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On Basicity of a Perturbed System of Cosines with Unit
in Generalized Lebesgue Spaces
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Abstract. In this paper a perturbed system of cosines with a piecewise continuous phase is consid-
ered. Particular cases of these systems are eigenfunctions of second-order discontinuous differential
operators. Sufficient conditions for phase jumps are found under which this system forms a basis
in generalized Lebesgue spaces.
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1. Introduction

When solving the PDEs of mixed type by Fourier method there frequently appear
systems of sines and cosines of the following form

{cos (n+ α) t}n∈Z+
, (1)

{sin (n+ α) t}n∈N , (2)

where α ∈ R− is a real number(here, thereafter N− is the set of all natural numbers,
Z+ = {0}∪N). Justification of the Fourier method requires to study the basicity properties
of such systems in some function spaces. Some examples of such equations and concrete
systems of trigonometric-type functions that appear after applying Fourier method can
be found, for example, in [1, 2, 3, 4]. The basicity properties of the systems (1) and (2)
are well studied in Lebesgue and Sobolev spaces, as well as, in their weighted settings
[5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 29, 30, 31].

Recently, in connection with the application in problems of mechanics and mathemat-
ical physics, interest in studying various problems in Lebesgue and Sobolev spaces with
a variable exponent of summability has increased. Numerous works are devoted to this
direction. Detailed information on these issues can be obtained from the monograph [13].

In this paper a perturbed system of cosines with a piecewise continuous phase is con-
sidered. Particular cases of these systems are eigenfunctions of second-order discontinuous

http://journalcam.com 46 © 2011 JCAM All rights reserved.



On Basicity of a Perturbed System of Cosines with Unit in Generalized Lebesgue Spaces 47

differential operators. Sufficient conditions for phase jumps are found under which this
system forms a basis in generalized Lebesgue spaces.

Notice that, similar problems for the double system of exponents with complex-valued
coefficients in Lebesgue spaces with variable exponent were earlier studied in [15, 16, 17,
18, 19]. The basicity properties of the systems (1) and (2) in classical Lebesgue spaces
were studied in [20, 24].

2. Preliminaries

We use the following standard denotations: Z−the set of all integers; R−the set of
all real numbers; C−complex plane; ( · )−complex conjugate of (.); δnk−Kronecker delta;
χA (·)−the indicator function of the setA . ω ≡ {z ∈ C : |z| < 1}−the unit disc; ∂ω ≡
{z ∈ C : |z| = 1}−the unit circle.

Let p : [−π, π]→ [1,+∞)−be a Lebesgue measurable function. We denote by L0 the
set of all Lebesgue measurable functions on [−π, π]. Set

Ip (f)
def
≡
∫ π

−π
|f (t)|p(t) dt.

Let
L ≡ {f ∈ L0 : Ip (f) < +∞} .

If p+ = sup vrai
[−π,π]

p (t) < +∞, then L is a linear space with respect to pointwise linear

operations. L is a Banach space with respect to the norm

‖f‖p(·)
def
≡ inf

{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
,

and we denote it by Lp(·). Assume

WL
def
≡ {p : p(−π) = p(π);∃C > 0, ∀t1, t2 ∈ [−π, π] : |t1 − t2| ≤ 1

2 ⇒
⇒ |p (t1)− p (t2)| ≤ C

− ln|t1−t2|

}
.

Throughout the paper q (·) denotes the conjugate function of p (·) , that is, 1
p(t) + 1

q(t) ≡ 1.

Let p− = inf vrai
[−π,π]

p (t). The following generalized Holder’s inequality holds

∫ π

−π
|f (t) g (t)| dt ≤ c

(
p−; p+

)
‖f‖p(·) ‖g‖q(·) ,

where c (p−; p+) = 1 + 1
p− −

1
p+

.

