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On a boundary value problem with nonlocal integral con-
dition for a parabolic-hyperbolic type equation
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Abstract. In the study, an initial-boundary value problem for a parabolic-hyperbolic type equa-
tion considered. The non-local boundary condition is expressed by an integral. A uniqueness
theorem for the solvability of this problem is shown and the solution of problem constructed as
the sum of Fourier series. The stability of the solution with respect to initial function is proved.
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1. Introduction

Let us define operator L by

Lu(x, t) =

{
ut − uxx, for t > 0,

utt − uxx, for t < 0,

and Ω {(x, t)|0 < x < 1,−α < t < β} ,Ω− = Ω∩{t < 0} ,Ω+ = Ω∩{t > 0}, where α, β are
positive real numbers.

The goal of this paper is to find a function u(x, t) in the domain Ω that satisfy the
following conditions:

u(x, t) ∈ C(Ω̄) ∩ C1(Ω) ∩ C2(Ω−) ∩ C2
x(Ω+) (1.1)

Lu(x, t) ≡ 0, (x, t) ∈ Ω− ∩ Ω+ (1.2)

u(x,−α) = ψ(x), 0 ≤ x ≤ 1, (1.3)

ux(0, t) = 0, −α ≤ t ≤ β, (1.4)∫ 1

0
xu(x, t)dx = 0, −α ≤ t ≤ β. (1.5)
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Here ψ(x) is defined in the interval [0,1] sufficiently smooth function such that

ψ′(0) = 0,

∫ 1

0
xψ(x)dx = 0.

These mixed type equations have many interesting applications in electromagnetic,
gas dynamics and similar non-homogeneous processes. For example, in I. M. Gelfand [1],
it is shown that the movement of a gas in the channel with wave equation utt = a∆u,
the movement of agas out of the channel with diffusion equation ut = b∆u, where ∆ is
the Laplacian operator, a, b positive physical parameters. The propagation of electric
waves in semi-infinite line is examined by Uflyand Y. S. [2] . It is known that there
exists applications of Tricomi type equations in gas dynamics. Ladizhenckaya O. A. and
Stupyalis L. [3] investigated the movement of the fluid in the electromagnetic field and this
process is expressed with boundary problem for the parabolic-hyperbolic type equation in
multi-dimensional space. The boundary problems for mixed type equations was studied
in Dzhuraev T. D. [5], Dzhuraev T. D.,Sopuev A. and Mamajanov M. [6], Kapustin N.
Yu. and Moiseev E. I. [13], Sabitov K. B. [14], [15], [20], Sabitov K. B. and Sidorov S. N.
[16], Sabitova Yu. K. [17], Nachushev A. M. [7], Mamedov K.R [8],Yuldashev T.K [9],[10],
Yuldashev T.K and Kadirkulov B.J. [11],[12] and references therein.

The nonlocal integral condition show that physical process is not only at the point but
also at the whole object. This type boundary conditions are examined in Cannon J. R. [21],
[22], Ionkin N. I. [18], Kamynin L. I. [23], Pulkina L.S. [25], Pulkina L.S. and Savenkova
A.E. [27]. Ionkin N. I. [18] studied this boundary condition for diffusion equation in plasma
problem. Some references for mixed type equations with nonlocal boundary conditions
and integral boundary conditions are given in Dzhuraev T. D.,Sopuev A. and Mamajanov
M. [6], Sabitov K. B. [14], Pulkina L.S. and Savenkova A.E. [27].

Let us reduce the (1.5) integral condition into the classic boundary condition. For this,
in the equation (1.1) fixing parameter t and multiplying by x, then integrating according
to x from ε to 1− ε such as ε > 0 sufficiently small number, we get∫ 1−ε

ε
xutdx−

∫ 1−ε

ε
xuxxdx, for t > 0,

∫ 1−ε

ε
xuttdx−

∫ 1−ε

ε
xuxxdx, for t < 0.

