Journal of Contemporary Applied Mathematics V. 10, No 1, 2020, July ISSN 2222-5498

On Basicity of a Perturbed System of Cosines with Unit in Generalized Lebesgue Spaces

M.I. Aleskerov

Abstract. In this paper a perturbed system of cosines with a piecewise continuous phase is considered. Particular cases of these systems are eigenfunctions of second-order discontinuous differential operators. Sufficient conditions for phase jumps are found under which this system forms a basis in generalized Lebesgue spaces.

Key Words and Phrases:System of cosines, basicity, variable exponent, generalized Lebesgue space.

2010 Mathematics Subject Classifications: Primary 33B10; Secondary 46E30.

1. Introduction

When solving the PDEs of mixed type by Fourier method there frequently appear systems of sines and cosines of the following form

$$\left\{\cos\left(n+\alpha\right)t\right\}_{n\in\mathbb{Z}_{+}},\tag{1}$$

$$\{\sin\left(n+\alpha\right)t\}_{n\in\mathbb{N}},\tag{2}$$

where $\alpha \in \mathbb{R}^-$ is a real number(here, thereafter \mathbb{N}^- is the set of all natural numbers, $\mathbb{Z}_+ = \{0\} \cup \mathbb{N}$). Justification of the Fourier method requires to study the basicity properties of such systems in some function spaces. Some examples of such equations and concrete systems of trigonometric-type functions that appear after applying Fourier method can be found, for example, in [1, 2, 3, 4]. The basicity properties of the systems (1) and (2) are well studied in Lebesgue and Sobolev spaces, as well as, in their weighted settings [5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 29, 30, 31].

Recently, in connection with the application in problems of mechanics and mathematical physics, interest in studying various problems in Lebesgue and Sobolev spaces with a variable exponent of summability has increased. Numerous works are devoted to this direction. Detailed information on these issues can be obtained from the monograph [13].

In this paper a perturbed system of cosines with a piecewise continuous phase is considered. Particular cases of these systems are eigenfunctions of second-order discontinuous

http://journalcam.com

© 2011 JCAM All rights reserved.

47

differential operators. Sufficient conditions for phase jumps are found under which this system forms a basis in generalized Lebesgue spaces.

Notice that, similar problems for the double system of exponents with complex-valued coefficients in Lebesgue spaces with variable exponent were earlier studied in [15, 16, 17, 18, 19]. The basicity properties of the systems (1) and (2) in classical Lebesgue spaces were studied in [20, 24].

2. Preliminaries

We use the following standard denotations: \mathbb{Z} -the set of all integers; \mathbb{R} -the set of all real numbers; \mathbb{C} -complex plane; $(\overline{\cdot})$ -complex conjugate of (.); δ_{nk} -Kronecker delta; $\chi_A(\cdot)$ - the indicator function of the set A. $\omega \equiv \{z \in \mathbb{C} : |z| < 1\}$ - the unit disc; $\partial \omega \equiv$ $\{z \in \mathbb{C} : |z| = 1\}$ -the unit circle.

Let $p: [-\pi,\pi] \to [1,+\infty)$ be a Lebesgue measurable function. We denote by \mathcal{L}_0 the set of all Lebesgue measurable functions on $[-\pi,\pi]$. Set

$$I_p(f) \stackrel{def}{\equiv} \int_{-\pi}^{\pi} |f(t)|^{p(t)} dt.$$

Let

$$\mathcal{L} \equiv \left\{ f \in \mathcal{L}_0 : I_p\left(f\right) < +\infty \right\}.$$

If $p^+ = \sup_{[-\pi,\pi]} vraip(t) < +\infty$, then \mathcal{L} is a linear space with respect to pointwise linear operations. \mathcal{L} is a Banach space with respect to the norm

$$\|f\|_{p(\cdot)} \stackrel{def}{\equiv} \inf \left\{ \lambda > 0 : I_p\left(\frac{f}{\lambda}\right) \le 1 \right\},$$

and we denote it by $L_{p(\cdot)}$. Assume

$$WL \stackrel{def}{=} \{ p : p(-\pi) = p(\pi); \exists C > 0, \quad \forall t_1, t_2 \in [-\pi, \pi] : |t_1 - t_2| \le \frac{1}{2} \Rightarrow \\ \Rightarrow |p(t_1) - p(t_2)| \le \frac{C}{-\ln|t_1 - t_2|} \}.$$