To obtain the main results, we need the following results from [32] on the basicity of
the following unitary system of exponents in generalized Lebesgue spaces Lp(·) (0, π):

vn(t) ≡ a(t)eint − b(t)e−int, n ∈ N,
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where a (t) = |a (t)| eiα(t), b (t) = |b (t)| eiβ(t)−are complex-valued functions on [0, π].
Suppose that the coefficients a (·) and b (·) satisfy the following conditions i)-iv):

i) a±1 (·) ; b±1 (·) ∈ L∞ (0, π);

ii) α (·) ; β (·)−are piecewise continuous functions on (0, π) with jump points {tk}k∈N
and {τk}k∈N , respectively; additionally it is assumed that the set {s̃k} ≡ {tk}

⋃
{τk} may

have s̃0 ∈ (0, π) as its only limit point and the function θ̃ (t) ≡ β (t) − α (t) has a finite
right and left limits at s̃0.

iii)
∑∞

k=1 |h (s̃k)| < +∞, where h (s̃k) = θ̃ (s̃k − 0)− θ̃ (s̃k + 0)−is the jump of θ̃ (·) at
s̃k.

iv) The jumps
{
h̃i

}
hold

(
h̃(s̃i)
2π + 1

p(s̃i)

)
/∈ Z,∀i ∈ N.

From condition iii) on jumps h(s̃k),k ∈ N, it follows that there exists a number r ∈ N
such that the inequalities

− 2π

p(s̃k)
< h̃(s̃k) <

2π

q(s̃k)
, k = r,∞,

hold. Let us enumerate the elements of the set {s̃i}r1 , in ascending order and denote it by
{si}r1 , i.e. 0 < s1 < ... < sr < π. Denote the corresponding jumps by {h(si)}r1, i.e. let

Suppose that for some n0 the inequality

1

p(0)
+ 2(n0 − 1) <

β(0)− α(0)

π
<

1

p(0)
+ 2n0, (3)

holds. Based on condition iv) we define integers ni, i = 1, r, from the following relations

− 1

p(si)
<
h(si)

2π
+ ni − ni−1 <

1

q(si)
, i = 1, r. (4)

So, the following main is true.

Theorem 2.1. Let the coefficients a (·) and b (·) of system {vn}n∈N satisfy the conditions
i)-iv), integers {ni}r1 are defined from the relations (3), (4). Let

β(π)− α(π)

2π
+

1

2p (π)
/∈ Z. (5)

Then, if the inequalities

− 1

p(π)
+ 2nr <

β(π)− α(π)

π
< − 1

p(π)
+ 2(nr + 1), (6)

are valid, then the system {vn}n∈N forms a basis for Lp(·) (0, π). Moreover, if

β(π)− α(π) < − π

p(π)
+ 2nrπ,
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then the system {vn}n∈N is not complete in Lp(·) (0, π), but is minimal in it; when the
following inequality holds

β(π)− α(π) > − π

p(π)
+ 2(nr + 1)π,

then it is complete, but not minimal in Lp(·) (0, π) .

We also need the following result from work [33].

Consider the following system of exponents

ϕn (θ) ≡ exp [i (nθ − sgnnα (θ))] , n = ±1,±2, ..., (7)

where α (θ) is a piecewise continuous, odd function on a segment [−π, π] , i.e. α (−θ) =
−α (θ). Let {tk}∞1 be the set of first kind discontinuity points of the function α (θ) on
(0, π) , which has a unique limit point t0 ∈ (0, π). Suppose that a function α (θ) has finite
right and left-side limits at a point t0. Moreover, let the following inequalities

∞∑
k=1

|α (tk + 0)− α (tk − 0)| < +∞, (8)

hold. Assume that for any integer k the following relation

α (ti − 0)− α (ti + 0)

π
6= − 1

p (ti)
+ k, i = 1,∞, (9)

is satisfied.