Here when ε→ 0 we obtained

d

dt

(∫ 1

0
xudx

)
= ux(1, t)− u(1, t) + u(0, t), t ≥ 0,

d2

dt2

(∫ 1

0
xudx

)
= ux(1, t)− u(1, t) + u(0, t), t ≤ 0,

and as a result (1.4) integral boundary condition is reduced to the

u(0, t)− u(1, t) + ux(1, t) = 0 (1.6)
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nonlocal condition.
Therefore, in this paper we study the problem in the domain Ω to find a function

u(x, t) satisfying the conditions (1.1)-(1.4) and (1.6).

2. Spectral Problem

Let us find the trivial solution of the boundary problem (1.1)-(1.6) by using method
of separating of variables in the form u(x, t) = X(x)T (t). By writing this expression in
equation (1.1) and (1.3),(1.6) boundary conditions, we encounter

X ′′(x) + λX(x) = 0, 0 < x < l, (2.1)

X ′(0) = 0, (2.2)

X ′(1) +X(0)−X(1) = 0, (2.3)

spectral problem for X(x) and

T ′(t) + λT (t) = 0, 0 < t < β, (2.4)

T ′′(t) + λT (t) = 0, −α < t < 0, (2.5)

ordinary differential equation for T (t), where λ is a complex parameter.
Boundary conditions (2.2),(2.3) are regular in terms of Birkhof and also strong regular

([Nai], p.56). If the boundary conditions are strongly regular, the root functions of the
boundary value problem form Riesz basis on space L2(0, 1) (see [Nai], p.90). Let’s examine
the spectral properties of the boundary value problem (2.1)-(2.3).

The spectral problem (2.1)-(2.3) has two sequences λ1,k, λ2,k eigenvalues:

λ1,k = (µ1k)
2 = (2kπ)2, k = 0, 1, 2, ...,

λ2,k = (µ2k)
2 = [(2k + 1)π]2

[
1 +O

(
1

k

)]
, k →∞.

Corresponding eigenfunctions are of the form

X2k ≡ X1,k(x) = cos2kπx, k = 0, 1, 2, . . . ,

X2k−1 ≡ X2,k(x) = cos(2k + 1)πx+O

(
1

k

)
, k →∞.

Let the sequence of eigenfunctions of the boundary value problem (2.1)-(2.3) be {Xk(x)} =
{X1,k(x), X2k(x)}.

We get the form of the adjoint boundary value problem

Y ′′(x) + λY (x) = 0, 0 < x < 1 (2.6)

Y ′(0)− Y (1) = 0, (2.7)
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Y ′(1)− Y (1) = 0. (2.8)

Boundary conditions (2.6)-(2.8) is regular and also strongly regular. The eigenfunctions
of the adjoint boundary problem form a Riesz basis on the space L2(0, 1). The conditions
(2.7),(2.8) are not equivalent to the boundary conditions (2.2),(2.3). Therefore (2.6)-(2.8)
boundary value problem are not self adjoint. The sequence of eigenfunctions of the adjoint
boundary value problem form a biorthogonal-adjoint sequence with the eigenfunctions of
the (2.1)-(2.3) spectral problem. These eigenvalues of the boundary value problem coincide
with the eigenvalues of the spectral problem (2.1) - (2.3) . Eigenfunctions of the adjoint
problem are of the form

Y0,1 ≡ Y0(x) = x

Yk,1(x) = 2kπcos2kπx+ sin2kπx, k = 1, 2, . . .

Yk,2(x) = (2k + 1)πcos(2k + 1)πx− sin(2k + 1)πx+O

(
1

k

)
, k →∞.

Let eigenfunctions of the (2.6)-(2.8) adjoint problem be {Yk(x)} = {Y0,1, Yk,1, Yk,2}.

3. Uniqueness of the solution

We obtain

Tk(t) =

{
ake
−µ2kt, t > 0,

bkcosµkt+ cksinµkt, t < 0,
(3.1)

by writing λ = µ2
k in the equations (2.4),(2.5),where ak, bk, ck are arbitrary constants.