Throughout the paper $q(\cdot)$ denotes the conjugate function of $p(\cdot)$, that is, $\frac{1}{p(t)} + \frac{1}{q(t)} \equiv 1$. Let $p^{-} = \inf \operatorname{vraip}_{[-\pi,\pi]} (t)$. The following generalized Holder's inequality holds

$$\int_{-\pi}^{\pi} |f(t) g(t)| dt \le c \left(p^{-}; p^{+}\right) \|f\|_{p(\cdot)} \|g\|_{q(\cdot)},$$

where $c(p^-; p^+) = 1 + \frac{1}{p^-} - \frac{1}{p^+}$. To obtain the main results, we need the following results from [32] on the basicity of the following unitary system of exponents in generalized Lebesgue spaces $L_{p(\cdot)}(0,\pi)$:

$$v_n(t) \equiv a(t)e^{int} - b(t)e^{-int}, \ n \in \mathbb{N},$$

where $a(t) = |a(t)| e^{i\alpha(t)}$, $b(t) = |b(t)| e^{i\beta(t)}$ -are complex-valued functions on $[0, \pi]$. Suppose that the coefficients $a(\cdot)$ and $b(\cdot)$ satisfy the following conditions i)-iv):

i) $a^{\pm 1}(\cdot)$; $b^{\pm 1}(\cdot) \in L_{\infty}(0,\pi)$;

ii) $\alpha(\cdot)$; $\beta(\cdot)$ – are piecewise continuous functions on $(0, \pi)$ with jump points $\{t_k\}_{k \in N}$ and $\{\tau_k\}_{k \in N}$, respectively; additionally it is assumed that the set $\{\tilde{s}_k\} \equiv \{t_k\} \bigcup \{\tau_k\}$ may have $\tilde{s}_0 \in (0, \pi)$ as its only limit point and the function $\tilde{\theta}(t) \equiv \beta(t) - \alpha(t)$ has a finite right and left limits at \tilde{s}_0 .

iii) $\sum_{k=1}^{\infty} |h(\tilde{s}_k)| < +\infty$, where $h(\tilde{s}_k) = \tilde{\theta}(\tilde{s}_k - 0) - \tilde{\theta}(\tilde{s}_k + 0)$ -is the jump of $\tilde{\theta}(\cdot)$ at \tilde{s}_k .

iv) The jumps $\left\{\tilde{h}_i\right\}$ hold $\left(\frac{\tilde{h}(\tilde{s}_i)}{2\pi} + \frac{1}{p(\tilde{s}_i)}\right) \notin \mathbb{Z}, \forall i \in \mathbb{N}.$ From condition iii) on jumps $h(\tilde{s}_i) \in \mathbb{N}$ it follows

From condition iii) on jumps $h(\tilde{s}_k), k \in \mathbb{N}$, it follows that there exists a number $r \in \mathbb{N}$ such that the inequalities

$$-\frac{2\pi}{p(\tilde{s}_k)} < \tilde{h}(\tilde{s}_k) < \frac{2\pi}{q(\tilde{s}_k)}, k = \overline{r, \infty},$$

hold. Let us enumerate the elements of the set $\{\tilde{s}_i\}_1^r$, in ascending order and denote it by $\{s_i\}_1^r$, i.e. $0 < s_1 < ... < s_r < \pi$. Denote the corresponding jumps by $\{h(s_i)\}_1^r$, i.e. let Suppose that for some n_0 the inequality

$$\frac{1}{p(0)} + 2(n_0 - 1) < \frac{\beta(0) - \alpha(0)}{\pi} < \frac{1}{p(0)} + 2n_0,$$
(3)

holds. Based on condition iv) we define integers $n_i, i = \overline{1, r}$, from the following relations

$$-\frac{1}{p(s_i)} < \frac{h(s_i)}{2\pi} + n_i - n_{i-1} < \frac{1}{q(s_i)}, i = \overline{1, r}.$$
(4)

So, the following main is true.