Let for some integer n0 the inequality

π

2p (0)
+

(
n0 −

1

2

)
π < α (0) <

π

2p (0)
+ n0π (10)

be true. Denote by r the index after which the following conditions are satisfied

− π

p (tk)
< α (tk − 0)− α (tk + 0) <

π

q (tk)
, (11)

k = r,∞. We enumerate the elements of the set {ti} , i = 1, r in ascending order and
again denote by {ti}r1 , 0 < t1 < ... < tr < π. Define integers ni, i = 1, r from the
following conditions

− 1

p (ti)
<
α (ti − 0)− α (ti + 0)

π
+ ni − ni−1 <

1

q (ti)
, i = 1, r. (12)

The following theorem is true.
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Theorem 2.2. Let α (t) be real-valued, piecewise continuous, odd function on a segment
[−π, π] , concerning discontinuities of which the above stated conditions (8)-(10) are true.
Integers ni, i = 1, r, are determined from conditions (10) and (12). Suppose that

α (π) 6= − π

2p (π)
+

(
nr +

1

2

)
π.

Then, in order for the system of exponents (7) to be a basis in space Lp(·) (−π, π), it is
sufficient that the inequality

− π

2p (π)
+

(
nr +

1

2

)
π < α (π) < − π

2p (π)
+ (nr + 1)π (13)

is valid. Moreover, if α (π) < − π
2p(π) +

(
nr + 1

2

)
π, then the system (7) is not com-

plete inLp(·) (−π, π), but is minimal; for α (π) ≥ − π
2p(π) + (nr + 1)π, it is complete in

Lp(·) (−π, π), but not minimal.

Before proving this theorem, we state some corollaries that follow directly from Theo-
rem 2.1.

Let α (t) be a piecewise continuous function on [−π, π] with respect to discontinuities
of which the above formulated conditions are valid.

Corollary 2.3. Let for some integer n0

π

2p (0)
+ (n0 − 1)π < α (0) <

π

2p (0)
+ n0π. (14)

Numbers nr are defined from the conditions (14), (12) and in addition α (π) 6= − π
2p(π)+nrπ.

Then the system of sines sin (nt− α (t)) , n = 1,∞, forms a basis for Lp(·) (0, π), if and
only if the inequalities

− π

2p (π)
+ nrπ < α (π) < − π

2p (π)
+ (nr + 1)π,

are true; if α (π) < − π
2p(π) + nrπ, then the system is not complete in Lp(·) (0, π), but is

minimal; for α (π) ≥ − π
2p(π) + (nr + 1)π is complete, but is not minimal.

Regarding the cosine system, we have the following

Corollary 2.4. Let

π

2p (0)
+

(
n− 1

2

)
π < α (0) <

π

2p (0)
+

(
n+

1

2

)
π. (15)

Numbers nr are defined from the conditions (15), (12) and in this case α (π) 6= − π
2p(π) +(

nr + 1
2

)
π. Then the system of cosines cos (nt− α (t)) , n = 1,∞, forms a basis for

Lp(·) (0, π) if and only if the inequalities

− π

2p (π)
+

(
nr +

1

2

)
π < α (π) < − π

2p (π)
+

(
nr +

3

2

)
π;
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are true, if α (π) < − π
2p(π) +

(
nr + 1

2

)
π, then the system is not complete in Lp(·) (0, π)

, but is minimal; for α (π) > − π
2p(π) +

(
nr + 3

2

)
π, it is complete, but is not minimal in

Lp(·) (0, π).

3. Basicity of the system of cosines

Consider the following system of cosines

{1, cos (nt− α (t))}∞n=1 , (16)

where α (t) is real piecewise continuous function on a segment [0, π]. Let {tk}∞1 be the
set of first kind discontinuity points on (0, π) , which has a unique limit point t0 ∈ (0, π).
Suppose that a function α (t) has finite right and left-side limits at a point t0. Moreover,
it holds

∞∑
n=1

|α (tk + 0)− α (tk − 0)| < +∞. (17)

Let an index r and numbers ni, i = 1, r, be defined from the conditions (11) and (12),
where n0 some integer for which

π

2p (0)
+

(
n0 −

1

2

)
π < α (0) <

π

2p (0)
+

(
n0 +

1

2

)
π.

The following theorem is valid.