Since u(x, t) ∈ Ω, the solution uk(x, t) = Xk(x)Tk(t) ∈ Ω also has this property, and let’s
choose ak, bk, ck constants such that conditions

Tk(0+) = Tk(0−), T ′k(0+) = T ′k(0−) (3.2)

hold. The function (3.1) satisfies conditions (3.2) only when ak = ck, bk = −ckµk . Then
function (3.1) is in the form of

Tk(t) =

{
cke
−µ2kt, t > 0,

ckcosµkt− ckµksinµkt, t < 0.
(3.3)

Let us consider the

uk(t) =

∫ 1

0
u(x, t)Yk(x)dx (3.4)

function and find the differential equation which uk(t) satisfies. Firsly,let us integrate the
equation (3.4) from ε to 1− ε

uk,ε(t) =

∫ 1−ε

ε
u(x, t)Yk(x)dx, (3.5)
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where ε > 0 is a small number. Then differentiating the equation (3.5) with respect to t,
once when t > 0 is, twice when t < 0, following equations are obtained

u′k,ε(t) =

∫ 1−ε

ε
ut(x, t)Yk(x)dx =

∫ 1−ε

ε
uxx(x, t)Yk(x)dx, (3.6)

u′′k,ε(t) =

∫ 1−ε

ε
utt(x, t)Yk(x)dx =

∫ 1−ε

ε
uxx(x, t)Yk(x)dx. (3.7)

By partial integration twice on the right side of (3.6) and (3.7) and as taking the limit
when ε→ 0, we have

u′k(t) + µ2
kuk(t) = 0, t > 0, (3.8)

u′′k(t) + µ2
kuk(t) = 0, t < 0. (3.9)

Differential equations of (3.8),(3.9) coincide with equations of (2.4),(2.5) for λ = µ2
k and

thus uk(t) ≡ Tk(t) is obtained for −α ≤ t ≤ β, that is the functions uk(t) are defined by
(3.3). By using the initial condition (1.2)

uk(−α) =

∫ 1

0
u(x,−α)Yk(x)dx =

∫ 1

0
ψ(x)Yk(x)dx = ψk, (3.10)

and from (3.3) and (3.10) the coefficients ck in (3.3) satisfy

ck[cosµkα+ µksinµkα] = ψk. (3.11)

Hence, for the condition
d(k) = cosµkα+ µksinµkα 6= 0, (3.12)

the coefficients ck obtained as

ck =
ψk

cosµkα+ µksinµkα
=

ψk
d(k)

. (3.13)

By substituting (3.13) in (3.3) we get

uk(t) =

{
ψk
d(k)e

−µ2kt, t > 0,
cosµkt−µksinµkt

d(k) ψk, t < 0.
(3.14)

Now assume that ψ(x) ≡ 0 and condition (3.12) hold for each k = 1, 2, · · · . Then
ψk ≡ 0 and according to the formulas for (3.14),(3.4)∫ 1

0
u(x, t)Yk(x)dx = 0 k = 1, 2, . . .

for each t ∈ [−α, β]. The sequence {yk(x)} is the complete sequence as well, since it
forms the basis on L2(0, 1). Using this property, u(x, t) ≡ 0 almost everywhere for each
t ∈ [−α, β]. Since the function u(x, t) is continuous in the closed D̄ region, u(x, t) ≡ 0 in
this region.

Then we prove the following theorem
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Theorem 3.1. If there is a solution of the boundary problem (1.1)-(1.6), this solution is
unique if and only if the (3.12) condition is satisfied.

Proof. Suppose that the condition(3.12) is not satisfied for an α and k = p , so σ(p) =
cosµpα+µpsinµpα = 0. The problem (where ψ(x) ≡ 0) boundary problem (1.1)-(1.6) has
a non-zero

up(x, t) =

{
cpe
−µ2ptXp(x), t > 0,

cp(cosµpt− µpsinµpt)Xp(x), t < 0
(3.15)

solution, where cp 6= 0 is arbitrary constant.

