
h and ξ (Fig.7 and Fig.8).

Fig.9 and Fig.10 display relaxation process of the sealer due to gradual applied load. This
time axial stress relaxation for different velocities of deformation occurs differently (Fig.
9 and Fig.10).
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Figure 9 Axial load/time dependence due to gradual applied load

with regard to heredity (h = 10−5m, ξ = 0.95, ∆ = 0.25 · 10−3m).

Figure 10: Stress relaxation curve due to gradual applied load

(h = 10−5m, ξ = 0.8,∆ = 0.25 · 10−3m)
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6. Conclusion

In this article, the main focus is to analyze the stress relaxation behavior of the annular
sealer and investigate the performance of a linear viscoelastic mechanical model. Influence
of viscoelastic behavior of the annular sealing element on its sealing ability is realized based
on the hypothesis of elastic analogy. We determine stress-strain state of the annular sealing
element in the form of a hollow cylinder for two different loading type - instantaneous
loading and gradual applied loading .

Under instantaneous loading the value of the axial load and contact stress decreases at a
decreasing rate by the time in the linear viscoelastic modeling. The values of the axial
load and contact stress and their relaxing rates increase by rise the value of the ∆ axial
displacement , but they decrease by increasing the values of the parameters h and ξ. Due to
gradual applied loading axial stress relaxation for different velocities of deformation occurs
differently. Contact stress relaxes by time and its value decreases, and then stabilizes.

The current work demonstrates that viscous elastic properties of the sealing material
greatly influence on its sealing ability and their ignorance may lead to incorrect conclusions.
It is shown that, viscous-elastic properties of sealer’s material greatly influence on its
sealing ability. Because of heredity of the sealer’s material, the values of external forces
in some cases drop about seven times.
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