Theorem 3.1. Let the above formulated conditions be valid with respect to a function
α (θ) and numbers ni, i = 1, r determined from conditions (11) and (12). Let α (π) 6=
− π

2p(π) +
(
nr − 1

2

)
π. Then the system of cosines (16) forms a basis for Lp(·) (0, π) if and

only if

− π

2p (π)
+

(
nr −

1

2

)
π < α (π) < − π

2p (π)
+

(
nr +

1

2

)
π;

if α (π) < − π
2p(π) +

(
nr − 1

2

)
π, then the system (16) is not complete in Lp(·) (0, π), but it

is minimal; for α (π) > − π
2p(π) +

(
nr + 1

2

)
π, it is complete, but not minimal in Lp(·) (0, π).

Proof. Denote by cn, n = 0,∞, the following numbers∫ π

0
h̄cn (θ) dθ = cn, n = 0, 1, ...

where h̄cn (θ) , n = 0,∞, is biorthogonally conjugated system to system cos (nt− α (t)) , n =
0,∞. Let us show that c0 6= 0. An analytical expression for this system was derived in
[32], where a (t) = eiα̃(t), b (t) = eiβ̃(t) and

α̃ (t) =
π

2
− t− α (t) , β̃ (t) = −α̃ (t) .
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Thus, following the work [32], we have

h̄cn (σ) = − i

eI(σ)

n+1∑
k=1

bn+1−k sin kσ, n = 0,∞,

where

I (σ) = − i

4π

∫ π

0

cos θ2
cos σ2

ln
b (θ)

a (θ)

[
1

sin θ−σ
2

+
1

sin θ+σ
2

]
dθ =

=
1

2π

∫ π

0
β̃ (θ)

cos θ2
cos σ2

[
1

sin θ−σ
2

+
1

sin θ+σ
2

]
dθ.

Hence it follows that I (σ) is real-valued function depending on σ on segment [0, π]. More-
over

h̄c0 (σ) = −ib0e−I(σ) sinσ.

Since sinσ > 0 on (0, π), it follows that

A0 =

∫ π

0
h̄c0 (σ) dσ 6= 0.

Denote

bn =
cn
c0
, n = 1,∞.

Define the system HA
n (θ) , n = 0,∞ as follows

HA
0 (θ) = 1

c0
h̄c0 (θ) ,

HA
n (θ) = h̄cn (θ)− bn h̄c0 (θ) , n = 1,∞

}
(18)

Let us show that this system is biorthogonal to the system (16). Indeed, we have(
HA
n , cos (mθ − α (θ))

)
=
(
h̄c0 (θ) , cos (mθ − α (θ))

)
−

−bn
(
h̄c0 (θ) , cos (mθ − α (θ))

)
= δnm, n,m = 1,∞,

and (
h̄cn − bnh̄c0, 1

)
= cn − bn c0 = 0.

Thus, the system (16) and (18) are biorthogonal.

Letα (π) < − π
2p(π) +

(
nr − 1

2

)
π. Under this condition the system cos (nt− α (t)) , n =

0,∞, is not complete in Lp(·) (0, π). So, there exists a function ψ (θ) ∈ Lq(·) (0, π) , 1
p(·) +

1
q(·) = 1 which is not identically equal to zero, for which(

h̄cn, ψ
)

= 0, n = 0,∞.
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Hence, it follows that(Hc
n, ψ) = 0, n = 0,∞, i.e. the system (16) is not complete. For

α (π) > − π
2p(π) +

(
nr + 1

2

)
π, the minimality of the system (16) is obvious. So, let

− π

2p (π)
+

(
nr −

1

2

)
π < α (π) < − π

2p (π)
+

(
nr +

1

2

)
π.

In this case the system cos (nt− α (t)) , n = 0,∞, forms a basis for Lp(·) (0, π). Take any
function ψ (t) ∈ Lp(·) (0, π) and make the following partial sum

SN =
N∑
n=0

(Hc
n, ψ) ϕn (t) ,

where
ϕn (t) = cos (nt− α (t)) , ϕ0 (t) ≡ 1, n = 1,∞.

