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On the New Families of k— Pell Numbers and k— Pell-
Lucas Numbers and Their Polynomials
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Abstract. We introduce advances in the study of k—Pell and k—Pell-Lucas numbers. Then
we give some properties of these families and find the generating functions of the families for
some k. In addition, we identify the relationships between the family of k—Pell numbers and the
classical Pell numbers as well as the family of k—Pell-Lucas numbers and the classical Pell-Lucas
numbers. Further, we define generalized polynomials for these numbers. We also obtain some useful
properties of these polynomials. Additionally, we give the relationships between the generalized
k—Pell polynomials and the classical Pell polynomials as well as the generalized k—Pell-Lucas
polynomials and the classical Pell-Lucas polynomials. These generalizations are given in matrix
representation. Results in this paper include Cassini identities for these families and polynomials.
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1. Introduction

Fibonacci sequences have many important properties as well as a broad range of ap-
plications in many areas of sciences [15, 17, 19, 20, 21]. Some authors have worked on a
new family of k-Fibonacci numbers [1, 3, 7, 16, 18].

Many authors have been interested in Pell numbers and their applications [2, 4, 5, 6,
8,9, 10, 11, 12, 13, 14, 22].

In [7], they showed that general k—Fibonacci numbers were related to a matrix.

In [4], they studied the generalized Binet’s formula, the generating function and some
identities for r—Pell numbers.

One of the latest works in this area is [21] where it was defined new families of Gauss
k—Lucas numbers and the generalized polynomials for these numbers. They gave some
properties of these numbers and their polynomials. They proved some theorems related
to these numbers and their polynomials.

In this paper, we shall be interested in new families of k—Pell numbers, k—Pell-Lucas
numbers and their polynomials.
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2. Preliminaries

Now, we introduce Pell numbers P,,, Pell-Lucas numbers @,, Pell M —matrix, Pell-
Lucas F'M—matrix and Pell polynomials P, (z), Pell-Lucas polynomials @, (x), the Pell
polynomials " P—matrix and Pell -Lucas polynomials Q™ R—matrix.

Definition 2.1. The Pell numbers P,, are defined by the recurrence relations
P,=2P, 1+ P,

for n > 2 with initial values Py =0 and P; = 1.[12]

Definition 2.2. The Pell-Lucas numbers Q,, are defined by the recurrence relations
Qn = 2Qn-1+ Qn—2

for n > 2 with initial values Qo = 2and Q1 = 2.[12]

Binet formulas for P, and @),, are given by as follows

_an_ﬁn
and
n=a"+g" (2)

where a =14++v2and B =1— ﬂ.[12]
One can also be obtained the members of these integer sequences in different ways. In
[4],[11], they showed:

Pn Pn—l
and
Qny1 Qn }
FM"™ =
|: Qn anl
2 1 2 2 . .
where M = 10 and F = 9 _o respectively. The matrices M and F'M are

called the Pell F'—matrix and Pell-Lucas F'M —matrix, respectively.[5]

Definition 2.3. The Pell and the Pell-Lucas polynomial P,(x) and Qn(z) are defined by
the following recurrence relations

Pp(x) = 2P,—1(x) + Pr—2(z)
for n > 2 with initial values Po(z) =0 and Py(z) =1 and

Qn () = 2Qn-1(7) + Qn2(x)
for n > 2 with initial values Qo(x) = 2 and Q1 = 2x.[13]
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Binet formulas for P,(z) and Q,(z) are given by as follows

a"(z) — f"(x)

B = @)

(3)
and

Qn = a"(z) + " (z) (4)
where o = + Va2 + 1 and 8 =z — Va? + 1.[13]

One can also be obtained the members of these integer sequences in different ways. In
[5], [13], they showed:

= | T e ]

where M = [ 213: é }[5]

Then n > 1

)= 5]

3. Main results

Definition 3.1. For n,k € N(k # 0), there are only numbers m and r such that n =
mk+1r and 0 < r < k. The generalized k— Pell numbers Pﬁ’“) are defined by

1
(k) _ m _ pgm\k—r ( m+1  gm+1\" _
Py _(Qﬁ)k(a A (a B n=mk+r
wherea:1+\/§and5:1—\/§.

