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Abstract. In this paper we consider local ”complementary” generalized Morrey spaces
{M

p(·),ω
{x0} (Ω) with vari-

able exponent p(x) and a general function ω(r) defining a Morrey-type norm. We prove the boundedness of
the p(x) -admissible sublinear singular operators local ”complementary” generalized Morrey spaces in case of
unbounded sets Ω ⊂ Rn .
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1. Introduction

The variable exponent analysis is a popular topic which continues to attract many researchers, both
in view of possible applications and also because of difficulties in investigation and existing challenging
problems. There is an evident increase of investigations, last two decades related to both the theory of
variable exponent function spaces and operator theory in these spaces. The study of variable exponent
function spaces has been stimulated by problems of elasticity, fluid dynamics, calculus of variations
and differential equations with non-standard growth conditions (see [12], [41], [47]). Various results on
non-weighted and weighted boundedness in Lebesgue spaces with variable exponents p(x) have been
proved for maximal, singular and fractional type operators, we refer to surveying papers [14] and [43].

In 1938 C. Morrey [36] studied Morrey spaces for the first time in connection to its applications in
partial differential equations. Until recently, a rapid growth has been seen in the study of Morrey type
spaces because of its applications in major fields of engineering and sciences. Function spaces with
non-standard growth has seen a major focus in recent times because of its wide range of applications in
the area of image processing, the study of thermorheological fluids and modeling of electrorheological
fluids. It would be next to impossible to give a complete account of the literature which is available to
this subject. Let us quote at least the efforts of D.R. Adams, V. Burenkov, F. Chieranza, G. Di Fazio,
M. Frasca, A. Gogatishvili, V.S. Guliyev, J.J. Hasanov, A. Meskhi, T. Mizuhara, Y. Mizuta, E. Nakai, T.
Shimomura, J. Peetre, M.A. Ragusa, S.G. Samko that resulted in a long series of papers (see [2, 5, 6, 7,
9, 17, 15, 21, 30, 32, 34, 35, 37, 39, 40, 41]).

Variable exponent Morrey spaces Lp(·),λ(·)(Rn) , were introduced and studied in [3] in the Euclidean
setting. In [3] the boundedness of the maximal operator was proved in variable exponent Morrey spaces
Lp(·),λ(·)(Rn) under the log-condition on p(·) , and for potential operators a Sobolev type Lp(·),λ(·) →
Lq(·),λ(·) theorem was proved under the same log-condition in the case of bounded sets. Hästö in [27]
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used his new local-to-global approach to extend the result of [3] on the maximal operator to the case of
the whole space Rn .

The generalized variable exponent Morrey spaces were introduced and studied in [23] in the case of
bounded sets. In [23] (in the case of unbounded sets [26]) the boundedness of the maximal operator,
potential operators and singular integral operators in variable exponent Morrey spaces under the certain
conditions were proved.

In [30] the boundedness of the maximal operator and the singular integral operator in variable expo-
nent Morrey spaces Lp(·),λ(·) in the general setting of metric measure spaces was proved. In the case
of constant p and λ , the results on the boundedness of potential operators and classical Calderón-
Zygmund singular operators go back to [1] and [39] respectively, while the boundedness of the maximal
operator in the Euclidean setting was proved in [9]; for further results in the case of constant p and λ
see for instance [6]– [8].

In [23] the boundedness of the classical integral operators in the generalized variable exponent Mor-
rey spaces Mp(·),φ(Ω) over an open bounded set Ω ⊂ Rn was studied. Generalized Morrey spaces
in the case of constant p is defined with norm

∥f∥Mp,φ := sup
x, r>0

r
−n

p

φ(r)
∥f∥Lp(B(x,r)), (1.1)

where B(x, r) = {y ∈ Rn : |x − y| < r}) . Under some assumptions on φ , generalized Morrey
spaces were studied in [16], [32], [34], [37], [38]. Results of [23] were extended in [24] to the case of
the generalized Morrey spaces Mp(·),θ(·),ω(·)(Ω) (where the L∞ -norm in r in the definition of the
Morrey space is replaced by the Lebesgue Lθ -norm), we refer to [6] for such spaces in the case of
constant exponents.

In [19] (see, also [20]) local ”complementary” generalized Morrey spaces
{M

p,ω

{x0}(R
n) with con-

stant p , the space of all functions f ∈ Lp(Rn\B(x0, r)) , r > 0 with finite norm

∥f∥ {M
p,ω

{x0}(R
n)

= sup
r>0

r
n
p′

ω(r)
∥f∥Lp(Rn\B(x0,r))

were introduced and studied.
We denote by [19] the local ”complementary” Morrey spaces

{L
p,λ

{x0}(R
n) with constant p , the

space of all functions f ∈ Lp(Rn\B(x0, r)) , r > 0 with finite norm

∥f∥ {L
p,λ

{x0}(R
n)

= sup
r>0

r
λ
p′ ∥f∥Lp(Rn\B(x0,r)), x0 ∈ Rn,

where p′ = p
p−1 , 1 ≤ p < ∞ and 0 ≤ λ < n . Note that

{L
p,0

{x0}(R
n) = Lp(Rn) .

