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Abstract. We introduce advances in the study of k−Pell and k−Pell-Lucas numbers. Then
we give some properties of these families and find the generating functions of the families for
some k. In addition, we identify the relationships between the family of k−Pell numbers and the
classical Pell numbers as well as the family of k−Pell-Lucas numbers and the classical Pell-Lucas
numbers. Further, we define generalized polynomials for these numbers. We also obtain some useful
properties of these polynomials. Additionally, we give the relationships between the generalized
k−Pell polynomials and the classical Pell polynomials as well as the generalized k−Pell-Lucas
polynomials and the classical Pell-Lucas polynomials. These generalizations are given in matrix
representation. Results in this paper include Cassini identities for these families and polynomials.
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1. Introduction

Fibonacci sequences have many important properties as well as a broad range of ap-
plications in many areas of sciences [15, 17, 19, 20, 21]. Some authors have worked on a
new family of k-Fibonacci numbers [1, 3, 7, 16, 18].

Many authors have been interested in Pell numbers and their applications [2, 4, 5, 6,
8, 9, 10, 11, 12, 13, 14, 22].

In [7], they showed that general k−Fibonacci numbers were related to a matrix.

In [4], they studied the generalized Binet’s formula, the generating function and some
identities for r−Pell numbers.

One of the latest works in this area is [21] where it was defined new families of Gauss
k−Lucas numbers and the generalized polynomials for these numbers. They gave some
properties of these numbers and their polynomials. They proved some theorems related
to these numbers and their polynomials.

In this paper, we shall be interested in new families of k−Pell numbers, k−Pell-Lucas
numbers and their polynomials.
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2. Preliminaries

Now, we introduce Pell numbers Pn, Pell-Lucas numbers Qn, Pell M−matrix, Pell-
Lucas FM−matrix and Pell polynomials Pn(x), Pell-Lucas polynomials Qn(x), the Pell
polynomials Qn P−matrix and Pell -Lucas polynomials QnR−matrix.

Definition 2.1. The Pell numbers Pn are defined by the recurrence relations

Pn = 2Pn−1 + Pn−2

for n ≥ 2 with initial values P0 = 0 and P1 = 1.[12]

Definition 2.2. The Pell-Lucas numbers Qn are defined by the recurrence relations

Qn = 2Qn−1 +Qn−2

for n ≥ 2 with initial values Q0 = 2and Q1 = 2.[12]

Binet formulas for Pn and Qn are given by as follows

Pn =
αn − βn

α− β
(1)

and
Qn = αn + βn (2)

where α = 1 +
√

2 and β = 1−
√

2.[12]
One can also be obtained the members of these integer sequences in different ways. In

[4],[11], they showed:

Mn =

[
Pn+1 Pn

Pn Pn−1

]
and

FMn =

[
Qn+1 Qn

Qn Qn−1

]

where M =

[
2 1
1 0

]
and F =

[
2 2
2 −2

]
respectively. The matrices M and FM are

called the Pell F−matrix and Pell-Lucas FM−matrix, respectively.[5]

Definition 2.3. The Pell and the Pell-Lucas polynomial Pn(x) and Qn(x) are defined by
the following recurrence relations

Pn(x) = 2Pn−1(x) + Pn−2(x)

for n ≥ 2 with initial values P0(x) = 0 and P1(x) = 1 and

Qn(x) = 2Qn−1(x) +Qn−2(x)

for n ≥ 2 with initial values Q0(x) = 2 and Q1 = 2x.[13]
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Binet formulas for Pn(x) and Qn(x) are given by as follows

Pn(x) =
αn(x)− βn(x)

α(x)− β(x)
(3)

and
Qn = αn(x) + βn(x) (4)

where α = x+
√
x2 + 1 and β = x−

√
x2 + 1.[13]

One can also be obtained the members of these integer sequences in different ways. In
[5], [13], they showed:

Mn =

[
Pn+1(x) Pn(x)
Pn(x) Pn−1(x)

]
where M =

[
2x 1
1 0

]
.[5]

Then n ≥ 1 [
Qn+1(x)
Qn(x)

]
= Mn

[
2x
2

]
.

3. Main results

Definition 3.1. For n, k ∈ N(k 6= 0), there are only numbers m and r such that n =

mk + r and 0 ≤ r < k. The generalized k−Pell numbers P
(k)
n are defined by

P (k)
n =

1

(2
√

2)k
(αm − βm)k−r (αm+1 − βm+1

)r
, n = mk + r

where α = 1 +
√

2 and β = 1−
√

2.

