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Sampling Theory Associated with q-Sturm-Liouville Ope-

rator with Discontinuity Conditions
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Abstract. In this paper, we de�ne a q-Sturm�Liouville problem with discontinuity conditions and

prove that it is self adjoint in L2(0, π). We show that eigenfunctions of this problem are in the

form of a complete system. A sampling theorem is proved for integral transforms whose kernels

are basic functions and the integral is of Jackson's type.
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1. Introduction

Let us consider a q-Sturm-Liouville equation of the form

l(y) := −1

q
Dq−1Dqy(x) + u(x)y(x) = λy(x), 0 < x < π, λ ∈ C, (1.1)

together with the discontinuity conditions at a point a ∈ (0, π)

y(a+ 0) = γy(a− 0), Dq−1(a+ 0) = γ−1Dq−1y(a− 0), (1.2)

and boundary conditions
Dq−1y(0) = 0, y(π) = 0, (1.3)

where u(x) ∈ L2
q(0, π) real function, γ is real; γ 6= 1, γ > 0.

In [1], it is worth mentioning that this work based on the q-di�erence operator which
is attributed to Jackson. In recent years, many papers subject to the boundary value
problems consisting a q-Jackson derivative in the classical Sturm-Lioville problem have
occured. In [2]-[4], q-Sturm-Liouville problems are investigated and a space of boundary
values of the minimal operator and describe all maximal dissipative, self-adjoint, maximal
accretive and other extensions of q-Sturm-Liouville operators in terms of boundary condi-
tions are raised. A theorem on completeness of the system of eigenfunctions and associated
functions of dissipative operators are proved by using the Lidskii's theorem.
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Also, there are a lot of physical models involving q-di�erence and their related problems
in [5]-[7]. The construction of expansions in q-Fourier series ([8]) was followed by the deriva-
tion of the q-sampling theorems in [10], [11]. The sampling theory associated with q-type
of Sturm-Liouville equations is conceived (see [12]). In [13], Annaby and Mansour ob-
tained asymptotic formulae for eigenvalues and eigenfunctions of q-type of Sturm-Liouville
problems.

In [14]-[16], Allahverdiev and Tuna investigated the continuous spectrum of the sin-
gular q-Sturm-Liouville operators and established some criteria under which the q-Sturm-
Liouville equation is of limit-point case at in�nity. In [17], authors established a Parseval
equality and an expansion formula in eigenfunctions for a singular q-Sturm-Liouville oper-
ator on the whole line. (Also, Allahverdiev and Tuna investigated the resolvent operator
of a singular q-Dirac system (see [18])).

2. Preliminaries on q-calculus

In this section, some of the q-notations which will be used throughout the paper are
given. These standard notations are founded in [20].

Let q be a positive number with 0 < q < 1. The q-di�erence operator Dq is de�ned as

Dqf(x) =
f(x)− f(qx)
x(1− q)

.

When required q will be replaced by q−1. The following facts can be veri�ed directly from
the de�nition and will be used often

Dq−1f(x) = (Dqf)(q
−1x), D2

qf(q
−1x) = qDq[Dqf(q

−1x)] = Dq−1Dqf(x).

Associated with this operator there is a nonsymmetric formula for the
q-di�erentiation of a product

Dq[f(x)g(x)] = f(qx)Dqg(x) + g(x)Dqf(x). (2.1)

The q-integral usually associated with the name of Jackson is de�ned in the interval (0, π),
as ∫ π

0
f(x)dqx = (1− q)

∞∑
n=0

f(πqn)πqn.

Let L2
q(0, π) be the space of all complex-valued functions de�ned on (0, π), such that

‖f‖ =
(∫ π

0
|f(x)|2dqx

) 1
2

<∞.

The space L2
q(0, π) is a separable Hilbert space (see [9]) with the inner product

< f, g >=

∫ π

0
f(x)g(x)dqx.
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If f and g are both q-regular at zero, there is a rule of q-integration by parts given by∫ π

0
g(x)Dqf(x)dqx = (fg)(π)− (fg)(0)−

∫ π

0
Dqg(x)f(qx)dqx. (2.2)

The q appearing in the argument of f in the right-hand side integrand is another manifes-
tation of the symmetry that is everywhere present in q-calculus. As an important special
case, we have ∫ π

0
Dqf(x)dqx = (f)(π)− (f)(0). (2.3)

Theorem 2.1. (see [3]) The eigenvalues problem (1.1)-(1.3) form an in�nite sequence of
real numbers which can be ordered in an ascending way. Moreover, the set of all normalized
eigenfunctions of (1.1)-(1.3) forms an orthonormal basis for L2

q(0, π).