In this paper we consider local ”complementary” generalized Morrey spaces
{M

p(·),ω
{x0} (Ω) with

variable exponent p(·) , see Definition 3. In the case of constant exponent p such spaces, defined by
the condition

sup
r>0

r
n
p′

ω(r)
∥f∥Lp(Ω\B(x0,r)) < ∞, x0 ∈ Ω (1.2)

were introduced and studied in [19], [20] (see also [22]).

According to the definition of
{M

p,ω

{x0}(Ω) , we recover the space
{L

p,λ

{x0}(Ω) under the choice

ω(r) = r
n−λ
p′ :

{L
p,λ

{x0}(Ω) =
{M

p,ω

{x0}(Ω)
∣∣∣
ω(r)=r

n−λ
p′

.
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In contrast to the Morrey space, where one measures the regularity of a function f near the point
x0 (in the case of local Morrey spaces) and near all points x ∈ Ω (in the case of global Morrey spaces),
the norm (1.2) is aimed to measure a ”bad” behaviour of f near the point x0 in terms of the possible
grow of ∥f∥Lp(Ω\B(x0,r)) as r → 0 . Correspondingly, one admits φ(0) = 0 in (1.1) and ω(0) = ∞
in (1.2).

In the spaces
{M

p(·),ω
{x0} (Ω) over unbounded sets Ω ⊂ Rn we consider the following operators:

1) Hardy-Littlewood maximal operator

Mf(x) = sup
r>0

|B(x, r)|−1

∫
B̃(x,r)

|f(y)|dy,

where B̃(x, r) = B(x, r) ∩ Ω .
2) Calderón-Zygmund singular operators

Af(x) =

∫
Ω
K(x, y)f(y)dy,

where K(x, y) is a ”standard” singular kernel, that is, a function continuous on {(x, y) ∈ Ω×Ω : x ̸=
y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x ̸= y,

|K(x, y)−K(x, z)| ≤ C
|y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C
|x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|.

Let
A∗f(x) = sup

ε>0
|Aεf(x)|

be the maximal singular operator, where Aεf(x) is the usual truncation

Aεf(x) =

∫
|x−y|≥ε

K(x, y)f(y)dy.

We find the condition on the function ω(r) for the boundedness of the p(x) -admissible singular

operator T in the local ”complementary” generalized Morrey space
{M

p(·),ω
{x0} (Ω) with variable p(x)

under the log-condition on p(·) .
Let T be a sublinear operator, that is, |T (f + g)| ≤ |Tf | + |Tg| . ( p(x) -admissible singular

operators). Let sublinear operator T will be called p(x) -admissible singular operators, if:
1) T satisfies the size condition of the form

χ
B(x,r)

(z)
∣∣∣T(fχRn\B(x,2r)

)
(z)
∣∣∣ ≤ Cχ

B(x,r)
(z)

∫
Rn\B(x,2r)

|f(y)|
|y − z|n

dy (1.3)

for x ∈ Rn and r > 0 ;
2) T is bounded in Lp(·)(Rn) .

( p(x) -admissible commutator singular operators). Let sublinear operator T will be called p(x) -
admissible singular operators, if:
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1) T satisfies the size condition of the form

χ
B(x,r)

(z)
∣∣∣[b, T ](fχRn\B(x,2r)

)
(z)
∣∣∣ ≤ Cχ

B(x,r)
(z)

∫
Rn\B(x,2r)

|b(y)− b(z)| |f(y)|
|y − z|n

dy (1.4)

for x ∈ Rn and r > 0 ;
2) [b, T ] is bounded in Lp(·)(Rn) .

We use the following notation: Rn is the n -dimensional Euclidean space, Ω ⊂ Rn is an open set,
χE(x) is the characteristic function of a set E ⊆ Rn , by c , C, c1, c2 etc, we denote various absolute
positive constants, which may have different values even in the same line.

2. Preliminaries on variable exponent Lebesgue and Morrey spaces

In this section we refer to the book [12] for variable exponent Lebesgue spaces and give some basic
definitions and facts. Let p(·) be a measurable function on Ω with values in [1,∞) . An open set Ω
is assumed to be unbounded throughout the whole paper. We mainly suppose that

1 < p− ≤ p(x) ≤ p+ < ∞, (2.1)

where p− := ess inf
x∈Ω

p(x), p+ := ess sup
x∈Ω

p(x). By Lp(·)(Ω) we denote the space of all measurable

functions f(x) on Ω such that

Ip(·)(f) =

∫
Ω
|f(x)|p(x)dx < ∞.

Equipped with the norm

∥f∥p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the conjugate exponent.

