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Method Integrating One System of Nonlinear Differential
Equations
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Abstract. The Cauchy problem for one system of nonlinear evolution equations, which is a gener-
alization of the Langmuir chain, is considered. The global solvability of the problem is established.
By the inverse spectral method, an algorithm for constructing the solution is obtained.
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1. Introduction

For positive functions cn = cn (t) , cn (t) ∈ C(1) [0,∞), we consider the Cauchy problem
for the following system of nonlinear evolution equations:

ċn = cn

(
α (cn+1 − cn−1)− β

(
(cn+1 − cn−1)

∑2
k=0 cn+k

))
,

cn = cn (t) , n = 0, 1, ..N − 1, t ∈ (0,∞] , · = d
dt ,c−1 = cN = 0,

(1.1)

cn(0) = ĉn > 0, n = 0, 1, ..., N − 1 (1.2)

where α, βare real numbers and N ≥ 2 is a given positive integer. This system was
first studied in [1], where it was also found there that a system of equations (1.1) can
be integrated using the method of the inverse spectral problem (see, also[2]). With α =
1, β = 0, the system of equations (1.1) represents the well-known Volterra model, which
was studied by the method of the inverse spectral problem by many authors [3]−[8]. In this
paper, the global solvability of the problem (1.1) and (1.2)) is established. An algorithm
for finding the solution of problem (1.1) and (1.2) by the method of the inverse spectral
problem is constructed. Similar issues for various nonlinear evolutionary equations were
studied in [4] , [5] , [7] , [8].
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2. Preliminary information

Below, we formulate some well-known facts concerning inverse eigenvalue problems for
finite Jacobian matrices. Many of these results with proofs can be found in[4] , [6] , [8].

Consider the (N + 1)dimensional Jacobian matrix

L =


0

√
c0 0 ... 0 0√

c0 0
√
c1 ... 0 0

... ... ... .... ... ...
0 0 0 ... 0

√
cN−1

... ... ... ...
√
cN−1 0


which has zeros on the main diagonal; positive numbers

√
c0, . . . ,

√
cN−1 on two adjacent

diagonals; and zeros everywhere else. Consider the difference equation

√
cn−1yn−1 +

√
cnyn+1 = λyn, n = 0, 1, ..., N, c−1 = cN = 1, (2.1)

where λ is the spectral parameter. Denote by Pn (λ)the solution to Eq. (2.1) with the
initial conditions P−1 (λ) = 0 and P0 (λ) = 1. It is well known that the eigenvalues of L
are real, simple, and coincide with the zeros of the polynomial PN+1 (λ) Moreover, these
eigenvalues are symmetric about the point λ = 0.

Let λ0, ..., λNbe the eigenvalues of L. The normalizing coefficients αkare defined as

αk =
N∑

n=0

P 2
n (λk) , k = 0, 1, ..., N.

Moreover, symmetric eigenvalues correspond to identical normalizing coefficients and

N∑
k=0

α−1k = 1. (2.2)

The collection {λk;αk > 0}Nk=0is called the spectral data of the matrix L. The inverse
eigenvalue problem for the matrix L consists in determining the elements cn, n = 0, ..., N−1
from the spectral data {λk;αk > 0}Nk=0 satisfying (2.2). The matrix L is uniquely deter-
mined by the spectral data and can be found by applying the following algorithm: Let the
spectral data {λk;αk > 0}Nk=0 be given. Construct the moments sn, 0 ≤ n ≤ 2N by the
formula

sn =
N∑
k=0

λnkα
−1
k (2.3)

and the Hankel determinants Dn,−1 ≤ n ≤ N by the formulas

D−1 = 1, Dn =

∣∣∣∣∣∣∣∣
s0 s1 ... sn
s1 s2 ... sn+1

... ... ... ...
sn sn+1 ... s2n

∣∣∣∣∣∣∣∣ , 0 ≤ n ≤ N. (2.4)
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Calculate cn, n = 0, ..., N − 1 by the formula

cn = Dn−1Dn+1D
−2
n . (2.5)

It should be noted that sn with odd n vanish. This circumstance considerably simplifies
the computations of Dn. Additionally, Dn are positive.

3. Solvability of problem (1.1), (1.2)

Let us study the global solvability of problem (1.1) and (1.2).
Theorem. For any initial data cn (0) = ĉn, n = 0, ..., N − 1, problem (1.1),(1.2) has a

unique solution cn (t) defined on the entire half line (0,∞).
Proof. Note that the right hand sides of system (1.1), (1.2) are continuously differentiable
functions of c0, ..., cN−1. Then, passing to an integral equation in the standard manner
and applying the method of successive approximations, we find that problem (1.1), (1.2)
on some interval [0, δ] has a unique solutioncn (t) , n = 0, ..., N − 1. Let us show that this
solution can be extended to the entire positive half line. Assume the opposite. Then there
exists a point t∗ ∈ (0,∞) such that problem (1.1), (1.2) has a solution cn (t) , n = 0, ..., N−1
on the interval [0, t∗), but n for some index lim

t→t∗
cn (t) =∞.

