
Journal of Contemporary Applied Mathematics
V. 2, No 1, 2012, July
ISSN 2222-5498

On basicity of double systems in Banach spaces

T.R.Muradov, S.R.Sadigova

Abstract. The bases of double systems with operator coefficients in Banach spaces are considered.
A relation between the basicity of these systems and the solvability of the corresponding operator
equations is established. A necessary condition for a basicity is obtained and a concrete example
is presented.
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1. Introduction

Bases of the double systems are natural generalizations of the classical system of ex-
ponentials

{
eint
}
n∈Z (Z is the set of all integers). These generalizations include also the

following perturbation of system of exponents{
ei(n+αsignn)t

}
n∈Z

. (1)

Paley-Wiener [11] and N.Levinson [7] were the first mathematicians (to be followed by
many others) who have studied the basis properties of this perturbation in Lp (−π, π)
(L∞ = C [−π, π]), 1 ≤ p ≤ +∞. The latest results on this topic are obtained in [5,8,14].
The most general case is considered in [1,2]. Note that for the study of basicity in [1,2,8]
the methods of boundary value problems of the theory of analytic functions are used.
Abstracts generalizations of these results are given in [3].

In this paper we present one necessary condition for the basicity of double system in
Banach space. The obtained results are applied to specific cases. This allows to establish
the accuracy of the estimate with respect to the measurable function α (t), that provides
the basicity of the system of exponents{

ei(nt+α(t)signn)
}
n∈Z

, (2)

in Lp (−π, π), 1 < p < +∞. It should be noted that the systems of the form (2) appear
when solving some problems of mathematical physics by Fourier method. More details
about these problems can be found in [9,10,12,15].
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2. Needful concepts and facts

We state some ideas from the theory of bases and common facts. Assume that X is
some Banach space with a basis {xn}n∈N ⊂ X, {x∗n}n∈N ⊂ X∗ is a system biorthogonal
to basis, and X∗ is a space conjugated to X. By {Pn}n∈N ⊂ L (X) we denote the family
of projector S

Pmx =
m∑
n=1

x∗n (x)xn , ∀m ∈ N,

where L (X) is an algebra of bounded operators from X to X. It is known that the family
{Pn}n∈N is bounded in L (X), i.e. ∃M > 0 : ‖Pn‖ ≤M , ∀n ∈ N .

Let {x+
n ;x−n }n∈N ⊂ X be some double system. We’ll call this system a basis in X, if

for ∀x ∈ X,∃! {λ±n }n∈N ⊂ C : x =
∑∞

n=1 λ
+
n x

+
n +

∑∞
n=1 λ

−
n x
−
n .

We’ll denote the closure of the linear span {x±n }n∈N in X by X±. In other words, this
definition means that the system {x±n }n∈N forms a basis for X±, the spaces X+ and X−

are complementable in X and the direct expansion

X = X++̇X− (3)

holds.

3. Main results

Let X be a Banach space with the basis {x+
n ;x−n }n∈N and let T± ∈ L (X) be some

automorphisms. Assume that the system {T+x+
n ;T−x−n }n∈N also forms a basis for X.

Thus, for ∀y ∈ X the equation

T+x+ + T−x− = y , (4)

is solvable in X+ × X− , i.e. ∃ (x+;x−) ∈ X+ × X−, which satisfies relation (4). Let
X0 ⊂ X be some manifold. Assume that there exist automorphisms A±; B± ∈ L (X) and
an operator S : X0 → X such that for ∀y ∈ X0 the solution of equation (4) is expressed
by the formula

x± = A±y + B±Sy. (5)

Let‘s prove that if the system {T+x+
n ;T−x−n }n∈N forms a basis for X, the operator S

is bounded in X0. Show that the equation (4) has a unique solution. Consider the
homogeneous equation

T+x+ + T−x− = 0.