For the basics on variable exponent Lebesgue spaces we refer to [31], [45].
P(Ω) is the set of bounded measurable functions p : Ω → [1,∞) ;
P log(Ω) is the set of exponents p ∈ P(Ω) satisfying the local log-condition

|p(x)− p(y)| ≤ A

− ln |x− y|
, |x− y| ≤ 1

2
x, y ∈ Ω, (2.2)

where A = A(p) > 0 does not depend on x, y ;
Alog(Ω) is the set of bounded exponents p : Ω → R satisfying the condition (2.2);
Plog(Ω) is the set of exponents p ∈ P log(Ω) with 1 < p− ≤ p(x) ≤ p+ < ∞ ;

for Ω which may be unbounded, by P∞(Ω) , P log
∞ (Ω) , Plog

∞ (Ω) , Alog
∞ (Ω) we denote the subsets of

the above sets of exponents satisfying the decay condition (when Ω is unbounded)

|p(x)− p(∞)| ≤ A∞
ln(2 + |x|)

, x ∈ Rn. (2.3)

where p(∞) = lim
x→∞

p(x) > 1 .
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The following theorem gives the boundedness of the maximal operator M in the variable exponent
Lebesgue spaces Lp(·)(Ω) . ([10], [11]) Let Ω ⊂ Rn be an open unbounded set and p ∈ Plog

∞ (Ω) .
Then the maximal operator M is bounded in Lp(·)(Ω) .

Singular operators within the framework of the spaces with variable exponents were studied in [13].
From Theorem 4.8 and Remark 4.6 of [13] and the known results on the boundedness of the maximal
operator, we have the following statement, which is formulated below for our goals for a bounded Ω ,
but valid for an arbitrary open set Ω under the corresponding condition in p(x) at infinity.

([13]) Let Ω ⊂ Rn be an unbounded open set and p ∈ Plog
∞ (Ω) . Then the singular integral operator

T is bounded in Lp(·)(Ω) .
We will also make use of the estimate provided by the following lemma ( see [12], Corollary 4.5.9).

∥χ
B̃(x,r)

(·)∥p(·) ≤ Crθp(x,r), x ∈ Ω, p ∈ Plog
∞ (Ω), (2.4)

where θp(x, r) =

{
n

p(x) , r ≤ 1,
n

p(∞) , r ≥ 1
.

The following lemma. [4] Let Ω be an unbounded open set, let p ∈ Plog
∞ (Ω) satisfy the assump-

tion 1 ≤ p− ≤ p(x) ≤ p+ < ∞ and the function ν(x) satisfy the assumptions of Lemma ?? and
additionally supx∈Ω[n+ ν(x)p(∞)] < 0 . Then

∥|x− ·|ν(x)χ
Ω\B̃(x,r)

(·)∥p(·) ≤ Crν(x)+θp(x,r), x ∈ Ω, r > 0, (2.5)

where C does not depend on x and r .

Let λ(x) be a measurable function on Ω with values in [0, n] . The variable Morrey space
Lp(·),λ(·)(Ω) is defined as the set of integrable functions f on Ω with the finite norm

∥f∥Lp(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
−λ(x)

p(x) ∥fχ
B̃(x,t)

∥Lp(·)(Ω).

The following statements are known.
([3]) Let Ω be bounded, p ∈ P log(Ω) and let a measurable function λ satisfy the conditions

0 ≤ λ(x), sup
x∈Ω

λ(x) < n. (2.6)

Then the maximal operator M is bounded in Lp(·),λ(·)(Ω) .
Theorem 2 was extended to unbounded domains in [26] and [27]. Note that the boundedness of the

maximal operator in Morrey spaces with variable p(x) was studied in [30] in more general setting of
quasimetric measure spaces.

Let M ♯ be the sharp maximal function defined by

M ♯f(x) = sup
r>0

|B(x, r)|−1

∫
B̃(x,r)

|f(y)− f
B̃(x,r)

|dy,

where f
B̃(x,t)

= |B̃(x, t)|−1
∫
B̃(x,t)

f(z)dz .
We define BMO space, as the set of locally integrable functions f with finite norm

∥f∥∗ = sup
x∈Ω

M ♯f(x) = sup
t>0, x∈Ω

|B(x, t)|−1

∫
B̃(x,t)

|f(y)− f
B̃(x,t)

|dy.
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We define the BMOp(·)(Ω) space as the set of all locally integrable functions f with finite norm

∥f∥BMOp(·) = sup
x∈Ω, r>0

∥(f(·)− f
B̃(x,r)

)χ
B̃(x,r)

∥Lp(·)(Ω)

∥χ
B̃(x,r)

∥Lp(·)(Ω)

.

([28]) Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog
∞ (Ω) , then the norms ∥ · ∥BMOp(·) and

∥ · ∥BMO are mutually equivalent.