Essential in our discussion will be the q-Wronskian of two functions f and g de�ned as

Wq(f, g)(x) = f(x)Dqg(x)− g(x)Dqf(x). (2.4)

Theorem 2.2. (Kramer's Lemma see [21]) Let I ⊂ R be a bounded interval. K(x, t) be a
kernel belonging to L2(I) for each �xed t in a suitable subset D of R. Suppose also that,
for some sequence of points belonging to D, {K(x, λn)} is an orthogonal basis for L2(I).
Under these conditions, every function f written in the form

f(t) =

∫
I
g(x)K(x, t)dqx,

admits the sampling expansion

f(t) =
∞∑
n=0

f(λn)

∫
I K(x, λn)K(x, t)dqx∫

I |K(x, t)|2dqx
,

the sampling series converges absolutely and uniformly on every set C ⊂ D for which
‖K(x, t)‖ is bounded.

Lemma 2.1. (see [2]) Let f(.), g(.) in L2
q(0, π) be de�ned on [0, q−1]. Then, for x ∈ (0, π]

we have

< Dqf, g >= f(π)g(πq−1)− lim
n→∞

f(πqn)g(πqn−1)+ < f,−1

q
Dq−1g >, (2.5)

< −1

q
Dq−1f, g >= lim

n→∞
f(πqn−1)g(πqn)− f(piq−1)g(π)+ < f,Dqg > . (2.6)
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3. Self-Adjoint Problem

Theorem 3.1. The q-Sturm-Liouville eigenvalue problem (1.1)-(1.3) is self-adjoint on
C2
q (0) ∩ L2

q(0, π).

Proof. We �rst prove that y(.), z(.) in L2
q(0, π), we have the following q-Lagrange's identity∫ π

0

(
ly(x)z(x)− y(x)lz(x)

)
dqx = [y, z](π)− lim

n→∞
[y, z](πqn), (3.1)

where
[y, z](x) := y(x)Dq−1z(x)−Dq−1y(x)z(x). (3.2)

Applying (2.6) with f(x) = Dqy(x) and g(x) = z(x), we obtain

< −1

q
Dq−1Dqy(x), z(x) >

= − (Dqy) (πq
−1)z(π) + lim

n→∞
(Dqy) (πq

n−1)z(πqn)+ < Dqy,Dqz >

= −Dq−1y(π)z(π) + lim
n→∞

Dq−1y(πqn)z(πqn)+ < Dqy,Dqz > . (3.3)

Applying (2.5) with fx) = y(x), g(x) = Dqz(x), we obtain

< Dqy,Dqz >=y(π)Dqz(πq−1)− lim
n→∞

y(πqn)Dqz(πqn−1)

+ < y,−1

q
Dq−1Dqz >

=y(π)Dq−1z(π)− lim
n→∞

y(πqn)Dq−1z(πqn)

+ < y,−1

q
Dq−1Dqz > .

Therefore,

< −1

q
Dq−1Dqy(x), z(x) >= [y, z](π)− lim

n→∞
[y, z](πqn)+ < y,−1

q
Dq−1Dqz > . (3.4)

Lagrange's identity (3.1) results from (3.4) and the reality of u(x). Letting y(.), z(.) in
C2
q (0) and assuming the that they satisfy (1.2)-(1.3),we obtain

Dq−1y(0) = 0, Dq−1z(0) = 0. (3.5)

The continuity of y(.), z(.) at zero implies that limn→∞[y, z](πqn) = [y, z](0). Then (3.4)
will be

< −1

q
Dq−1Dqy, z >= [y, z](π)− [y, z](0)+ < y,−1

q
Dq−1Dqz > .

From (3.5), we have

[y, z](0) = y(0)Dq−1z(0)−Dq−1y(0)z(0) = 0.
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Similarly,
[y, z](π) = y(π)Dq−1z(π)−Dq−1y(π)z(π) = 0.

Since u(x) is real valued, then

< l(y), z >= < −1

q
Dq−1Dqy(x) + u(x)y(x), z(x) >

= < −1

q
Dq−1Dqy(x), z(x) > + < u(x)y(x), z(x) >

= < y,−1

q
Dq−1Dqz > + < y(x), u(x)z(x) >

= < y, l(z) >,

i.e. l is a self-adjoint operator.

A λ de�nes as an eigenvalue of the problem (1.1)-(1.3) if there is a non-trivial solution
η(.) which satis�es the problem at this λ. η(.) is an eigenfunction of the problem (1.1)-(1.3)
corresponding to the eigenvalue λ. The multiplicity of an eigenvalue is de�ned to be the
number of linearly independent solutions corresponding to it. In particular an eigenvalue
is simple if only if it has only one linearly independent solution.

Lemma 3.1. Let f and g be q-regular at zero. The Wronskian Wq(f, g)(x) of the q-Sturm-
Liouville problem (1.1) does not defend on x.

Proof. The proof can be done similar to [12].

Let η(x, λ) be the solution of equation (1.1) with discontinuity conditions (1.2) and
initial conditions

η(0, λ) = 1, Dq−1η(0, λ) = 0, (3.6)

and ξ(x, λ) be the solution of equation (1.1) with discontinuity conditions (1.2) and

ξ(π, λ) = 0, Dq−1ξ(π, λ) = 1. (3.7)

Since the q-Wronskian is independent of x, we can evaluate it at x = π and use the above
conditions on ξ in order to write

Wq(η, ξ)(λ) =Wq(λ) = −η(π, λ) = Dq−1ξ(0, λ). (3.8)

It follows from the condition (1.3) that Wq(λ) = 0 if and only if λ is an eigenvalue of
q-Sturm-Liouville problem (1.1).