Also, we can find the generalized k−Pell numbers by matrix methods. Indeed, it is
clear that

P k−1
n Mn =

[
P

(k)
kn+1 P

(k)
kn

P
(k)
kn P

(k)
kn−1

]

where M =

[
2 1
1 0

]
.

Let’s give some values for the generalized k−Pell numbers in the Table 1.
From (5), we get the following relation

P (k)
n = (Pm)k−r(Pm+1)

r, n = mk + r (5)

If k = 1 in last equation, we have that m = n and r=0 so P
(1)
n = Pn.

Throughout this paper, let k,m ∈ {1, 2, 3, . . .}.
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Table 1:

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

P
(k)
0 0 0 0 0 0 0

P
(k)
1 1 0 0 0 0 0

P
(k)
2 2 1 0 0 0 0

P
(k)
3 5 2 1 0 0 0

P
(k)
4 12 4 2 1 0 0

P
(k)
5 29 10 4 2 1 0

Theorem 3.2. For k and m, we have

P k
m+1 − P k

m = [P
(k)
mk+k − P

(k)
mk ].

Proof. From (5), we have

P
(k)
mk+k − P

(k)
mk = [(Pm)k−k(Pm+1)

k]− [(Pm)k−0(Pm+1)
0]

= (Pm+1)
k − (Pm)k.

For n, we have the following interesting properties related to these numbers.

P
(2)
2n = P 2

n ,

P
(2)
2n+1 = PnPn+1,

P
(2)
2n+1 = 2P (2)

n + P
(2)
n−1.

Theorem 3.3. We have that the generating function for P
(2)
n is

G(2)
n (z) =

1

−z4 − 2z3 − 2z + 1
.

Proof. By using definition 4. and the following formal power series forP
(2)
n (z), P

(2)
n (z) =∑n

i=1 P
(2)
i zi, we have

P (2)
n (z) = z + z2 + z3 + 3z4 + 9z5 + 15z6 + 25z7 + ...

2zP (2)
n (z) = 2z2 + 2z3 + 2z4 + 6z5 + 18z6 + 30z7 + 50z8 + ...

2z3P (2)
n (z) = 2z4 + 2z5 + 2z6 + 6z7 + 18z8 + 30z9 + 50z10 + ...

z4P (2)
n (z) = z5 + z6 + z7 + 3z8 + 9z9 + 15z10 + 25z11 + ...

Operations [−z4P (2)
n (z)− 2z3P

(2)
n (z)− 2zP

(2)
n (z) + P

(2)
n (z)] give

(−z4 − 2z3 − 2z + 1)P (2)
n (z) = 1
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Hence, the generating function G
(2)
n (z) for P

(2)
n (z) is

G(2)
n (z) =

1

−z4 − 2z3 − 2z + 1

which concludes the proof.

For n, the generalized 3−Pell numbers and the known Pell numbers satisfy

P
(3)
3n = P 3

n ,

P
(3)
3n+1 = P 2

nPn+1

P
(3)
3n+2 = PnP

2
n+1,

P
(3)
3n+1 = 2P

(3)
3n + P

(3)
3n−1.

Here we note that P
(3)
−1 = 0. More generally, we have P

(k)
−n = 0. fork = 1, 2, . . ..

For fixed numbers n, the generalized 4−Pell numbers and the known Pell numbers
satisfy

Theorem 3.4. For n, we have the relation

P
(k)
kn+1 = 2P

(k)
kn + P

(k)
kn−1.

Proof.

2P
(k)
kn + P

(k)
kn−1 = 2P k

n + Pn−1P
k−1
n

= P k−1
n (2Pn + Pn−1)

= P k−1
n Pn+1

= P
(k)
kn+1.

Theorem 3.5. For n, s ≥ 0 and n+ s > 1, we have

P
(2)
2(n+s−1) − Pn+sPn+s−2 = (−1)n+s

Proof. For n+ s = a, we get

P
(2)
2(a−1) − PaPa−2 = (−1)a.

We will prove the theorem by the induction method on a. For a = 2,we have

P
(2)
2(2−1) − P2P2−2 = 1− 2.0 = (−1)2−2.