3. Local ”complementary” generalized variable exponent Morrey spaces

Everywhere in the sequel the functions ω(r), ω1(r) and ω2(r) used in the body of the paper,
are non-negative measurable functions on (0,∞) .

The local generalized Morrey spaces Mp(·),ω
{x0} (Ω) and global generalized Morrey spaces

Mp(·),ω(Ω) with variable exponent are defined (see [23]) by the norms

∥f∥Mp(·),ω
{x0}

= sup
r>0

r−θp(x0,r)

ω(r)
∥f∥

Lp(·)(B̃(x0,r))

and

∥f∥Mp(·),ω = sup
x∈Ω,r>0

r−θp(x,r)

ω(r)
∥f∥

Lp(·)(B̃(x,r))
,

where x0 ∈ Ω and 1 ≤ p− ≤ p(x) ≤ p+ < ∞ for all x ∈ Ω.

We find it convenient to introduce the variable exponent version of the local ”complementary” space
as follows (compare with the condition (1.2)). Let x0 ∈ Ω , 1 ≤ p− ≤ p(x) ≤ p+ < ∞ . The local

”complementary” variable exponent Morrey space
{L

p(·),λ(·)
{x0} (Ω) is defined by the norm

∥f∥ {L
p(·),λ(·)
{x0} (Ω)

= sup
t>0

t
λ(x)

p′(x) ∥fχ
Ω\B̃(x0,t)

∥Lp(·)(Ω).

Let x0 ∈ Ω , 1 ≤ p− ≤ p(x) ≤ p+ < ∞ . The local ”complementary” generalized variable exponent

Morrey spaces
{M

p(·),ω
{x0} (Ω) and global ”complementary” generalized variable exponent Morrey spaces

M∗
p(·),ω(Ω) are defined by the norms

∥f∥ {M
p(·),ω
{x0}

= sup
r>0

rθp′ (x0,r)

ω(r)
∥f∥

Lp(·)(Ω\B̃(x0,r))

and

∥f∥M∗
p(·),ω

= sup
x∈Ω, r>0

rθp′ (x,r)

ω(r)
∥f∥

Lp(·)(Ω\B̃(x,r))
,

respectively.
Everywhere in the sequel we assume that

sup
r>0

rθp′ (x0,r)

ω(r)
< ∞, (3.1)

which makes the space
{M

p(·),ω
{x0} (Ω) non-trivial, since it contains Lp(·)(Ω) in this case.
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Also if inf
r>0

r
θp′ (x0,r)

ω(r) > 0 , then
{M

p(·),ω
{x0} (Ω) = Lp(·)(Ω) . Therefore, to guarantee that the ”com-

plementary” space
{M

p(·),ω
{x0} (Ω) is strictly larger than Lp(Ω), one should be interested in the cases

where

lim
r→0

rθp′ (x0,r)

ω(r)
= 0. (3.2)

Clearly, the space
{M

p(·),ω
{x0} (Ω) may contain functions with a non-integrable singularity at the point

x0 , if no additional assumptions are introduced. To study the operators in
{M

p(·),ω
{x0} (Ω), we need its

embedding into L1(Ω). Dini condition on ω is sufficient for such an embedding.
Now we give the following lemma which we need while proving our main results.

[4] Let p ∈ Plog
∞ (Ω) and f ∈ Lp(·)(Ω\B̃(x0, s)) for every s ∈ (0,∞) , γ ∈ R. Then∫
B̃(x0,t)

|y − x0|γ |f(y)|dy ≤ C

∫ t

0
sγ+θp′ (x0,r)−1∥f∥

Lp(·)(Ω\B̃(x0,s))
ds (3.3)

for every t ∈ (0,∞), where C does not depend on f, t and x0 .

Note that the statements on the boundedness of the maximal and singular operators in the ”com-
plementary” Morrey spaces known for the case of the constant exponent p , obtained in [19], read as
follows. Note that the theorems below do not assume any monotonicity type conditions on the functions
ω, ω1 and ω2 .

([19], Theorem 1.4.6) Let 1 < p < ∞ , x0 ∈ Rn and ω1(r) and ω2(r) be positive measurable
functions satisfying the condition ∫ r

0
ω1(t)

dt

t
≤ c ω2(r)

with c > 0 not depending on r > 0 . Then the operators M and T are bounded from
{M

p,ω1

{x0}(R
n)

to
{M

p,ω2

{x0}(R
n) . ([19]) Let 1 < p < ∞ , x0 ∈ Rn and 0 ≤ λ < n . Then the operators M and T

are bounded in the space
{L

p,λ

{x0}(R
n) .