Lemma 3.2. The eigenvalues and eigenfunctions of the q-Sturm-Liouville problem (1.1)-
(1.3) have the following properties:

i. The eigenvalues are real.

ii. Eigenfunctions that belong to di�erent eigenvalues are orthogonal.
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iii. All eigenvalues are simple.

Proof. i. Let λ0 be an eigenvalue with an eigenfunction η0(.). Then,

< l(η0), η0 >=< η0, l(η0) > . (3.9)

Since l(η0) = λ0η0, then

(λ0 − λ0)
∫ π

0
|η0(x)|2dqx. (3.10)

Since η0(.)is nontrivial then λ0 = λ0, which proves i.

ii. Let λ, µ be two distinct eigenvalues with corresponding eigenfunctions η(.), ξ(.),
respectively. Then,

(λ− µ)
∫ π

0
η(x)ξ(x)dqx = 0.

Since λ ≡ µ,then η(.) and ξ(.) are orthogonal.

iii. Let λ0 be an eigenvalue with two eigenfunctions η1(.) and η2(.). From [2] (see Corol-
lary 2.15) we can prove that the functions {η1(.), η2(.)} are linearly dependent by
proving that their q-Wronskian vanishes at x = 0. Indeed,

Wq(η1, η2)(0) = η1(0)Dqη2(0)− η2(0)Dqη1(0)

= η1(0)Dq−1η2(0)− η2(0)Dq−1η1(0) = [η1, η2] = 0,

since both η1 and η2 satisfy (1.3).

4. The q-sampling theory

Theorem 4.1. Let η(x, λ) and ξ(x, λ) be the solutions of (1.1) selected as above. Then
every function f of the form

f(λ) =

∫ π

0
u(x)η(x, λ)dqx, u ∈ L2

q(0, π), (4.1)

can be written as the Lagrange-type sampling expansion

f(λ) =
∞∑
n=0

f(λn)
Wq(λ)

Ẇq(λn)(λn − λ)
, (4.2)

where Wq(λ) is the q-Wronskian of the functions η(x, λ) and ξ(x, λ).

Proof. Multiply equation (1.1) by η(x, λn). Then consider again equation (1.1), but replace
λ by λn and multiply this last equation by η(x, λ). Subtracting the two results yields

(λ− λn)η(x, λ)η(x, λn) = D2
qη(q

−1x, λn)η(x, λ)−D2
qη(q

−1x, λ)η(x, λn).
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From the rule for the q-di�erentiation of a product (2.1), we can write

(λ− λn)η(x, λ)η(x, λn) = Dq

[
Dqη(q

−1x, λn)η(x, λ)−Dqη(q
−1x, λ)η(x, λn)

]
.

Performing a q-integration by means of (2.3) gives

(λ− λn)
∫ π

0
η(x, λ)η(x, λn)dqx

=

∫ π

0
Dq

[
Dqη(q

−1x, λn)η(x, λ)−Dqη(q
−1x, λ)η(x, λn)

]
dqx

=Dqη(q
−1π, λn)η(π, λ)−Dqη(q

−1π, λ)η(π, λn)

−
(
Dqη(q

−10, λn)η(0, λ)−Dqη(q
−10, λ)η(0, λn)

)
.

From (1.3) and (3.6) conditions, we get

(λ− λn)
∫ π

0
η(x, λ)η(x, λn)dqx =Dqη(q

−1π, λn)η(π, λ)−Dqη(q
−1π, λ)η(π, λn)

=η(π, λ)Dq−1η(π, λn)− η(π, λn)Dq−1η(π, λ).

From (3.8), we have

(λ− λn)
∫ π

0
η(x, λ)η(x, λn)dqx = −Wq(λ)Dq−1η(π, λn) +Wq(λn)Dq−1η(π, λ).

From λn eigenvalues be zeros ofWq(λ) characteristic function of q-Sturm-Liouville problem
(1.1)-(1.3), we obtain Wq(λn) = 0. Then, we have

(λ− λn)
∫ π

0
η(x, λ)η(x, λn)dqx = −Wq(λ)Dq−1η(π, λn).

As a result ∫ π

0
η(x, λ)η(x, λn)dqx =

−Wq(λ)Dq−1η(π, λn)

(λ− λn)
,

and taking the limit a λ→ λn gives∫ π

0
|η(x, λn)|2dqx = −Ẇq(λn)Dq−1η(π, λn).

We can therefore apply Kramer's lemma and write an integral transform of the form (4.1)
as

f(λ) =
∞∑
n=0

f(λn)
Wq(λ)

Ẇq(λn)(λn − λ)
. (4.3)
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