Now, assume that the theorem holds for a = k, that is

P
(2)
2(k−1) − PkPk−2 = (−1)k.
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Then, for a = k + 1, we have

P
(2)
2(k+1−1) − Pk+1Pk+1−2 = (−1)k+1,

P
(2)
2(k+1−1) = P 2

k ,

P 2
k − Pk+1Pk−1 = (2Pk−1 + Pk−2)

2 − (2Pk + Pk−1)Pk−1

= 4P 2
k−1 + 4Pk−1Pk−2 + P 2

k−2 − [2(2Pk−1 + Pk−2) + 2Pk−1]Pk−1

= 4P 2
k−1 + 4Pk−1Pk−2 + P 2

k−2 − 5P 2
k−1 − 2Pk−1Pk−2

= −P 2
k−1 + 2Pk−1Pk−2 + P 2

k−2

= −P 2
k−1 + Pk−2(2Pk−1 + Pk−2)

= −P 2
k−1 + PkPk−2

= −(P 2
k−1 − PkPk−2)

= (−1)(−1)k

= (−1)k+1.

Theorem 3.6. Let P
(k)
n be generalized k-Pell numbers. For n, k ≥ 2, Cassini’s Identity

for P
(k)
n is as follows:

P
(k)
kn+tP

(k)
kn+t−2 − (P

(k)
kn+t−1)

2 =

{
P 2k−2
n (−1)n, t = 1

0, t 6= 1

}
.

Proof. By using definition 4, we get

P
(k)
kn+tP

(k)
kn+t−2 − (P

(k)
kn+t−1)

2 = (P k−1
n Pn+t)(P

k−1
n Pn+t−2)− (P k−1

n Pn+t−1)
2

= (P k−1
n )2(Pn+tPn+t−2 − (Pn+t−1)

2)

= P 2k−2
n (Pn+tPn+t−2 − (Pn+t−1)

2)

For t = 1;

= P 2k−2
n (Pn+1Pn−1 − (Pn)2)

= P 2k−2
n (−1)n.

For t 6= 1, t = m, (m ∈ N);

= P 2k−2
n (Pn+mPn+m−2 − (Pn+m−1)

2)

= P 2k−2
n (P

(2)
2n+2m−2 − P

(2)
2n+2m−2)

= 0.
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Definition 3.7. For n, k ∈ N(k 6= 0), there are only numbers m and r such that n =

mk + r and 0 ≤ r < k. Then we define the generalized k−Pell-Lucas numbers Q
(k)
n by

Q(k)
n := (αm + βm)k−r(αm+1 + βm+1)r

where α = 1 +
√

2 and β = 1−
√

2.

We can obtain the generalized k-Pell-Lucas numbers by matrixes as follows:

Qk−1
n FMn =

[
Q

(k)
kn+1 Q

(k)
kn

Q
(k)
kn Q

(k)
kn−1

]

Let’s give some values for the generalized k−Pell-Lucas numbers in the Table 2.

Table 2:

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Q
(k)
0 2 4 8 16 32 64

Q
(k)
1 2 4 8 16 32 64

Q
(k)
2 6 4 8 16 32 64

Q
(k)
3 14 12 8 16 32 64

Q
(k)
4 34 36 24 16 32 64

Q
(k)
5 82 84 72 48 32 64

From (6) and Definition 5, we have the relation

Q(k)
n := (Qm)k−r(Qm+1)

r, n = mk + r (6)

When k = 1 in last equation, we get that m = n and r = 0 so Q
(1)
n = Qn.

Theorem 3.8. For k and m, we have the following relation between the generalized
k−Pell-Lucas numbers and the known Pell-Lucas numbers

[(Qm+1)
k − (Qm)k] = [Q

(k)
(m+1)k −Q

(k)
mk]. (7)

Proof. From (6), we get

Q
(k)
(m+1)k −Q

(k)
mk = [(Qm)k−k(Qm+1)

k]− [(Qm)k−0(Qm+1)
0]

= (Qm+1)
k − (Qm)k.

For k = 2, 3, 4 and n, we have the interesting following properties between these
numbers.
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Q
(2)
2n = Q2

n,

Q
(2)
2n+1 = QnQn+1,

Q
(3)
3n = Q3

n,

Q
(3)
3n+1 = Q2

nQn+1,

Q
(3)
3n+2 = QnQ

2
n+1,

Q
(4)
4n = Q4

n,

Q
(4)
4n+1 = Q3

nQn+1,

Q
(4)
4n+2 = Q2

nQ
2
n+1,

Q
(4)
4n+3 = QnQ

3
n+1.