The introduction of global ”complementary” Morrey-type spaces has no big sense, neither in case
of constant exponents, nor in the case of variable exponents. In the case of constant exponents this was
noted in [7], pp 19-20; in this case the global space defined by the norm

sup
x∈Ω,r>0

r
n
p

ω(r)
∥f∥Lp(Ω\B(x,r))

reduces to Lp(Ω) under the assumption (3.1). In the case of variable exponents there happens the
same. In general, to make it clear, note that for instance under the assumption (3.2) if we admit that

sup
r>0

r
n

p(·)

ω(r) ∥f∥Lp(Ω\B(x,r)) for two different points x = x0 and x = x1, x0 ̸= x1 , this would immedi-

ately imply that f ∈ Lp(·) in a neighbourhood of both the points x0 and x1 .

4. p(x) -admissible singular operators in the spaces {M
p(·),ω
{x0} (Ω) and M∗

p(·),ω(Ω)

Let L∞(R+, v) be the weighted L∞ -space with the norm

∥g∥L∞(R+,v) = ess sup
t>0

v(t)g(t).
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In the sequel M(R+), M+(R+) and M+(R+;↑) stand for the set of Lebesgue-measurable func-
tions on R+ , and its subspaces of nonnegative and nonnegative non-decreasing functions, respectively.
We also denote

A =

{
φ ∈ M+(R+; ↑) : lim

t→0+
φ(t) = 0

}
.

Let u be a continuous and non-negative function on R+ . We define the supremal operator Su by

(Sug)(t) := ∥u g∥Lı(0,t), t ∈ (0,∞).

([5]) Suppose that v1 and v2 are nonnegative measurable functions such that 0 < ∥v1∥L∞(0,t) <

∞ for every t > 0 . Let u be a continuous nonnegative function on R+ . Then the operator Su is
bounded from L∞(R+, v1) to L∞(R+, v2) on the cone A if and only if∥∥∥v2Su

(
∥v1∥−1

L∞(0,·)

)∥∥∥
L∞(R+)

< ∞.

We will use the following statement on the boundedness of the weighted Hardy operators

Hwg(t) :=

∫ t

0
g(s)w(s)ds, H∗

wg(t) :=

∫ ∞

t
g(s)w(s)ds, 0 < t < ∞,

where w is a weight.
The following theorem was proved in [21].
([21]) Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded outside a neighborhood of

the origin. The inequality
sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ ∞

t

w(s)ds

ess sup
s<τ<∞

v1(τ)
< ∞.

([21]) Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded outside a neighborhood of
the origin. The inequality

sup
t>0

v2(t)Hwg(t) ≤ C sup
t>0

v1(t)g(t) (4.1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ t

0

w(s)ds

sup0<τ<s v1(τ)
< ∞.

Moreover, the value C = B is the best constant for (4.1).
Let Ω be an open unbounded set, p ∈ Plog

∞ (Ω) and f ∈ Lp(·)(Ω\B̃(x0, t)) for every t ∈ (0,∞) .
If the integral ∫ ∞

0
rθp′ (x0,r)−1∥f∥

Lp(·)(Ω\B̃(x0,r))
dr

is convergent, then

∥Tf∥
Lp(·)(Ω\B̃(x0,t))

≤ Ct−θp′ (x0,t)

∫ t

0
rθp′ (x0,r)−1∥f∥

Lp(·)(Ω\B̃(x0,r))
dr, (4.2)

where C does not depend on f , x0 and t ∈ (0,∞) .
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Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χ
Ω\B̃(x0,t)

(y) f2(y) = f(y)χ
B̃(x0,t)

(y) (4.3)

and have
∥Tf∥

Lp(·)(Ω\B̃(x0,2t))
≤ ∥Tf1∥Lp(·)(Ω\B̃(x0,2t))

+ ∥Tf2∥Lp(·)(Ω\B̃(x0,2t))
.

Taking into account that f1 ∈ Lp(·)(Ω) , by Definition 1 we have

∥Tf1∥Lp(·)(Ω\B̃(x0,2t))
≤ ∥Tf1∥Lp(·)(Ω) ≤ C∥f1∥Lp(·)(Ω) = C∥f∥

Lp(·)(Ω\B̃(x0,t))
.

By the monotonicity of the norm ∥f∥
Lp(·)(Ω\B̃(x0,t))

with respect to t we have

∥f∥
Lp(·)(Ω\B̃(x0,t))

≤ Ct−θp′ (x0,t)

∫ t

0
sθp′ (x0,s)−1∥f∥

Lp(·)(Ω\B̃(x0,s))
ds (4.4)

and then

∥Tf1∥Lp(·)(Ω\B̃(x0,t))
≤ Ct−θp′ (x0,t)

∫ t

0
rθp′ (x0,r)−1∥f∥

Lp(·)(Ω\B̃(x0,r))
dr. (4.5)

To estimate ∥Tf2∥Lp(·)(Ω\B̃(x0,2t))
, note that 1

2 |x0−z| ≤ |z−y| ≤ 3
2 |x0−z| for z ∈ Ω\B̃(x0, 2t)

and y ∈ B̃(x0, t) , so that

∥Tf2∥Lp(·)(Ω\B̃(x0,2t))
≤ C

∥∥∥∥∥
∫
B̃(x0,t)

|z − y|−nf(y)dy

∥∥∥∥∥
Lp(·)(Ω\B̃(x0,2t))

≤ C

∫
B̃(x0,t)

|f(y)|dy∥|x0 − z|−n∥
Lp(·)(Ω\B̃(x0,2t))

.