Expand x± with respect to the basis {x±n }n∈N : x± =
∑∞

n=1 λ
±
n x
±
n . We have

∞∑
n=1

λ+
n T

+x+
n +

∞∑
n=1

λ−n T
−x−n = 0.
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It directly follows from the basicity of the system {T+x+
n ;T−x−n }n∈N that λ±n = 0 , ∀n ∈

N . Thus, every y ∈ X is corresponded by a unique pair (x+;x−) ∈ X+ × X−. Assume
Tx = T+x+ +T−x−, ∀x = x+ +x− ∈ X, where x± ∈ X±. By Banach theorem, it follows
from the above reasonings that the operator T is invertible in L (X), i.e. T−1 ∈ L (X). It
is easy to see that we can define the inverse operator T−1 as follows:

T− =

(
(T+)

−1
P+ O

O (T−)
−1
P−

)
,

where P+ and P− are the projectors on X+ and X−, respectively, generated by expansion
(3). This operator acts on the element x = (x+;x−) ∈ X+ ×X− according to the matrix
rule. Thus, x± is expressed by the formula x± = (T±)

−1
P±y. Having taken y ∈ X0, from

the uniqueness of the solution and from (5) we get[(
T±
)−1

P±
] /

X0

= A± +B±S,

where T/X0
is the contraction of the operator T on X0. Consequently,

S =
(
B±
)−1

[ [(
T±
)−1

P±
] /

X0

−A±
]
,

and, as a result, it becomes clear that S is bounded on X0.
So the following theorem is true.
Theorem 1. Let the Banach space X has direct expansion (3), the system {x±n }n∈N

forms a basis for X±, T±;A±;B± ∈ L (X) be automorphisms and S : X0 → X be some
operator for which formula (5) is valid with respect to the solution of equation (4), with
X0 ⊂ X being some set. Assume that the system {T+x+

n ;T−x−n }n∈N forms a basis for X.
Then the operator S is bounded on X0.

This theorem implies the following
Corollary 1. Let all the conditions of Theorem 1 be fulfilled and let X0 be dense

everywhere in X. Assume that the system {T+x+
n ;T−x−n }n∈N forms a basis for X. Then

the operator S can be boundedly continued to the whole of X.
Consider the specific case. Let Γ ⊂ C be some rectifiable Jordan curve on a complex

plane. Consider Cauchy type integral

[Kf ] (z) ≡ 1

2π

∫
Γ

f(t)dt

t− z
, z /∈ Γ

and the corresponding singular integral

Sf ≡ 1

2π

∫
Γ

f(τ)

τ − t
dτ,

where f ∈ L1(Γ) is a function summable on Γ. Consider the weight ρ(t) of the form

ρ(t) ≡
m∏
k=1

|t− tk|βk ,
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where {tk}m1 ⊂ Γ , ti 6= tj is i 6= j. Let t = t(s), 0 ≤ s ≤ l, be a parametric equation of

the curve Γ with respect to the length of the arc

⋃
at , where a and l are the origin and

the length of Γ, respectively. Γ is said to be Radon curve if t = t(s) is a function with
bounded variation on [0, l]. Denote by Lp,ρ() the Lebesque weight class of functions on Γ

with the norm ‖·‖p,ρ: ‖f‖p,ρ ≡
(∫

Γ |f(t)|p ρp(t) |dt|
)1/p .

We’ll need the following result (see e.g. [6]).
Theorem [6]. Let Γ be either a Lyapunov or Radon curve without cusps. The

operator S acts boundedly from Lp,ρ(Γ) to Lp,ρ(Γ) if and only if the following inequalities
are fulfilled

−1

p
< βk <

1

q
, k = 1,m,

where 1 < p < +∞, 1
p + 1

q = 1.