Theorem 3.9. For n, we have the relation

Q
(k)
kn+1 = 2Q

(k)
kn +Q

(k)
kn−1.

Proof. By using (6), we get

2Q
(k)
kn +Q

(k)
kn−1 = 2Qk

n +Qn−1Q
k−1
n

= Qk−1
n (2Qn +Qn−1)

= Qk−1
n Qn+1

= Q
(k)
kn+1.

Theorem 3.10. For n, k ≥ 2, Cassini’s Identity for Q
(k)
n is as follows:

Q
(k)
kn+tQ

(k)
kn+t−2 − (Q

(k)
kn+t−1)

2 =

{
Q2k−2

n (−1)n+18, t = 1
0, t 6= 1

}
.

Proof. By using (6), we get

Q
(k)
kn+tQ

(k)
kn+t−2 − (Q

(k)
kn+t−1)

2 = (Qk−1
n Qn+t)(Q

k−1
n Qn+t−2)− (Qk−1

n Qn+k−1)
2

= (Qk−1
n )2(Qn+tQn+t−2 − (Qn+k−1)

2)

= Q2k−2
n (Qn+tQn+t−2 − (Qn+k−1)

2)

For t = 1;

= Q2k−2
n (Qn+1Qn−1 − (Qn)2)

= Q2k−2
n (−1)n+18.
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For t 6= 1, t = m, (m ∈ N);

= Q2k−2
n (Qn+tQn+t−2 − (Qn+k−1)

2)

= Q2k−2
n (Q

(2)
2n+2n−2 −Q

(2)
2n+2n−2)

= 0.

For t = 0, 1, 2, . . . , k − 1, we obtain the following relations:

P
(k)
nk+t = P k−t

n P t
n+1

and

Q
(k)
nk+t = Qk−t

n Qt
n+1.

Definition 3.11. For n, k ∈ N(k 6= 0), there are only numbers m and r such that n =

mk + r and 0 ≤ r < k. Then we define the generalized k-Pell polynomials P
(k)
n (x) by

P (k)
n (x) :=

(
αm(x)− βm(x)

α(x)− β(x)

)k−r (αm+1 − βm+1

α(x)− β(x)

)r

, n = mk + r

where α(x) = x+
√
x2 + 1 and β(x) = x−

√
x2 + 1.

Moreover, we can obtain the generalized k−Pell polynomials by matrixes as follows:

P k−1
n+1M

n =

[
P

(k)
kn+k+1 P

(k)
kn+k

P
(k)
kn+k P

(k)
kn+k−1

]
.

Let’s give sample values for the generalized k−Pell polynomials in Table 3.

Table 3:

k = 1 k = 2 k = 3 k = 4

P
(k)
0 (x) 0 0 0 0

P
(k)
1 (x) 1 0 0 0

P
(k)
2 (x) 2x 1 0 0

P
(k)
3 (x) 1 + 4x2 2x 1 0

P
(k)
4 (x) 4x+ 8x3 4x2 2x 16

P
(k)
5 (x) 1 + 12x2 + 16x4 2x+ 8x3 4x2 2x

The generalized k−Pell polynomials and known Pell polynomials are related by

P (k)
n (x) := (Pm(x))k−r(Pm+1(x))r, n = mk + r (8)

When k = 1in last equation, we get that m = n and r = 0 so P
(1)
n (x) = Pn(x).
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Theorem 3.12. For k and m, we have the following relationship between the generalized
k− Pell polynomials and the classical Pell polynomials

[(Pm+1(x))k − (Pm(x))k] = [P
(k)
(m+1)k(x)− P (k)

mk (x)].

Proof. From (8), we get

[P
(k)
(m+1)k(x)− P (k)

mk (x)] = [(Pm(x))k−k(Pm+1(x))k]− [(Pm(x))k−0(Pm+1(x))0]

= (Pm+1(x))k − (Pm(x))k.

The following equations are provided.