Therefore, with the aid of the estimate (2) and inequality (3.3), we get

∥Tf2∥Lp(·)(Ω\B̃(x0,2t))
≤ Ct−θp′ (x0,t)

∫ t

0
sθp′ (x0,s)−1∥f∥

Lp(·)(Ω\B̃(x0,s))
ds,

which together with (4.5) yields (4.2).

Let Ω ⊂ Rn be an open unbounded set, x0 ∈ Ω , p ∈ Plog
∞ (Ω) and the functions ω1(t) , ω2(t)

satisfy the condition ∫ t

0

inf
0<r<s

ω1(r)r
−θp′ (x0,r)

s1−θp′ (x0,s)
ds ≤ Cω2(t), (4.6)

where C does not depend on t . Then the p(x) -admissible singular operators T is bounded from the

space
{M

p(·),ω1

{x0} (Ω) to the space
{M

p(·),ω2

{x0} (Ω) .

Proof. For f ∈ {M
p(·),ω1

{x0} (Ω) we have

∥Tf∥ {M
p(·),ω2
{x0} (Ω)

= sup
t>0

tθp′ (x0,t)

ω2(t)
∥Tfχ

Ω\B̃(x0,t)
∥Lp(·)(Ω), (4.7)

we estimate ∥Tfχ
Ω\B̃(x0,t)

∥Lp(·)(Ω) by means of Theorem 4 and Theorem 4 we obtain

∥Tf∥ {M
p(·),ω2
{x0} (Ω)

≤ C sup
t>0

ω−1
2 (t)

∫ t

0
rθp′ (x,r)−1∥f∥

Lp(·)(Ω\B̃(x,r))
dr
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≤ C sup
t>0

tθp′ (x0,t)

ω1(t)
∥f∥

Lp(·)(Ω\B̃(x0,t))
= C∥f∥ {M

p(·),ω1
{x0} (Ω)

.

Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog
∞ (Ω) and ω1(t) and ω2(t) fulfill condition (4.6).

Then the singular integral operator T and T ∗ are bounded from the space
{M

p(·),ω1

{x0} (Ω) to the space
{M

p(·),ω2

{x0} (Ω) .
The commutator generated by M and a suitable function b is formally defined by

[b,M ]f = bM(f)−M(bf).

Given a measurable function b the maximal commutator is defined by

Mb(f)(x) := sup
r>0

|B(x, r)|−1

∫
B(x,r)

|b(x)− b(y)||f(y)|dy,

for all x ∈ Rn .
This operator plays an important role in the study of commutators of singular integral operators with

BMO symbols (see, for instance [18], [33], [44]). The maximal operator Mb has been studied inten-
sively and there exist plenty of results about it. Pu Zhang and Jianglong Wu [46] proved the following
statement.

([46]) Let b ∈ Lloc
1 (Rn) and p ∈ Plog

∞ (Rn) , then Mb is bounded in Lp(·)(Rn) if and only if
b ∈ BMO(Rn) .

Operators Mb and [b,M ] essentially differ from each other. For example, Mb is a positive and
sublinear operator, but [b,M ] is neither positive nor sublinear. However, if b satisfies some additional
conditions, then operator Mb controls [b,M ] .

Let Ω be an open unbounded set, p ∈ Plog
∞ (Ω) , b ∈ BMO(Ω) and f ∈ Lp(·)(Ω\B̃(x0, t)) for

every t ∈ (0,∞) . If the integral∫ ∞

0
sθp′ (x0,s)−1∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

is convergent, then
∥[b, T ]f∥

Lp(·)(Ω\B̃(x0,t))

≤ Ct−θp(x0,t) ∥b∥∗
∫ t

0
sθp′ (x0,s)−1

(
1 + ln

t

s

)
∥f∥

Lp(·)(Ω\B̃(x0,s))
ds, (4.8)

where C does not depend on f , x0 and t ∈ (0,∞) .

Proof. We split the function f in the form f1 + f2 as in (4.3) and have

∥[b, T ]f∥
Lp(·)(Ω\B̃(x0,t))

≤ ∥[b, T ]f1∥Lp(·)(Ω\B̃(x0,t))
+ ∥[b, T ]f2∥Lp(·)(Ω\B̃(x0,t))

.

Taking into account that f1 ∈ Lp(·)(Ω) , from Definition 1 we have

∥[b, T ]f1∥Lp(·)(Ω\B̃(x0,t))
≤ ∥[b, T ]f1∥Lp(·)(Ω)

≤ C∥b∥∗∥f1∥Lp(·)(Ω) = C∥b∥∗∥f∥Lp(·)(Ω\B̃(x0,t))
.