Also, we can find the generalized k—Pell numbers by matrix methods. Indeed, it is
clear that

k k
Pkgn)-&— 1 Plgn)

k k

Prlz,‘—an —

10
Let’s give some values for the generalized k—Pell numbers in the Table 1.
From (5), we get the following relation

P®) — (P (Ppy)" n = mk +7 (5)

Where]\J—[2 1}

If £ =1 in last equation, we have that m = n and r=0 so PT(LI) = P,.
Throughout this paper, let k,m € {1,2,3,...}.
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Table 1:

k=1 k=2 k=3 k=4 k=5 k=6
PP o 0 0 0 0 0
r® 0 0 0 0 0
o 1 0 0 0 0
PP s 2 1 0 0 0
PP 12 4 2 1 0 0
P 29 10 4 2 1 0

Theorem 3.2. For k and m, we have

k k
P7]Z+1_P7’7€1:[P7(nk)+k_P7(nk)]'

Proof. From (5), we have

P = PE = (B (Pas)"] = [(Pa)* O (Pruin)")
= (Pm+1)k - (Pm)k

For n, we have the following interesting properties related to these numbers.

)
P2 — pp

2n+1 ntn+l,

2 2
Py, = 2P® 4 PP

Theorem 3.3. We have that the generating function for P7(l2) 18

1
ozt 228 - 2241

Proof. By using definition 4. and the following formal power series for P} (2), p? (2) =
Yo Pi(2)zi, we have

PP(2) = 2422422 +322 492541520+ 2527 + ...
2:PP(2) = 222 +22% 4224 4627 + 1825 43027 + 5025 4 ..
2°PP(2) = 22" +22° +22° + 627 4+ 182° + 3027 + 50210 + ...

APD(2) = 2P 4204274328 4927415210 42521 4

Operations [—24P£2)(z) —2,3p? (z) — 2zP752)(z) + P,(lz)(z)] give
(=2t =223 —2:4+1)PP(2) =1
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Hence, the generating function Gg)(z) for PéQ)(z) is

1
249223 92241

which concludes the proof. ]

For n, the generalized 3—Pell numbers and the known Pell numbers satisfy

Y = B
P?fi)ﬂ = PiPun
P:’filz = PnP7%+lv
Pyly = 2P + Pyl

Here we note that P£31) = 0. More generally, we have Pgﬁ? =0. fork=1,2,....
For fixed numbers n, the generalized 4—Pell numbers and the known Pell numbers
satisfy

Theorem 3.4. For n, we have the relation

P = 2P0 + Pl
Proof.
2P 4 p" - — opk4p,  PE!
= Py '(2Py+ Pa1)
= Py 'Pu
= PIEZ)H'

Theorem 3.5. Forn,s >0 and n+ s > 1, we have

(2)
P2(n+sfl)

- Pn+sPn+s—2 = (_1)n+s
Proof. For n+ s = a, we get

P

)= PaPas = (1)

We will prove the theorem by the induction method on a. For a = 2,we have

p@

ho—1) — 222 =1-20= (—1)*72

Now, assume that the theorem holds for a = k, that is

P

sin1) ~ PePr—2 = (—=1)".
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Then, for a = k 4+ 1, we have

2
P2((1<);+1—1) — Pey1Prpi—a = (1),
(2) _ 2
P2(k+1—1) = B,
P — PP = (2Pe1 + Pye2)® — (2P, + Py1) P

4P | + 4P, Py o+ P}y —[22P_1 + Py_2) + 2Py 1] Pp 4
4P/3—1 + 4P 1Py 2 + Pk2—2 - 5Pk2—1 —2P; 1P

—P} 2P 1 Peo+ P,

—P} 1+ Py2(2Pe—1 + Pis)

—P | + PuPes

= —(P},— PPiy)

= (D"

— (_1)k+1.