Theorem 2.1. Let the coefficients $a(\cdot)$ and $b(\cdot)$ of system $\{v_n\}_{n\in\mathbb{N}}$ satisfy the conditions *i*)-*iv*), integers $\{n_i\}_1^r$ are defined from the relations (3), (4). Let

$$\frac{\beta(\pi) - \alpha(\pi)}{2\pi} + \frac{1}{2p(\pi)} \notin \mathbb{Z}.$$
(5)

Then, if the inequalities

$$-\frac{1}{p(\pi)} + 2n_r < \frac{\beta(\pi) - \alpha(\pi)}{\pi} < -\frac{1}{p(\pi)} + 2(n_r + 1), \tag{6}$$

are valid, then the system $\{v_n\}_{n\in\mathbb{N}}$ forms a basis for $L_{p(\cdot)}(0,\pi)$. Moreover, if

$$\beta(\pi) - \alpha(\pi) < -\frac{\pi}{p(\pi)} + 2n_r\pi,$$

then the system $\{v_n\}_{n\in\mathbb{N}}$ is not complete in $L_{p(\cdot)}(0,\pi)$, but is minimal in it; when the following inequality holds

$$\beta(\pi) - \alpha(\pi) > -\frac{\pi}{p(\pi)} + 2(n_r + 1)\pi$$

then it is complete, but not minimal in $L_{p(\cdot)}(0,\pi)$.

We also need the following result from work [33].

Consider the following system of exponents

$$\varphi_n(\theta) \equiv \exp\left[i\left(n\theta - sgnn\alpha\left(\theta\right)\right)\right], \quad n = \pm 1, \pm 2, ..., \tag{7}$$

49

where $\alpha(\theta)$ is a piecewise continuous, odd function on a segment $[-\pi, \pi]$, i.e. $\alpha(-\theta) = -\alpha(\theta)$. Let $\{t_k\}_1^{\infty}$ be the set of first kind discontinuity points of the function $\alpha(\theta)$ on $(0,\pi)$, which has a unique limit point $t_0 \in (0,\pi)$. Suppose that a function $\alpha(\theta)$ has finite right and left-side limits at a point t_0 . Moreover, let the following inequalities

$$\sum_{k=1}^{\infty} |\alpha \left(t_k + 0 \right) - \alpha \left(t_k - 0 \right)| < +\infty, \tag{8}$$

hold. Assume that for any integer k the following relation

$$\frac{\alpha \left(t_{i}-0\right)-\alpha \left(t_{i}+0\right)}{\pi }\neq -\frac{1}{p\left(t_{i}\right)}+k, \qquad i=\overline{1,\infty},$$
(9)

is satisfied.

Let for some integer n_0 the inequality

$$\frac{\pi}{2p(0)} + \left(n_0 - \frac{1}{2}\right)\pi < \alpha(0) < \frac{\pi}{2p(0)} + n_0\pi$$
(10)

be true. Denote by r the index after which the following conditions are satisfied

$$-\frac{\pi}{p(t_k)} < \alpha \left(t_k - 0\right) - \alpha \left(t_k + 0\right) < \frac{\pi}{q(t_k)},\tag{11}$$

 $k = \overline{r, \infty}$. We enumerate the elements of the set $\{t_i\}, i = \overline{1, r}$ in ascending order and again denote by $\{t_i\}_1^r, 0 < t_1 < ... < t_r < \pi$. Define integers $n_i, i = \overline{1, r}$ from the following conditions

$$-\frac{1}{p(t_i)} < \frac{\alpha(t_i - 0) - \alpha(t_i + 0)}{\pi} + n_i - n_{i-1} < \frac{1}{q(t_i)}, \quad i = \overline{1, r}.$$
 (12)

The following theorem is true.

Theorem 2.2. Let $\alpha(t)$ be real-valued, piecewise continuous, odd function on a segment $[-\pi,\pi]$, concerning discontinuities of which the above stated conditions (8)-(10) are true. Integers n_i , $i = \overline{1,r}$, are determined from conditions (10) and (12). Suppose that

$$\alpha\left(\pi\right) \neq -\frac{\pi}{2p\left(\pi\right)} + \left(n_r + \frac{1}{2}\right)\pi$$

Then, in order for the system of exponents (7) to be a basis in space $L_{p(\cdot)}(-\pi,\pi)$, it is sufficient that the inequality

$$-\frac{\pi}{2p(\pi)} + \left(n_r + \frac{1}{2}\right)\pi < \alpha(\pi) < -\frac{\pi}{2p(\pi)} + (n_r + 1)\pi$$
(13)

is valid. Moreover, if $\alpha(\pi) < -\frac{\pi}{2p(\pi)} + (n_r + \frac{1}{2})\pi$, then the system (7) is not complete $inL_{p(\cdot)}(-\pi,\pi)$, but is minimal; for $\alpha(\pi) \geq -\frac{\pi}{2p(\pi)} + (n_r + 1)\pi$, it is complete in $L_{p(\cdot)}(-\pi,\pi)$, but not minimal.

Before proving this theorem, we state some corollaries that follow directly from Theorem 2.1.