Then in the view of (4.4)
∥[b, T ]f1∥Lp(·)(Ω\B̃(x0,t))

(4.9)
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≤ Ct−θp(x0,t) ∥b∥∗
∫ t

0
sθp′ (x0,s)−1

(
1 + ln

t

s

)
∥f∥

Lp(·)(Ω\B̃(x0,s))
ds.

To estimate [b, T ]f2(z) , we observe that for z ∈ Ω\B̃(x0, t) we have

|[b, T ]f2(z)| ≤
∫
Ω
|b(y)− b(z)||z − y|−n|f2(y)|dy

≤
∫
B̃(x0,t)

|b(y)− b(z)||x0 − z|−n|f(y)|dy

= |x0 − z|−n

∫
B̃(x0,t)

|b(y)− b(z)||f(y)|dy

≤ 2nβ|x0 − z|−n

∫
B̃(x0,t)

|b(y)− b(z)||x0 − y|−β |f(y)|

(∫ |x0−y|

0
sβ−1ds

)
dy

= 2nβ |x0 − z|−n

∫ t

0
sβ−1

(∫
{y∈Ω:s<|x0−y|<t}

|b(y)− b(z)||x0 − y|−β |f(y)|dy

)
ds

≤ 2nβ |x0 − z|−n

∫ t

0
s−1

(∫
{y∈Ω:s<|x0−y|<t}

|b(y)− b(z)||f(y)|dy

)
ds

≤ 2nβ |x0 − z|−n

∫ t

0
s−1

(∫
{y∈Ω:s<|x0−y|<t}

|b(y)− b
B̃(x0,s)

||f(y)|dy

)
ds

+ 2nβ |x0 − z|−n

∫ t

0
s−1 |b(z)− b

B̃(x0,s)
|

(∫
{y∈Ω:s<|x0−y|<t}

|f(y)|dy

)
ds

= J1 + J2.

By applying Hölder inequality we get

J1 ≤ C

∫ t

0
s−n−1 ∥b(·)− b

B̃(x0,t)
∥
Lp′(·)(B̃(x0,t))

∥f∥
Lp(·)(Ω\B̃(x0,s))

ds

+Ct−n

∫ t

0
sθp′ (x0,s)−1 |b

B̃(x0,t)
− b

B̃(x0,s)
|∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

≤ C∥b∥∗t−n

∫ t

0
sθp′ (x0,s)−1 ∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

+C∥b∥∗t−n

∫ t

0
sθp′ (x0,s)−1 ln

t

s
∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

≤ C∥b∥∗t−n

∫ t

0

(
1 + ln

t

s

)
sθp′ (x0,s)−1 ∥f∥

Lp(·)(Ω\B̃(x0,s))
ds. (4.10)

To estimate J2 , we have

J2 = Ct−n

∫ t

0
s−1 |b(z)− b

B̃(x0,s)
|

(∫
{y∈Ω:s<|x0−y|<t}

|f(y)|dy

)
ds

≤ C t−n |B(x0, t)|−1

∫
B̃(x0,t)

|b(z)− b(y)|dy
∫ t

0
sθp′ (x0,s)−1 ∥f∥

Lp(·)(Ω\B̃(x0,s))
ds
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+ Ct−n

∫ t

0
sθp′ (x0,s)−1 |b

B̃(x0,t)
− b

B̃(x0,s)
|∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

≤ C t−nMbχB(x0,t)(z)

∫ t

0
sθp′ (x0,s)−1 ∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

+ C∥b∥∗ t−n

∫ t

0
sθp′ (x0,s)−1 ln

t

s
∥f∥

Lp(·)(Ω\B̃(x0,s))
ds,

where C does not depend on x0 and t . Then from the Theorem 4 and (4.10) we obtain

∥[b, T ]f2∥Lp(·)(Ω\B̃(x0,t))
≤ ∥I1∥Lp(·)(Ω\B̃(x0,t))

+ ∥I2∥Lp(·)(Ω\B̃(x0,t))

≤ C ∥b∥∗t−n ∥χ
Ω\B̃(x0,t))

∥Lp(·)(Ω)

∫ t

0

(
1 + ln

t

s

)
sθp′ (x0,s)−1 ∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

+C t−n ∥MbχB(x0,t)∥Lp(·)(Ω\B̃(x0,t))

∫ t

0
sθp′ (x0,s)−1 ∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

+C ∥b∥∗t−n ∥χ
Ω\B̃(x0,t))

∥Lp(·)(Ω)

∫ t

0
sθp′ (x0,s)−1 ln

t

s
∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

≤ Ct−θp′ (x0,t) ∥b∥∗
∫ t

0
sθp′ (x0,s)−1

(
1 + ln

t

s

)
∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

+C∥b∥∗∥χB(x0,t)∥Lp(·)(Ω)

∫ t

0
sθp′ (x0,s)−1 ∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

+C ∥b∥∗∥χΩ\B̃(x0,t))
∥Lp(·)(Ω)

∫ t

0
sθp′ (x0,s)−1 ln

t

s
∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

≤ Ct−θp(x0,t) ∥b∥∗
∫ t

0
sθp′ (x0,s)−1

(
1 + ln

t

s

)
∥f∥

Lp(·)(Ω\B̃(x0,s))
ds (4.11)

which together with (4.9) and (4.11) yields (4.8).