Let us show SN → ψ, as N →∞ in Lp(·) (0, π). We have

‖SN − ψ‖Lp(·)
=

∥∥∥∥∥ 1

c0

(
h̄c0, ψ

)
+

N∑
n=1

(
h̄cn − bnh̄c0, ψ

)
ϕn (t)− ψ

∥∥∥∥∥
Lp(·)

=

=

∥∥∥∥∥ 1

c0

(
h̄c0, ψ

)
+

N∑
n=1

(
h̄cn, ψ

)
ϕn −

(
h̄c0, ψ

) N∑
n=1

bnϕn − ψ

∥∥∥∥∥
Lp(·)

=

=

∥∥∥∥∥ 1

c0

(
h̄c0, ψ

)
+

N∑
n=0

(
h̄cn, ψ

)
ϕn −

(
h̄c0, ψ

) [ N∑
n=1

bnϕn + cos (α (t))

]
− ψ

∥∥∥∥∥
Lp(·)

≤

=

∥∥∥∥∥
N∑
n=0

(
h̄cn, ψ

)
ϕn − ψ

∥∥∥∥∥
Lp(·)

+

∥∥∥∥∥ 1

c0

(
h̄c0, ψ

)
−
(
h̄c0, ψ

) [ N∑
n=1

bnϕn + cos (α (t))

]∥∥∥∥∥
Lp(·)

.

Here the first term tends to zero as N →∞. The second term can be rewritten as∣∣∣∣ 1

c0

(
h̄c0, ψ

)∣∣∣∣
∥∥∥∥∥c0

[
N∑
n=1

bnϕn + cos (α (t))

]
− 1

∥∥∥∥∥
Lp(·)

=

=

∣∣∣∣ 1

c0

(
h̄c0, ψ

)∣∣∣∣
∥∥∥∥∥
N∑
n=0

(
h̄cn, 1

)
− 1

∥∥∥∥∥
Lp(·)

→ 0, N →∞.

So, it is proved that
‖SN − ψ‖Lp(·)

→ 0, N →∞.

The theorem is proved.

Considering Corollary 2.3 and Theorem 3.1, the following theorem can be easily proved.
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Theorem 3.2. Let all the conditions of Theorem 2.2 hold with respect to a function α (θ).
Integers ni, i = 1, r are defined from the conditions (11), (12) in which n0 is some number,
that

π

2p (0)
+

(
n0 −

1

2

)
π < α (0) <

π

2p (0)
+ n0π.

Suppose also that α (π) 6= − π
2p(π) + nrπ. Then the system

exp [i (nθ − sgnnα (θ))] , n = 0,±1, ... (19)

forms a basis for Lp(·) (−π, π) if and only if

− π

2p (π)
+ nrπ < α (π) < − π

2p (π)
+

(
nr +

1

2

)
π;

if α (π) < − π
2p(π) + nrπ, then this system is not complete in Lp(·) (−π, π), but is minimal;

for α (π) > − π
2p(π) +

(
nr + 1

2

)
π, it is complete, but is not minimal in Lp(·) (−π, π).

In conclusion, we provide one more theorem, which is equivalent in a sense to Theorem
3.1.

Theorem 3.3. Let the function α (θ) satisfy all the conditions of Theorem 3.1. Integers
ni, i = 1, r are determined from conditions (11), and (12). Moreover, α (π) 6= − π

2p(π) +(
nr − 1

2

)
π. The system of functions

{cos (nθ − α (θ)) ; sin (nθ − α (θ))}∞n=0 , (20)

forms a basis for Lp(·) (−π, π), if and only if

− π

2p (π)
+

(
nr −

1

2

)
π < α (π) < − π

2p (π)
+ nrπ.

is hold. And, if α (π) < − π
2p(π) +

(
nr − 1

2

)
π, then the system (20) is not complete in

Lp(·) (−π, π), but is minimal; for α (π) > − π
2p(π) + nrπ, it is complete, but is not minimal

in Lp(·) (−π, π).
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