Let $\alpha(t)$ be a piecewise continuous function on $[-\pi, \pi]$ with respect to discontinuities of which the above formulated conditions are valid.

Corollary 2.3. Let for some integer n_0

$$\frac{\pi}{2p(0)} + (n_0 - 1)\pi < \alpha(0) < \frac{\pi}{2p(0)} + n_0\pi.$$
(14)

Numbers n_r are defined from the conditions (14), (12) and in addition $\alpha(\pi) \neq -\frac{\pi}{2p(\pi)} + n_r \pi$. Then the system of sines $\sin(nt - \alpha(t))$, $n = \overline{1, \infty}$, forms a basis for $L_{p(\cdot)}(0, \pi)$, if and only if the inequalities

$$-\frac{\pi}{2p(\pi)} + n_r \pi < \alpha(\pi) < -\frac{\pi}{2p(\pi)} + (n_r + 1)\pi,$$

are true; if $\alpha(\pi) < -\frac{\pi}{2p(\pi)} + n_r \pi$, then the system is not complete in $L_{p(\cdot)}(0,\pi)$, but is minimal; for $\alpha(\pi) \geq -\frac{\pi}{2p(\pi)} + (n_r + 1)\pi$ is complete, but is not minimal.

Regarding the cosine system, we have the following

Corollary 2.4. Let

$$\frac{\pi}{2p(0)} + \left(n - \frac{1}{2}\right)\pi < \alpha(0) < \frac{\pi}{2p(0)} + \left(n + \frac{1}{2}\right)\pi.$$
(15)

Numbers n_r are defined from the conditions (15), (12) and in this case $\alpha(\pi) \neq -\frac{\pi}{2p(\pi)} + (n_r + \frac{1}{2})\pi$. Then the system of cosines $\cos(nt - \alpha(t))$, $n = \overline{1, \infty}$, forms a basis for $L_{p(\cdot)}(0,\pi)$ if and only if the inequalities

$$-\frac{\pi}{2p(\pi)} + \left(n_r + \frac{1}{2}\right)\pi < \alpha(\pi) < -\frac{\pi}{2p(\pi)} + \left(n_r + \frac{3}{2}\right)\pi;$$

are true, if $\alpha(\pi) < -\frac{\pi}{2p(\pi)} + (n_r + \frac{1}{2})\pi$, then the system is not complete in $L_{p(\cdot)}(0,\pi)$, but is minimal; for $\alpha(\pi) > -\frac{\pi}{2p(\pi)} + (n_r + \frac{3}{2})\pi$, it is complete, but is not minimal in $L_{p(\cdot)}(0,\pi)$.

3. Basicity of the system of cosines

Consider the following system of cosines

$$\{1, \cos(nt - \alpha(t))\}_{n=1}^{\infty},$$
(16)

where $\alpha(t)$ is real piecewise continuous function on a segment $[0, \pi]$. Let $\{t_k\}_1^{\infty}$ be the set of first kind discontinuity points on $(0, \pi)$, which has a unique limit point $t_0 \in (0, \pi)$. Suppose that a function $\alpha(t)$ has finite right and left-side limits at a point t_0 . Moreover, it holds

$$\sum_{n=1}^{\infty} |\alpha (t_k + 0) - \alpha (t_k - 0)| < +\infty.$$
(17)

Let an index r and numbers n_i , $i = \overline{1, r}$, be defined from the conditions (11) and (12), where n_0 some integer for which

$$\frac{\pi}{2p(0)} + \left(n_0 - \frac{1}{2}\right)\pi < \alpha(0) < \frac{\pi}{2p(0)} + \left(n_0 + \frac{1}{2}\right)\pi.$$

The following theorem is valid.

Theorem 3.1. Let the above formulated conditions be valid with respect to a function $\alpha(\theta)$ and numbers n_i , $i = \overline{1, r}$ determined from conditions (11) and (12). Let $\alpha(\pi) \neq -\frac{\pi}{2p(\pi)} + (n_r - \frac{1}{2})\pi$. Then the system of cosines (16) forms a basis for $L_{p(\cdot)}(0, \pi)$ if and only if

$$-\frac{\pi}{2p(\pi)} + \left(n_r - \frac{1}{2}\right)\pi < \alpha(\pi) < -\frac{\pi}{2p(\pi)} + \left(n_r + \frac{1}{2}\right)\pi;$$

if $\alpha(\pi) < -\frac{\pi}{2p(\pi)} + \left(n_r - \frac{1}{2}\right)\pi$, then the system (16) is not complete in $L_{p(\cdot)}(0,\pi)$, but it is minimal; for $\alpha(\pi) > -\frac{\pi}{2p(\pi)} + \left(n_r + \frac{1}{2}\right)\pi$, it is complete, but not minimal in $L_{p(\cdot)}(0,\pi)$.