P
(2)
2n (x) = P 2

n(x),

P
(2)
2n+1 = Pn(x)Pn+1(x),

P
(2)
2n+1 = 2xP

(2)
2n (x) + P

(2)
2n−1(x),

P
(3)
3n (x) = P 3

n(x),

P
(3)
3n+1 = P 2

n(x)Pn+1(x),

P
(3)
3n+2 = Pn(x)P 2

n+1(x),

P
(3)
3n+1 = 2xP

(3)
3n (x) + P

(3)
3n−1(x),

P
(4)
4n (x) = P 4

n(x),

P
(4)
4n+1 = P 3

n(x)Pn+1(x),

P
(4)
4n+2 = P 2

n(x)P 2
n+1(x),

P
(4)
4n+3 = Pn(x)P 3

n+1(x),

P
(4)
4n+1 = 2xP

(4)
4n (x) + P

(4)
4n−1(x).

Theorem 3.13. For n, we have the following relation

P
(k)
kn+1 = 2xP

(k)
kn (x) + P

(k)
kn−1(x).

Proof. From (8), we have

2xP
(k)
kn (x) + P

(k)
kn−1(x) = 2xP k

n (x) + Pn−1(x)P k−1
n (x)

= P k−1
n (x)(2xPn(x) + Pn−1(x))

= P k−1
n (x)Pn+1(x)

= P
(k)
kn+1(x).
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Theorem 3.14. For n, k ≥ 2, Cassini’s Identity for P
(k)
n (x) is as follows:

P
(k)
kn+t(x)P

(k)
kn+t−2(x)− (P

(k)
kn+t−1(x))2 =

{
P 2k−2
n (x)(−1)n, t = 1

0, t 6= 1

}
.

Proof. By using (8) we get

P
(k)
kn+t(x)P

(k)
kn+t−2(x)− (P

(k)
kn+t−1(x))2 = (P k−1

n (x)Pn+t(x))(P k−1
n (x)Pn+t−2(x))−

− (P k−1
n (x)Pn+t−1(x))2

= (P k−1
n (x))2(Pn+t(x)Pn+t−2(x)− (Pn+t−1(x))2)

= P 2k−2
n (x)(Pn+t(x)Pn+t−2(x)− (Pn+t−1(x))2)

For t = 1;

= P 2k−2
n (x)(Pn+1(x)Pn−1(x)− (Pn(x))2)

= P 2k−2
n (x)(−1)n.

For t 6= 1, t = m, (m ∈ N);

= P 2k−2
n (x)(Pn+m(x)Pn+m−2(x)− (Pn+m−1(x))2)

= P 2k−2
n (x)(P

(2)
2n+2m−2(x)− P (2)

2n+2m−2(x))

= 0.

Definition 3.15. For n, k ∈ N(k 6= 0), there are only numbers m and r such that n =

mk + r and 0 ≤ r < k. Then we define the generalized k−Pell-Lucas polinomials Q
(k)
n (x)

by

Q(k)
n (x) := (αm(x) + βm(x))k−r(αm+1(x) + βm+1(x))r

where α = x+
√
x2 + 1 and β = x−

√
x2 + 1.

Moreover, we can obtain the generalized k-Pell-Lucas polynomials by matrixes as fol-
lows: [

Q
(k)
kn+k+1(x)

Q
(k)
kn+1(x)

]
= Qk−1

n+1(x)Mn

[
2x
2

]
.

Let’s give sample values for the generalized k−Pell-Lucas polynomials Q
(k)
n (x) in the

Table 4.
The generalized k-Pell-Lucas polynomials and the classical Pell-Lucas polynomials are

related by
Q(k)

n (x) := (Qm(x))k−r(Qm+1(x))r, n = mk + r (9)

When k = 1 in last equation, we get that m = n and r = 0 so Q
(1)
n (x) = Qn(x).
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Table 4:

k = 1 k = 2 k = 3 k = 4

Q
(k)
0 2 4 8 16

Q
(k)
1 2x 4x 8x 16x

Q
(k)
2 2 + 4x2 4x2 8x2 16x2

Q
(k)
3 6x+ 8x3 4x+ 8x3 8x3 16x3

Q
(k)
4 2 + 16x2 + 16x4 4 + 16x+ 16x4 8x2 + 16x4 16x4

Q
(k)
5 10x+ 40x3 + 32x5 12x+ 40x3 + 32x5 8x+ 32x3 + 32x5 16x3 + 32x5

Theorem 3.16. For fixed k and m, we have

[(Qm+1(x))k − (Qm(x))k] = [Q
(k)
(m+1)k(x)−Q(k)

mk(x)].