O]

Theorem 3.6. Let Pék) be generalized k-Pell numbers. For n,k > 2, Cassini’s Identity
for R(Zk) is as follows:

k) ok k P21t =1
PP = (P2 ={ B

Proof. By using definition 4, we get

k k k _ _ _
Plgnltplgn)thfQ - (]Dlgn)thfl)2 = (Prlf 1Pn+t)(P’rIz€ 1Pn+t*2) - (P7’I:: 1Pﬂ+t*1)2
= (P"Y2(PyiPoyi—2 — (Puri—1)?)
= P* (P 4Prit—2 — (Puti-1)?)

For t = 1;

= P3k72(Pn+1Pn—1 - (Pn)Q)
= P21

Fort#1,t=m,(m € N);

= ngiz(Pn—l—mPn—i—m—Z - (Pn+m—1)2)

k— (2 2
= P?% 2(P2n)+2m—2 - PQ(n)—ﬁ-Zm—Q)
= 0.
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Definition 3.7. For n,k € N(k # 0), there are only numbers m and r such that n =
mk+1r and 0 <r < k. Then we define the generalized k— Pell-Lucas numbers Q%k) by

QW = (a™ + BT (0™ 4 gy
wherea:1+\/§andﬁzl—\/§.
We can obtain the generalized k-Pell-Lucas numbers by matrixes as follows:
(k) (k)

o e = | g g
kn kn—1

Let’s give some values for the generalized k—Pell-Lucas numbers in the Table 2.

Table 2:
k=1 k=2 k=3 k=4 k=5 k=6
(® 4 8 16 32 64
(k) 4 8 16 32 64
(0 4 8 16 32 64
o 1208 16 32 64
Ef; 34 36 24 16 32 64

® g 84 T2 48 32 64

From (6) and Definition 5, we have the relation
QY = (@) (Quer)" = mk 47 (6)
When k£ =1 in last equation, we get that m =n and r = 0 so Qg) = Qn.

Theorem 3.8. For k and m, we have the following relation between the generalized
k— Pell-Lucas numbers and the known Pell-Lucas numbers

[(Qu1)* = (Qu)¥] = [Q) 1 — QU] (7)
Proof. From (6), we get
Qe — QY = 1@ M @Qumi)™] — [(Qm)**(Qms1)"]
= (Qm-ﬁ-l)k - (Qm)k
O]

For £ = 2,3,4 and n, we have the interesting following properties between these
numbers.
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ng) — 2
Qgi).ﬂ = QnQn+1a

Q5 = @,
Q:(’,?;L)H = Qi@n—s—h
Qz(’,i)w = QnQni1;
Q= Qb

4
Q4(1n)+1 = QiQn+1a
4
Qz(1n)+2 = Q%QEH—I’
4
Qz(ln)Jr:s = QuQl .
Theorem 3.9. For n, we have the relation
(k) _ 9 (k) (k)
Qun+1 = 2Qpy + Qppy-
Proof. By using (6), we get
204, + Quy = 205+ QuaQh”!

Qﬁil (2Qn + Qn—l)

k—1
= Qn Qn—i—l

k
Q...

Theorem 3.10. For n,k > 2, Cassini’s Identity for Q,(@k) s as follows:

k k k Q2 (=18t =1
Q/(m)HQl(m)th—z - (Ql(m)+t—1)2 = { 0,t#1 '

Proof. By using (6), we get

Qg;)thQg:z)th—z - (Ql(c]:3+t—1)2 = (Q) ' Qnee) QN ' Quie—2) — (QF ' Quyr—1)®
(QF2(QnitQnit—2 — (Quik—1)?)
= ngk_2(Qn+th+tf2 - (Qn+k—1)2)

For t =1;