Proof. Denote by c_n , $n = \overline{0, \infty}$, the following numbers

$$\int_0^{\pi} \bar{h}_n^c(\theta) \, d\theta = c_n, \quad n = 0, 1, \dots$$

where $\bar{h}_n^c(\theta)$, $n = \overline{0, \infty}$, is biorthogonally conjugated system to system $\cos(nt - \alpha(t))$, $n = \overline{0, \infty}$. Let us show that $c_0 \neq 0$. An analytical expression for this system was derived in [32], where $a(t) = e^{i\tilde{\alpha}(t)}$, $b(t) = e^{i\tilde{\beta}(t)}$ and

$$\tilde{\alpha}\left(t\right) = \frac{\pi}{2} - t - \alpha\left(t\right), \quad \tilde{\beta}\left(t\right) = -\tilde{\alpha}\left(t\right).$$

Thus, following the work [32], we have

$$\bar{h}_{n}^{c}(\sigma) = -\frac{i}{e^{I(\sigma)}} \sum_{k=1}^{n+1} b_{n+1-k} \sin k\sigma, \qquad n = \overline{0, \infty},$$

where

$$I(\sigma) = -\frac{i}{4\pi} \int_0^{\pi} \frac{\cos\frac{\theta}{2}}{\cos\frac{\sigma}{2}} \ln\frac{b(\theta)}{a(\theta)} \left[\frac{1}{\sin\frac{\theta-\sigma}{2}} + \frac{1}{\sin\frac{\theta+\sigma}{2}} \right] d\theta =$$
$$= \frac{1}{2\pi} \int_0^{\pi} \tilde{\beta}(\theta) \frac{\cos\frac{\theta}{2}}{\cos\frac{\sigma}{2}} \left[\frac{1}{\sin\frac{\theta-\sigma}{2}} + \frac{1}{\sin\frac{\theta+\sigma}{2}} \right] d\theta.$$

Hence it follows that $I(\sigma)$ is real-valued function depending on σ on segment $[0, \pi]$. Moreover

$$\bar{h}_{0}^{c}\left(\sigma\right) = -ib_{0}e^{-I(\sigma)}\sin\sigma.$$

Since $\sin \sigma > 0$ on $(0, \pi)$, it follows that

$$A_{0} = \int_{0}^{\pi} \bar{h}_{0}^{c}\left(\sigma\right) d\sigma \neq 0.$$

Denote

$$b_n = \frac{c_n}{c_0}, \quad n = \overline{1, \infty}$$

Define the system $H_{n}^{A}\left(\theta\right), \quad n=\overline{0,\infty}$ as follows

$$H_0^A(\theta) = \frac{1}{c_0} \bar{h}_0^c(\theta) , H_n^A(\theta) = \bar{h}_n^c(\theta) - b_n \bar{h}_0^c(\theta) , \quad n = \overline{1, \infty}$$

$$(18)$$

Let us show that this system is biorthogonal to the system (16). Indeed, we have

$$(H_n^A, \cos(m\theta - \alpha(\theta))) = (\bar{h}_0^c(\theta), \cos(m\theta - \alpha(\theta))) - -b_n(\bar{h}_0^c(\theta), \cos(m\theta - \alpha(\theta))) = \delta_{nm}, \quad n, m = \overline{1, \infty},$$

and

$$(\bar{h}_n^c - b_n \bar{h}_0^c, 1) = c_n - b_n c_0 = 0.$$

Thus, the system (16) and (18) are biorthogonal. Let $\alpha(\pi) < -\frac{\pi}{2p(\pi)} + (n_r - \frac{1}{2})\pi$. Under this condition the system $\cos(nt - \alpha(t))$, $n = \frac{1}{2}$ $\overline{0,\infty}$, is not complete in $L_{p(\cdot)}(0,\pi)$. So, there exists a function $\psi(\theta) \in L_{q(\cdot)}(0,\pi)$, $\frac{1}{p(\cdot)} + \frac{1}{p(\cdot)}$ $\frac{1}{q(\cdot)} = 1$ which is not identically equal to zero, for which

$$(\overline{h}_n^c, \psi) = 0, \qquad n = \overline{0, \infty}.$$

Hence, it follows that $(H_n^c, \psi) = 0$, $n = \overline{0, \infty}$, i.e. the system (16) is not complete. For $\alpha(\pi) > -\frac{\pi}{2p(\pi)} + \left(n_r + \frac{1}{2}\right)\pi$, the minimality of the system (16) is obvious. So, let

$$-\frac{\pi}{2p(\pi)} + \left(n_r - \frac{1}{2}\right)\pi < \alpha(\pi) < -\frac{\pi}{2p(\pi)} + \left(n_r + \frac{1}{2}\right)\pi$$