Proof. From (9), we have

Q
(k)
(m+1)k(x)−Q(k)

mk(x) = [(Qm(x))k−k(Qm+1(x))k]− [(Qm(x))k−0(Qm+1(x))0]

= (Qm+1(x))k − (Qm(x))k.

The following equations are provided.

Q
(2)
2n (x) = Q2

n(x),

Q
(2)
2n+1(x) = Qn(x)Qn+1(x),

Q
(3)
3n (x) = Q3

n(x),

Q
(3)
3n+1(x) = Q2

n(x)Qn+1(x),

Q
(3)
3n+2(x) = Qn(x)Q2

n+1(x),

Q
(4)
4n (x) = Q4

n(x),

Q
(4)
4n+1(x) = Q3

n(x)Qn+1(x),

Q
(4)
4n+2(x) = Q2

n(x)Q2
n+1(x),

Q
(4)
4n+3(x) = Qn(x)Q3

n+1(x).

Theorem 3.17. For fixed natural numbers n, we have

Q
(k)
kn+1(x) = 2xQ

(k)
kn (x) +Q

(k)
kn−1(x).

Proof. By using (9), we get

2xQ
(k)
kn (x) +Q

(k)
kn−1(x) = 2xQk

n(x) +Qn−1(x)Qk
n−1(x)
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= Qk−1
n (x)(2xQn(x) +Qn−1(x))

= Qk−1
n (x)Qn+1(x)

= Q
(k)
kn+1(x).

Theorem 3.18. For n, k ≥ 2, Cassini’s Identity for Q
(k)
n (x) is as follows:

Q
(k)
kn+t(x)Q

(k)
kn+t−2(x)− (Q

(k)
kn+t−1(x))2 =

{
Q2k−2

n (x)(−1)n−14(1 + x2), t = 1
0, t 6= 1

}
Proof. From (9), we get

Q
(k)
kn+t(x)Q

(k)
kn+t−2(x)− (Q

(k)
kn+t−1(x))2 = (Qk−1

n (x)Qn+t(x))(Qk−1
n (x)Qn+t−2(x))−

− (Qk−1
n (x)Qn+k−1(x))2

= (Qk−1
n (x))2(Qn+t(x)Qn+t−2(x)− (Qn+k−1(x))2)

= Q2k−2
n (x)(Qn+t(x)Qn+t−2(x)− (Qn+k−1(x))2)

For t = 1;

= Q2k−2
n (x)(Qn+1(x)Qn−1(x)− (Qn(x))2)

= Q2k−2
n (x)(−1)n−14(1 + x2).

For t 6= 1, t = m, (m ∈ N);

= Q2k−2
n (x)(Qn+m(x)Qn+m−2(x)− (Qn+m−1(x))2)

= Q2k−2
n (x)(Q

(2)
2n+2m−2(x)−Q(2)

2n+2m−2(x))

= 0.

For t = 0, 1, 2, . . . , k − 1, we obtain the following relations:

P
(k)
nk+t(x) = P k−t

n (x)P t
n+1(x)

and

Q
(k)
nk+t(x) = Qk−t

n (x)Qt
n+1(x).

Conclusion

In the present paper, we defined new families of k−Pell, k− Pell-Lucas numbers and
their polynomials. We obtained the generating functions of the families for some k. We
gave some relations among these families and the classical Pell numbers and the classical
Pell-Lucas numbers. Further, we introduced the polynomials for these families. Then we
gave relations among their polynomials and the classical Pell polynomials and the classical
Pell-Lucas polynomials. Moreover, we showed these generalizations in matrixes. Also, we
proved Cassini identities for these families and polynomials.
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[21] Özkan, E., and Taştan, M. On a new family of Gauss k-Lucas num-
bers and their polynomials. Asian-European Journal of Mathematics (accepted)
https://doi.org/10.1142/S1793557121501011

[22] Panda, G.K., and Sahukar, M.K. 2020. Repdigits in Euler functions of associated pell
numbers. Proc Math Sci 130(25): 1-8.

Engin ÖZKAN
Department of Mathematics, Erzincan Binali Yıldırım University, Faculty of Arts and Sciences,
Erzincan, Turkey.
E-mail: eozkanmath@gmail.com or eozkan@erzincan.edu.tr

Merve TAŞTAN
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