Let Ω ⊂ Rn be an open unbounded set, x0 ∈ Ω , p ∈ Plog
∞ (Ω) , b ∈ BMO(Ω) and ω1(t) and

ω2(t) satisfy the condition

∫ t

0

(
1 + ln

s

t

) inf
0<r<s

ω1(x, r)r
−θp′ (x0,r)

s1−θp′ (x0,s)
ds ≤ Cω2(x, t), (4.12)

where C does not depend on t . Then the operator [b, T ] is bounded from
{M

p(·),ω1

{x0} (Ω) to
{M

p(·),ω2

{x0} (Ω) , where b ∈ BMO(Ω) .

Proof. Let f ∈ {M
{x0}
p(·),ω1

(Ω) . We follow the procedure already used in the proof of Theorem 4: in the
norm

∥[b, T ]f∥ {M
p(·),ω2
{x0} (Ω)

= sup
t>0

tθp′ (x0,t)

ω2(t)
∥[b, T ]fχ

Ω\B̃(x0,t)
∥Lp(·)(Ω), (4.13)

we estimate ∥[b, T ]fχ
Ω\B̃(x0,t)

∥Lp(·)(Ω) by means of Theorem 4 and Theorem 4 we obtain

∥[b, T ]f∥ {M
p(·),ω2
{x0} (Ω)



p(x) -Admissible Sublinear Singular Operators in the Local ”Complementary”... 35

≤ C∥b∥∗ sup
t>0

1

ω2(t)

∫ t

0
sθp′ (x0,s)−1

(
1 + ln

t

s

)
∥f∥

Lp(·)(Ω\B̃(x0,s))
ds

≤ C∥b∥∗ sup
t>0

tθp′ (x0,t)

ω1(t)
∥f∥

Lp(·)(Ω\B̃(x0,t))
= C∥b∥∗∥f∥ {M

p(·),ω1
{x0} (Ω)

.
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[27] P. Hästö, Local-to-global results in variable exponent spaces, Math. Res. Letters, 15, (2008).

[28] K. Ho, Singular integral operators, John-Nirenberg inequalities and Tribel-Lizorkin type spaces on
weighted Lebesgue spaces with variable exponents, Rev. Un. Mat. Argentina, 57(1), 85-101 (2016).

[29] A. Karlovich and A. Lerner, Commutators of singular integrals on generalized Lp spaces with
variable exponent, Publ. Mat., 49(1):111 -125, (2005).

[30] V. Kokilashvili and A. Meskhi, Boundedness of maximal and singular operators in Morrey spaces
with variable exponent, Arm. J. Math. (Electronic), 1 (2008), no 1, 18-28.

[31] O. Kovacik and J. Rakosnik, On spaces Lp(x) and W k,p(x) , Czechoslovak Math. J., 41 (116),
(1991), 4, 592-618.



p(x) -Admissible Sublinear Singular Operators in the Local ”Complementary”... 37

[32] K. Kurata, S. Nishigaki and S. Sugano, Boundedness of integral operators on generalized Morrey
spaces and its application to Schrödinger operators, Proc. AMS, 1999, 128 (4), 1125-1134.

[33] D. Li, G.Hu and X.Shi, Weighted norm inequalities for the maximal commutators of singular inte-
gral operators, J. Math. Anal. Appl., 319 (2), 509-521 (2006).

[34] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic
Analysis (S. Igari, Editor), ICM 90 Satellite Proceedings, Springer - Verlag, Tokyo (1991), 183-189.

[35] Y. Mizuta and T. Shimomura, Weighted Morrey spaces of variable exponent and Riesz potentials,
Math. Nachr., 288 (2015), no. 8-9, 984-1002.

[36] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer.
Math. Soc., 43 (1938), 126-166.

[37] E. Nakai, Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on
generalized Morrey spaces, Math. Nachr. 166 (1994), 95-103.

[38] E. Nakai, The Campanato, Morrey and Holder spaces on spaces of homogeneous type, Studia
Math., Vol.176 (2006), 1-19.

[39] J. Peetre, On the theory of Lp,λ spaces, J. Funct. Anal., 4 (1969), 71-87.

[40] H. Rafeiro, N. Samko and S. Samko, Morrey-Campanato spaces: an overview: Opera-
tor theory, pseudo-differential equations, and mathematical physics, Oper. Theory Adv. Appl.,
Birkhauser/Springer Basel AG, 2013.
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