In this case the system $\cos(nt - \alpha(t))$, $n = \overline{0, \infty}$, forms a basis for $L_{p(\cdot)}(0, \pi)$. Take any function $\psi(t) \in L_{p(\cdot)}(0, \pi)$ and make the following partial sum

$$S_{N} = \sum_{n=0}^{N} \left(H_{n}^{c}, \psi \right) \varphi_{n} \left(t \right),$$

where

$$\varphi_n(t) = \cos(nt - \alpha(t)), \ \varphi_0(t) \equiv 1, \quad n = \overline{1, \infty}.$$

Let us show $S_N \to \psi$, as $N \to \infty$ in $L_{p_{(\cdot)}}(0,\pi)$. We have

$$\begin{split} \|S_{N} - \psi\|_{L_{p(\cdot)}} &= \left\| \frac{1}{c_{0}} \left(\bar{h}_{0}^{c}, \psi \right) + \sum_{n=1}^{N} \left(\bar{h}_{n}^{c} - b_{n} \bar{h}_{0}^{c}, \psi \right) \varphi_{n} \left(t \right) - \psi \right\|_{L_{p(\cdot)}} = \\ &= \left\| \frac{1}{c_{0}} \left(\bar{h}_{0}^{c}, \psi \right) + \sum_{n=1}^{N} \left(\bar{h}_{n}^{c}, \psi \right) \varphi_{n} - \left(\bar{h}_{0}^{c}, \psi \right) \sum_{n=1}^{N} b_{n} \varphi_{n} - \psi \right\|_{L_{p(\cdot)}} = \\ &= \left\| \frac{1}{c_{0}} \left(\bar{h}_{0}^{c}, \psi \right) + \sum_{n=0}^{N} \left(\bar{h}_{n}^{c}, \psi \right) \varphi_{n} - \left(\bar{h}_{0}^{c}, \psi \right) \left[\sum_{n=1}^{N} b_{n} \varphi_{n} + \cos \left(\alpha \left(t \right) \right) \right] - \psi \right\|_{L_{p(\cdot)}} \le \\ &= \left\| \sum_{n=0}^{N} \left(\bar{h}_{n}^{c}, \psi \right) \varphi_{n} - \psi \right\|_{L_{p(\cdot)}} + \left\| \frac{1}{c_{0}} \left(\bar{h}_{0}^{c}, \psi \right) - \left(\bar{h}_{0}^{c}, \psi \right) \left[\sum_{n=1}^{N} b_{n} \varphi_{n} + \cos \left(\alpha \left(t \right) \right) \right] \right\|_{L_{p(\cdot)}}. \end{split}$$

Here the first term tends to zero as $N \to \infty$. The second term can be rewritten as

$$\left|\frac{1}{c_0} \left(\bar{h}_0^c, \psi\right)\right| \left\|c_0 \left[\sum_{n=1}^N b_n \varphi_n + \cos\left(\alpha\left(t\right)\right)\right] - 1\right\|_{L_{p(\cdot)}} = \left|\frac{1}{c_0} \left(\bar{h}_0^c, \psi\right)\right| \left\|\sum_{n=0}^N \left(\bar{h}_n^c, 1\right) - 1\right\|_{L_{p(\cdot)}} \to 0, \quad N \to \infty.$$

So, it is proved that

 $\|S_N - \psi\|_{L_{p(\cdot)}} \to 0, \qquad N \to \infty.$

The theorem is proved.

Considering Corollary 2.3 and Theorem 3.1, the following theorem can be easily proved.