4. The existence of the solution

Suppose that d(k) 6= 0 then there is a constant c0 such that |d(k)| ≥ c0 > 0. The
solution of the (1.1)-(1.6) boundary value problem can be represented in the form of series

u(x, t) =

∞∑
k=1

uk(t)Xk(x). (4.1)

It is clear that the product of uk(x, t) = uk(t)Xk(x) satisfies the equation (1.1). To show
that the series (3.1) is the solution of the boundary problem (1.1)-(1.6), it is required that
this series is uniformly convergent in the closed D̄ region and when t < 0 this series can
be differentiated once with respect to t, twice with respect to x term by term ; and when
t > 0 , this series can be differentiated twice with respect to t and x term by term. For
this, let’s evaluate the uk(t).

Lemma 4.1. The following evaluations are provided for each k ∈ Z+: for t ∈ [−α, β]

|uk(t)| ≤ A1k|ψk|, |u′k(t)| ≤ A2k
2|ψk| (4.2)

and for t ∈ [−α, 0]

|u′′k(t)| ≤ A3k
3|ψk|. (4.3)

Proof. From the formula (3.14) for t ∈ [0, β], we have

|uk(t)| =

∣∣∣∣∣e−µ
2
kt

d(k)
ψk

∣∣∣∣∣ ≤ 1

c0
|ψk| ≤ Ã1k|ψk|,

|u′k(t)| =

∣∣∣∣∣−µ2
ke
−µ2kt

d(k)
ψk

∣∣∣∣∣ ≤ |µk|2c0
|ψk| ≤ Ã2k

2|ψk|.

Similarly, for t ∈ [−α, 0], we get

|uk(t)| =
∣∣∣∣ ψkd(k)

(cosµkt− µksinµkt)
∣∣∣∣ ≤ |ψk|c0

√
1 + µ2

k ≤ Ã3k|ψk|
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|u′k(t)| =
∣∣∣∣ψkµkd(k)

(sinµkt+ µkcosµkt)

∣∣∣∣ ≤ |µk||ψk|c0

√
1 + µ2

k ≤ Ã4k
2|ψk|.

Moreover from equation (3.9) it is obtained tat

|u′′k(t)| = |µ2
k||uk(t)| ≤ A3k

3|ψk|

where Ãj , (j = 1, 2, 3, 4) is positive constants. The proof is over.

By applying Lemma 4.1, first order derivatives of this series in the closed region D̄
and the second order derivatives of series in the regions D̄+, D̄− can be bounded above by
following numerical series

A4

∞∑
k=1

k3|ψk|. (4.4)

Now let us find evaluations for ψk.

Lemma 4.2. Let ψ(x) ∈ C4[0, l] and ψ(i+1)(1)+ψ(i)(0)−ψ(i)(1) = 0, ψ(i+1)(0) = 0, i = 0, 2
is satisfied. Then

ψk =
ψ

(4)
k

|µk|4
, k ∈ Z+, (4.5)

∞∑
k=1

|ψ(4)
k |

2 ≤ ‖ψ(4)(x)‖L2(0,1). (4.6)

Proof. By using the integral (3.10) and equation (3.1) we have

ψk = − 1

|µk|2

∫ 1

0
ψ(x)Y ′′k (x)dx.