= Qzlkiz(Qn—&—lQn—l - (Qn)Q)
= Qs
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Fort#1,t=m, (m € N);
= Q¥ 2(Qn1Qnit—2 — (Quir-1)%)

2k 2/~(2)
( 2n+2n—2 Q2n+2n 2)

= 0.
O
Fort=0,1,2,...,k — 1, we obtain the following relations:
(k) k—
Pnk+t Pn tP7tH-1
and
k
Qfm)_t,_t = fL n+1:
Definition 3.11. For n,k € N(k # 0), there are only numbers m and r such that n =
mk+1r and 0 < r < k. Then we define the generalized k-Pell polynomials quk) () by
a™ m k—r am+l _ ﬁm_H r
PP () = ( () - (x)> < ) =k
a(r) — f(x) a(z) — B(x)
where a(z) =z + Va2 +1 and B(x) =z — Va2 + 1.
Moreover, we can obtain the generalized k—Pell polynomials by matrixes as follows:
(k) (k)
Pk:+i|.Mn _ Pkn(z:»)k+1 f]];:)n+k ] .
Pensre Prngr—1
Let’s give sample values for the generalized k—Pell polynomials in Table 3.
Table 3:
k=1 k=2 k=3 k=4
PP o 0 0 0
PP@) 1 0 0 0
PP @) 2z 1 0 0
Pék) () 1+ 422 2z 1 0
P4(k) (r) 4z + 823 42 2x 16
PP (z) 1+122%+162% 224823 422 2
The generalized k—Pell polynomials and known Pell polynomials are related by
P (@) i= (P (2))* " (P (2))" 0 = mk + 7 (8)

When k = 1in last equation, we get that m = n and r = 0 so Pygl)(x) = P,(x).
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Theorem 3.12. For k and m, we have the following relationship between the generalized
k— Pell polynomials and the classical Pell polynomials

[(Pri1 (2))F = (P (@))¥] = [P, (@) = Pogl(@)].

Proof. From (8), we get

(P (@) = Pod@)] = [(Pr(@) (P (2))"] = (P (2)F 0 (Ponr (2))]
= (Pna(@))* = (Pm(2)".
O
The following equations are provided.
PP(x) = P(a),
PRy = Pa@)Pupi(a),
PR = 22PR)(2) + P (w),
P(x) = Pi),
P = PXa)Pui(o),
P:%(i)-s-Q = Pn(x)P3+1($),
P, = 20P)(x) + P (),
P)() = Pla),
Py = Pia)Pus(a),
P, = Pia)Pi(),
Py = Pala)Piy (o),
Py = 20P{)(@)+ Py ().
Theorem 3.13. For n, we have the following relation
P, = 20P(x) + P ().
Proof. From (8), we have
20 () + PF) (2) = 22PF(a)+ Pu_i(x)PF Y (2)

= Pff‘l(m)(QxPn(a:) + P,—1(x))

= Py (@) Paa ()

= Pl (@),

O
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Theorem 3.14. For n,k > 2, Cassini’s Identity for PR (z) is as follows:
k k k sz—2x 1 n,t:l
0 gt R

Proof. By using (8) we get

P (@) P, @) — (P, (@) = (PE @) Pose(@)(PE (@) Pasea(@)) -
(PE ' (2) Poyii (2))?
= (PF @) (Past(@) Pagia(z) — (Puye-1(2))?)
= P22(2)(Pure(@) Puse2(2) — (Pari—1())?)
For t =1,

= P22(2)(Popa () Pa(2) — (Po(2))?)
= PR 2a)(-1)

= Pr%kiz(x)(Pn-&-m(x)Pn-i-m—Q(33) - (Pn+m—1(33))2)

= P 2a)(P o o(@) = P o _a(2))

O

Definition 3.15. For n,k € N(k # 0), there are only numbers m and r such that n =
mk+r and 0 <r < k. Then we define the generalized k— Pell-Lucas polinomials Qslk) ()
by

QW () == (a™(x) + ™ (x)" " (@™ (@) + B (2)"
where a = x +vVa2+1 and 8 =2 — Va2 + 1.