On the other hand, the equality (4.1), which will be proved below, imply that the family
of matrices L = L (t) are unitarily equivalent; i.e., there exists an (N + 1)dimensional
unitary matrix U (t)

(
U∗ (t) = U−1 (t)

)
such that

U (0) = E, L (t) = U∗ (t)L (0)U (t)

where E is the (N + 1)dimensional identity matrix. These relations imply

‖L (t)‖ = ‖L (0)‖ , t ∈ [0, t∗) , (3.1)

where ||· || is the norm of L = L (t) in the(N + 1)dimensional space of vectorsy =

(y0, y1, ..., yN ) with the norm ‖y‖ =
(∑N

k=0 y
2
k

) 1
2
. Combining formula (3.1) with the

obvious inequality
|cn (t)| ≤ ‖L (t)‖2 , n = 0, ..., N − 1,

we see that our assumption that lim
t→t∗

cn (t) =∞is not correct. Thus, the theorem is proved.

4. Solution algorithm for problem (1.1), (1.2)

Assume now that the elements L depend on t : L = L (t) and cn (t) satisfies Cauchy
problem (1.1), (1.2). Consider a (N + 1) dimensional matrix A = A (t) that acts on a
vector y = (y0, y1, ..., yN ) according to the formula

(Ay)n =
1

2

(
−β

3∏
k−0

√
cn−1−kyn−4−
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−√cn−1cn−2
(
−α+ β

∑2
k=−1 cn−1−k

)
yn−2+

+
√
cncn+1

(
−α+ β

∑2
k=−1 cn+k

)
yn+2 + β

∏3
k=0
√
cn+kyn+4

)
where (Ay)j (j = 0, 1, ..., N) are calculated taking into account yk = 0, k =
−4,−3,−2,−1, N + 1, N + 2, N + 3, N + 4. Note that A is a skew-symmetric matrix:
A∗ = −A. Moreover, it is easy to see that Land A form a Lax pair; i.e., system (1.1),
(1.2) is equivalent to the matrix equation

L̇ = [L, A] = LA−AL. (4.1)

Since (4.1) implies that the family of matrices L = L (t) are unitarily equivalent (see[8]),
the eigenvalues λk (t) , k = 0, 1, ..., N of L = L (t) are independent of t :

λk (t) = λk (0) = λk, k = 0, 1, ..., N.

Consider the equation
Ly = λy (4.2)

where λ is a parameter independent of t. Combining (4.1) with the equality

L̇y + Lẏ = λẏ,

we see that the matrix B defined as

B =
d

dt
+A,

maps the solutions of Eq. (4.2) to solutions of the same equation.
Now let P (λk, t) = (Pn (λk, t))

N
n=0 be an eigenvector of L = L(t) corresponding to the

eigenvalue λk, k = 0, 1, ..., N , and let P0 (λk, t) = 1. Then BP (λk, t) is also an eigenvector
of L = L (t) corresponding to λk. After simple transformations, you can show that

(BP (λk, t))0 =
1

2

[
βλ4k − αλ2k + (α− β (c0 + c1)) c0

]
.

However, since the eigenvalues λk, k = 0, 1, ..., N are simple, we have

BP (λk, t) =
1

2

[
βλ4k − αλ2k + (α− β (c0 + c1)) c0

]
P (λk, t) (4.3)

Let us determine the dynamics of the normalizing coefficient

αk (t) =
N∑

n=0

P 2
n (λk, t) , k = 0, 1, ..., N.

Taking into account

α̇k (t) = 2
N∑

n=0

Pn (λk, t) Ṗn (λk, t) , k = 0, 1, ..., N.
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and applying formula (4.3), we find that

α̇k (t) =
[
βλ4k − αλ2k + (α− β (c0 + c1)) c0

]
αk (t)+

N∑
n=0

(AP (λk, t))n Pn (λk, t) , k = 0, 1, ..., N.

Since A is skew-symmetric, the sum

N∑
n=0

(AP (λk, t))n Pn (λk, t) , k = 0, 1, ..., N

vanishes. Therefore, we have

α̇k (t) =
[
βλ4k − αλ2k + (α− β (c0 + c1)) c0

]
αk (t) , k = 0, 1, ..., N.

whence

α−1k (t) = α−1k (0) exp
[(
αλ2k − βλ4k

)
t
]

exp

[∫ t

0
[β (c0 (τ) + c1 (τ))− α] c0 (τ) dτ

]
. (4.4)

Here, c0 (t) and c1 (t)cannot be arbitrary but must satisfy

N∑
k=0

α−1k (t) = 1.

Taking this into account in (4.4) yields

exp

[∫ t

0
[β (c0 (τ) + c1 (τ))− α] c0 (τ) dτ

]
=

(
N∑
k=0

α−1k (0) exp
[(
αλ2k − βλ4k

)
t
])−1

.

Substituting this equality into (4.4), we finally obtain

α−1k (t) = α−1k (0) exp
[(
αλ2k − βλ4k

)
t
] ( N∑

k=0

α−1k (0) exp
[(
αλ2k − βλ4k

)
t
])−1

, k = 0, ..., N.

(4.5)
Using relation (4.5), we obtain the following algorithm for solving the problem (1.1), (1.2)
by the inverse spectral method: Let the initial conditions cn(0) = ĉn > 0 , n = 0, 1, ..., N−1
be given. Construct the spectral data {λk;α (t)k > 0}Nk=0. Compute αk (t) , k = 0, 1, ..., N

by formulas (4.5). Given the collection {λk;α (t)k > 0}Nk=0 solve the inverse eigenvalue
problem by applying (2.3)–(2.5).
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