Theorem 3.2. Let all the conditions of Theorem 2.2 hold with respect to a function $\alpha(\theta)$. Integers n_i , $i = \overline{1, r}$ are defined from the conditions (11), (12) in which n_0 is some number, that

$$\frac{\pi}{2p(0)} + \left(n_0 - \frac{1}{2}\right)\pi < \alpha(0) < \frac{\pi}{2p(0)} + n_0\pi.$$

Suppose also that $\alpha(\pi) \neq -\frac{\pi}{2p(\pi)} + n_r \pi$. Then the system

$$\exp\left[i\left(n\theta - sgnn\alpha\left(\theta\right)\right)\right] , \ n = 0, \pm 1, \dots$$
(19)

forms a basis for $L_{p(\cdot)}(-\pi,\pi)$ if and only if

$$-\frac{\pi}{2p\left(\pi\right)}+n_{r}\pi<\alpha\left(\pi\right)<-\frac{\pi}{2p\left(\pi\right)}+\left(n_{r}+\frac{1}{2}\right)\pi;$$

if $\alpha(\pi) < -\frac{\pi}{2p(\pi)} + n_r \pi$, then this system is not complete in $L_{p(\cdot)}(-\pi,\pi)$, but is minimal; for $\alpha(\pi) > -\frac{\pi}{2p(\pi)} + (n_r + \frac{1}{2})\pi$, it is complete, but is not minimal in $L_{p(\cdot)}(-\pi,\pi)$.

In conclusion, we provide one more theorem, which is equivalent in a sense to Theorem 3.1.

Theorem 3.3. Let the function $\alpha(\theta)$ satisfy all the conditions of Theorem 3.1. Integers n_i , $i = \overline{1, r}$ are determined from conditions (11), and (12). Moreover, $\alpha(\pi) \neq -\frac{\pi}{2p(\pi)} + (n_r - \frac{1}{2})\pi$. The system of functions

$$\left\{\cos\left(n\theta - \alpha\left(\theta\right)\right); \sin\left(n\theta - \alpha\left(\theta\right)\right)\right\}_{n=0}^{\infty},\tag{20}$$

forms a basis for $L_{p(.)}(-\pi,\pi)$, if and only if

$$-\frac{\pi}{2p(\pi)} + \left(n_r - \frac{1}{2}\right)\pi < \alpha(\pi) < -\frac{\pi}{2p(\pi)} + n_r\pi.$$

is hold. And, if $\alpha(\pi) < -\frac{\pi}{2p(\pi)} + (n_r - \frac{1}{2})\pi$, then the system (20) is not complete in $L_{p(\cdot)}(-\pi,\pi)$, but is minimal; for $\alpha(\pi) > -\frac{\pi}{2p(\pi)} + n_r\pi$, it is complete, but is not minimal in $L_{p(\cdot)}(-\pi,\pi)$.

4. Acknowlegment

Author would like to express his deep gratitude to corresponding member of the National Academy of Sciences of Azerbaijan, Professor Bilal T. Bilalov for his attention to this work.

References

- S.M. Ponomarev, On the theory of boundary value problems for equations of mixed type in three-dimensional domains, Dokl. Akad. Nauk SSSR vol. 246, No. 6, 1979, pp. 1303–1304.
- [2] E.I. Moiseev, On some boundary value problems for mixed type equations, Diff Uravn. vol. 28, No. 1, 1992, pp. 123–132.
- [3] E.I. Moiseev, On solution of Frankle's problem in special domain, Diff. Uravn., vol. 28, No. 4, 1992, pp. 682–692.
- [4] E.I. Moiseev, On existence and uniqueness of solution a classical problem, Dokl. RAN, vol. 336, No. 4, 1994, pp. 448–450.
- [5] A.M. Sedletskii, Biorthogonal expansions in series of exponents on intervals of real axis, Usp. Mat. Nauk, vol. 37, No. 5, 1982, pp. 51–95.
- [6] E.I. Moiseev, On basicity of systems of sines and cosines, DAN SSSR, vol. 275, No. 4, 1984, pp. 794–798.
- [7] E.I. Moiseev, On basicity of a system of sines, Diff. Uravn., vol. 23, No. 1, 1987, pp. 177–179.
- [8] B.T. Bilalov, Basicity of some systems of exponents, cosines and sines, Diff. Uravn., vol. 26, No. 1, 1990, pp. 10–16.
- B.T. Bilalov, Basis properties of some systems of exponents, cosines and sines, Sibirskiy Matem. Jurnal, vol. 45, No. 2, 2004, pp. 264–273.
- [10] E.I. Moiseev, On basicity of systems of sines and cosines in a weighted space, Diff. Uravn., vol. 34, No. 1, 1998, pp. 40–44.
- [11] E.I. Moiseev, Basicity of a system of eigenfunctions of the differential operator in the weighted space, Diff. Uravn., vol. 35, No. 2, 1999, pp.200–205.
- [12] S.S. Pukhov, A.M. Sedletskii, Bases of exponents, sines and cosines in weight spaces on finite interval, Dokl. RAN, vol. 425, No. 4, 2009, pp. 452-455.
- [13] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Springer, 2013.
- [14] I.I. Sharapudinov, Some problems of approximation theory in spaces L^{p(x)} (E), Anal. Math., vol. 33, No. 2, 2007, pp. 135–153.
- [15] B.T. Bilalov, Z.G. Guseynov, Basicity of a system of exponents with a piece-wise linear phase in variable spaces, Mediterr. J. Math., vol. 9, No. 3, 2012, pp.487–498.