Moreover, we can obtain the generalized k-Pell-Lucas polynomials by matrixes as fol-
lows:

k)
Ql(erkJrl(x) ] k-1 n| 2
k = Qnii ()M .
[ Ql(m)ﬂ(x) ! 2
Let’s give sample values for the generalized k—Pell-Lucas polynomials Q%k) () in the
Table 4.

The generalized k-Pell-Lucas polynomials and the classical Pell-Lucas polynomials are
related by

QP () = (Qm(x)* "(Qmi1(x))",n = mk + 7 (9)
When k = 1 in last equation, we get that m =n and r = 0 so Qg)(m) = Qn(z).
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Table 4:

k=1 k=2 k=3 k=4
9 4 8 16
0 9y Az 8 162
()9 4 492 422 82 1622
Qék) 6z + 823 4z + 823 83 1623
QY 241622 +162* 4+ 16z + 162 822 + 162* 162
%) 102 4 4023 + 3225 120 + 402 + 3227 8z + 3223 + 3225 1623 + 3245

Theorem 3.16. For fixed k and m, we have
(@1 (@)* = (Qm(@)*] = [QU) 1) (2) — QU ()]
Proof. From (9), we have

Q1@ = Qh(@) = [(Qu(@)) ™ (Qms1(@)*] = [(Qun (@)@ (2))°]
= (Qur1(@)* — (Qm(2).

The following equations are provided.

Qi)(@) = Qia),
Q@) = Qu(@)Quir(w),
Q@) = Qi)
Q@) = QXx)Qui(x),
Q3n+ () = Qu(®)Qni1(®),
W@ = Q)
Q4n+1($) = Qi(@@nﬂ(l’)a
Q4n+2(x) = Qi(@@iﬂ(l‘),
Qilis(@) = Qu@)Qi(w).

Theorem 3.17. For fized natural numbers n, we have
Qi1 () = 20Q4) () + Q5 ()
Proof. By using (9), we get

20Q\) (2) + Q1) () = 20QL(x) + Quor(2)QE_ ()
27



= Q’“ H(z)
= (x)Qn+1
)

= an+1 ($ .

(22Qn(z) + Qn-1(z))
(z)

Theorem 3.18. For n,k > 2, Cassini’s Identity for Qn (x) is as follows:

2k72x n —
QLQ o) — Qs = { G WAL=

Proof. From (9), we get

QW (@QE), @) — Q. (@) = (QF @) Qnst(x) QX (@) Quye—2(z)) -
— Q@) Quk (2))?
= (QF ) Qn+t( )Qntt—2(2) — (Qnir—1(2))?)
Q% 2(2)(Quat(2) Quit—2(x) — (Qnir_1(x))?)

For t =1;
= Q¥ *(2)(Qus1(2)Qn-1(2) — (Qn())?)
= Q¥ (a)(-1)" (1 +2?).
Fort#1,t=m, (m € N);

= Q¥ 2)(Qnim(®)Quim—2(2) — (Qnim—1(2))?)

= Q) Q%) o) — Q%) ()
= 0.

Fort=0,1,2,...,k — 1, we obtain the following relations:

Pr(Lll?th( )= Pﬁ_t(x)Pé-i-l(x)

and

Q™ (2) = Q@ (2)Q 1 (x).

Conclusion

In the present paper, we defined new families of k—Pell, k— Pell-Lucas numbers and
their polynomials. We obtained the generating functions of the families for some k. We
gave some relations among these families and the classical Pell numbers and the classical
Pell-Lucas numbers. Further, we introduced the polynomials for these families. Then we
gave relations among their polynomials and the classical Pell polynomials and the classical
Pell-Lucas polynomials. Moreover, we showed these generalizations in matrixes. Also, we
proved Cassini identities for these families and polynomials.
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