Then integrating twice and considering the conditions of the lemma , we get

ψk = − 1

|µ|2k
ψ

(2)
k . (4.7)

In similar way we find

ψ
(2)
k = − 1

|µ|2k

∫ 1

0
ψ(4)(x)yk(x)dx = − 1

|µ|2k
ψ

(4)
k . (4.8)

We obtain the formula (4.5) by writing the equation (4.8) in (4.7). According to the

condition of the lemma ψ(4)(x) ∈ C[0, 1] , the Fourier series theory, the
∑∞

k=1 |ψ
(4)
k |

2 series
is convergent and the inequality (4.6) holds. The proof is over.
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Under the conditions of Lemma 4.2, the series (4.4) is bounded above by

A5

∞∑
k=1

1

k
|ψ(4)
k |. (4.9)

Then, due to the convergence of (4.9) series and according to Weierstrass criterion, series
(4.1) is absolutely and uniformly convergent in D̄+ and D̄− closed regions in accordance
with series

ut(x, t) =

∞∑
k=1

u′k(t)Xk(x), t > 0, (4.10)

utt(x, t) =

∞∑
k=1

u′′k(t)Xk(x), t < 0, (4.11)

uxx(x, t) =

∞∑
k=1

uk(t)X
′′
k (x), t < 0. (4.12)

Hence the sum of the series (4.1), u(x, t) ∈ Ω, i.e satisfies the condition (1.1)-(1.6). By
appliying the series (4.1),(4.10),(4.11),(4.12) in (1.1), we get

ut − uxx =
∞∑
k=1

[u′k(t)Xk(x)− uk(t)X ′′k (x)] ≡ 0, t > 0,

.

utt − uxx =
∞∑
k=1

[u′k(t)Xk(x)− uk(t)X ′′k (x)] ≡ 0, t < 0.

Hence equation (3.1) provides equation (1.1). As a result of that we give the following
theorem.

Theorem 4.3. The (1.1) - (1.6) boundary value problem has only one solution and is
defined by the series (3.1).

Note that if σα(p) = 0,α is a rational number, for k = p = k1, k2, . . . , km , the necessary
and sufficient condition for the problem (1.1) to be solvable is to ensure that the following
equality hold

ψk =

∫ 1

0
ψ(x)Yk(x)dx = 0, k = k1, k2, . . . , km, (4.13)

where 1 ≤ k1 < k2 < · · · < km ≤ k0, ki, i = 1, 2, . . . ,m,m ∈ N+ is the given number. In
this case, the solution is defined as

u(x, t) =

k1−1∑
k=1

+ · · ·
km−1∑

k=km−1+1

+
+∞∑

k=km+1

uk(t)Xk(x) +
∑
p

Bpup(x, t) (4.14)

In the last term, the number p takes the values of k1, k2, . . . , km, Bp is an arbitrary
constant, the function u(x, t) is expressed by the formula (3.15), such that in sum terms
on the right side of (4.14 is zero if the upper bound is less than the lower bound.
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5. Stability of the solution

Let us obtain evaluations according to the function given at the initial for the stability
of the solution of the boundary value problem (1.1)-(1.6).Firstly, let us define the following
norms.

‖u(x, t)‖L2(0,1) =

(∫ 1

0
|u(x, t)|2dx

) 1
2

, ‖u(x, t)‖C(D) = max
D
|u(x, t)|.

Theorem 5.1.
‖u(x, t)‖C(D̄) ≤M‖ψ′′(x)‖C[0,1] (5.1)

for the u(x, t) ∈ Ω solution of the boundary problem (1.1)-(1.6) , where M > 0 is constant
and does not depend on ψ(x).

Proof. Let (x, t) ∈ D̄ be any point.By using the expression of Xk(x) we have |Xk(x)| ≤
M1 > 0,M1 is constant. From (4.7) and according to the Cauchy-Schwarz inequality we
get

|u(x, t)| ≤
∞∑
k=1

|uk(t)||Xk(x)| ≤M1

∞∑
k=1

k|ψk| ≤M2

∞∑
k=1

1

k
|ψ(2)
k | ≤

≤M2

( ∞∑
k=1

1

k2

) 1
2
( ∞∑
k=1

|ψ(2)
k |

2

) 1
2

≤M3‖ψ′′(x)‖L2(0,1),

where Mi, i = 1, 2, 3 is positive constants. Thus theorem is proved.
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