4. Application

Consider the system (2), where α ∈ L∞ (−π, π) is some measurable real-valued func-
tion. As proved in [13], in case ‖α‖L∞

< π
4 the system (2) forms a Riesz basis for

L2 (−π, π). Of course, there arises the question: how necessary this condition is? Con-
sider the special case α (t) ≡ α t, where α ∈ R is some real parameter. In this case we have
|α| < 1

4 . As it follows from the results of [8,14], this condition is necessary for the basicity
of the system (2) for L2 (−π, π). The same result may be derived from Corollary 1. In
fact, let |α| = 1

4 and let the system (2) form a basis for L2 (−π, π). Denote by {hn}n∈Z a
system biorthogonal to it, i.e.∫ π

−π
ei(n t+α(t) signn)hk (t) dt = δnk , ∀n, k ∈ Z,

where ( ·̄ ) is a complex conjugation, δnk is the Kronecker symbol. Denote by P± : L2 → L2

the following projectors.

P+f =

∞∑
n=0

fne
i(n t+α(t) ); P−f =

∞∑
n=1

f−ne
−i(n t+α(t) ) , (6)

where fn =
∫ π
−π f(t)hn(t)dt , n ∈ Z. It is clear that the projectors P± are continuous, i.e.

∃M > 0: ∥∥P±f∥∥
L2
≤M ‖f‖L2

∀f ∈ L2 (−π, π) ,

where ‖ · ‖ is an ordinary norm in L2 (−π, π). Let H+
2 be a Hilbertian Hardy class of

functions analytic interior to the unit circle, and let H−2 be a similar class of functions
analytic exterior to the unit circle and vanishing at infinity. It follows from the convergence
of series (??) in L2 (−π, π) that the functions

F+(z) ≡
∞∑
n=0

fnz
n, F−(z) ≡

∞∑
n=1

f−nz
−n,
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belong to H+
2 and H−2 , respectively. Consequently, the pair (F+;F−) ∈ H+

2 ×H
−
2 is the

solution of the following Riemann problem.{
eiα(t)F+ (τ) + e−iα(t)F− (τ) = f (t) ,
F− (∞) = 0 , τ = eit, t ∈ (−π, π) .

(7)

Assume

Z±0 (z) ≡ exp

{
∓ i

2π

∫ π

−π
α (t)

eit + z

eit − z
dt

}
, (8)

and let

Z(z) ≡
{
Z+

0 (z), |z| < 1,[
Z−0 (z)

]−1
, |z| > 1.

It is known that the solution of problem (7) in the classes H+
2 × H

−
2 has the following

form (see e.g. [4]):

F (z) ≡ Z(z)

2π

∫ π

−π

e−iα(t)f (t)

Z+(eit)

dt

1− ze−it
,

where Z+
(
eit
)

are non-tangential boundary values of the function Z (z) on the unit cir-
cumference inside the unit circle. Applying the Sokhotskii-Plemelj formulae, we get

F±(eit) = ±1

2
e−iα(t)f (t) + S0 [f ] , (9)

where

S0 [f ] =
Z+(eit)

2π

∫ π

−π

e−iα(ξ)f (ξ)

Z+(eiξ)

dξ

1− ei(t−ξ)
.

Identify H±2 with the subspaces of L2 (−π, π). Denote by T±0 the operators of multipli-
cation by e±iα(t) in H±2 , respectively, i.e. T±0 F

± = e±iα(t)F±, ∀F± ∈ H±2 . Then we can
rewrite the boundary value problem (7) as follows

T+
0 F

+ + T−0 F
− = f , f ∈ L2 (−π, π) .

Let A±0 f = ±1
2e
−iα(t)f , ∀ f ∈ L2 (−π, π). It is clear that A±0 is an automorphism in

L2 (−π, π). From (9) we get F± = A±0 f +S0 [f ]. Then it follows from Corollary 1 that S0

acts boundedly in L2 (−π, π). Using (8) and the results of [4], it is easy to get

∣∣Z+
(
eit
) ∣∣ | |t| − π|2α , t ∈ (−π, π) .

Combined with theorem of [6], the latter relation yields that S0 is not bounded for
|α| = 1

4 . The obtained contradiction means that the system (2) doesn’t form a basis for
L2 (−π, π) in this case.
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