- [16] B.T. Bilalov, Z.G. Guseynov, Basicity criterion for perturbed systems of exponents in Lebesgue spaces with variable summability, Dokl. RAN, vol. 436, No. 5, 2011, pp. 586–589.
- [17] B.T. Bilalov, Z.G. Guseynov, Bases from exponents in Lebesgue spaces of functions with variable summability exponent, Trans. of NAS of Az., vol. XXVIII, No. 1, 2008, pp. 43-48.
- [18] B.T. Bilalov, Z.G. Guseynov, On the basicity from exponents in Lebesgue spaces with variable exponents, TWMS J. Pure Appl. Math., vol. 1, No 1, 2010, pp. 14-23
- [19] T.I. Najafov, N.P. Nasibova, On the Noetherness of the Riemann problem in a generalized weighted Hardy classes, Azerbaijan Journal of Mathematics, vol. 5, No 2, 2015, pp.109-139.
- [20] B.T. Bilalov, On uniform convergence of series with regard to some system of sines, Diff. uravn., vol. 24, No. 1, 1988, pp. 175–177.
- [21] B.T. Bilalov, Basicity of some systems of functions, Diff. uravn., vol. 25, 1989, pp. 163–164.
- [22] G.G. Devdariani, On basicity of a system of functions, Diff. Uravn., vol. 22, No. 1, 1986, pp. 170–171.
- [23] G.G. Devdariani, On basicity of a trigonometric system of functions, Diff. Uravn., vol. 22, No. 1, 1986, pp. 168–170.
- [24] G.G. Devdariani, Basicity of a system of sines, Proc. of I.N. Venua Institute of Applied Mathematics, vol. 19, 1987, pp. 21–27.
- [25] I.I. Danilyuk, Irregular boundary value problems in the plane, Nauka, Moscow, 1975.
- [26] B.T. Bilalov, F.I. Mamedov, R.A. Bandaliev, On classes of harmonic functions with variable exponent, Dokl NAN Azerb., vol. 63, No. 5, 2007, pp. 16-21.
- [27] B.T. Bilalov, Necessary and sufficient condition for completeness of some system of functions, Differ. Uravneniya, vol. 27, No. 1, 1991, pp. 158-161.
- [28] B.T. Bilalov, Completeness and minimality of some trigonometric systems, Diff. uravneniya, vol. 28, No.1, 1992, pp. 170-173 (in Russian)
- [29] B.T. Bilalov, Basis properties of eigen functions of some not self adjoint differential operators, Differential Equations, vol.30, No.1, 1994, pp. 16-21.
- [30] B.T. Bilalov, On Bases for Some Systems of Exponentials, Cosines, and Sines in L_p, Doklady Mathematics, vol. 379, No. 2, 2001, pp. 7-9.
- [31] B.T. Bilalov, Bases of Exponentials, Sines, and Cosines, Differ. Uravn., vol. 39, No. 5, 2003, pp. 619-622.

On Basicity of a Perturbed System of Cosines with Unit in Generalized Lebesgue Spaces

- 57
- [32] B.T. Bilalov, A.A. Huseynli, M.I. Aleskerov, On the basicity of unitary system of exponents in the variable exponent Lebesgue spaces, Transactions of NAS of Azerbaijan, Issue Mathematics, vol. XXXVII, No 1, 2017, pp. 1-14.
- [33] M.I. Aleskerov, Kh.M. Gadirova, On Basicity of Perturbed Exponential System in Generalized Lebesgue Spaces, Caspian Journal of Applied Mathematics, Ecology and Economics, V. 5, No 2, 2017, pp. 105-116.

M.I. Aleskerov Ganja State University, Ganja, Azerbaijan E-mail: miran.alesgerov@mail.ru

> Received 05 September 2019 Accepted 05 March 2020