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Existence and Uniqueness of a Solution to the Optimal
Control Problem with Lions Type Functional for the Lin-
ear Nonstationary Guasi-Optics Equation

Ulker M. Farzalieva

Abstract. In this paper we consider the optimal control problem with an integral performance
criterion of the Lions functional type for the linear nonstationary quasi-optics equation with a
special gradient term. Such quality criteria are usually formed on the basis of the Dirichlet-
Neumann mapping on the boundary. The theorems on the existence and uniqueness of the solution
to the considered optimal control problem are proved.
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1. Introduction

Optimal control problems for the nonstationary quasi-optics equation with a special
gradient term often arise in nonlinear optics when studying the propagation of a light
beam in the inhomogeneous medium, in which the role of control is usually played by the
refractive and absorption indices of the medium, as well as the initial phase of the emitted
wave [1]. Note that identification problems for a non-stationary quasi-optics equation
without a special gradient term earlier were studied in [2-6] and others, when the quality
criteria were built mainly on the basis of final observations.

In this paper, we consider the optimal control problem for the nonstationary quasi-
optics equation with a special gradient term, in which the role of control is usually played
by the refractive and absorption indices of the medium and the performance criterion
is a Lions-type functional. Such quality criteria are usually formed on the basis of the
Dirichlet-Neumann mapping on the boundary. This approach for determining the initial
function in the inverse problem for the parabolic equation was used by J.-L. Lyons [7].
And then it was widely used in the works of A.D. Iskenderov to determine the coefficients
of the basic types of equations of mathematical physics and the nonstationary Schrödinger
equation [8-11].
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It should be noted that a similar problem for the nonstationary quasi-optics equation
without a special gradient term, when the coefficients of the equation are boundedly
measurable functions, was previously studied in [10]. Taking into account the above, we
can assert that the problem considered in this work differs from the works [2-6, 10] and
others in the formulation. Therefore, this work is relevant and is of interest both from a
theoretical and practical point of view.

2. Problem Formulation

Let l > 0, T > 0, L > 0 be given numbers; 0 ≤ x ≤ l, 0 ≤ t ≤ T, 0 ≤ z ≤
L,Ωt = (0, l) × (0, t), Ωz = (0, l) × (0, z), Ωtz = (0, l) × (0, t) × (0, z) , Ω = ΩTL,
Q = (0, T ) × (0, L); Ck ([0, T ] , B) be a Banach space of the defined and k ≥ 0 time
continuousely differentable on the interval [0, T ] function with values from Banach space;
Lp (0, l) be a Lebesque space of the functions summing on the interval (0, l) with order

p ≥ 1; W k
p (0, l) ,W k,m

p (ΩL) ,W k,m
p (ΩT ),p ≥ 1, k ≥ 0,m ≥ 0 be a Sobolev spaces defined

as for example in [12]; W 0,1,1
2 (Ω) be a Hilbert space of the elements u = u (x, t, z) from

having generalized derivatives ∂u
∂t ,

∂u
∂z from the space L2 (Ω) with scalar production and

norm defined as follows

(u1, u2)
W 0,1,1

2 (Ω)
=

∫
Ω

(
u1ū2 +

∂u1

∂t

∂ū2

∂t
+
∂u1

∂z

∂ū2

∂z

)
dxdtdz,

‖u‖
W 0,1,1

2 (Ω)
=
√

(u, u)
W 0,1,1

2 (Ω)
;

W 2,0,0
2 (Ω) be a Hilbert space of the elements u = u (x, t, z) from L2 (Ω) having generalized

derivatives ∂u
∂x ,

∂2u
∂x2

from L2 (Ω) with scalar product and norm defined as follows

(u1, u2)
W 2,0,0

2 (Ω)
=

∫
Ω

(
u1ū2 +

∂u1

∂x

∂ū2

∂x
+
∂2u1

∂x2

∂2ū2

∂x2

)
dxdtdz,

‖u‖
W 2,0,0,

2 (Ω)
=
√

(u, u)
W 2,0,0

2 (Ω)
;

W 2,1,1
2 (Ω) ≡W 2,0,0

2 (Ω)
⋂
W 0,1,1

2 (Ω) ;

0
W

2,1,1

2 (Ω) be subspace of the space W 2,1,1
2 (Ω) the elements of which turn to zero on

S = {(x, t, z) : x = 0, l, t ∈ (0, T ) , z ∈ (0, L)}.
Consider the optimal control problem on minimizing the functional:

Jα (v) = ‖ψ1 − ψ2‖2L2(Ω) + α ‖v − ω‖2H (1)

on the set

V ≡
{
v = (v0, v1) : vm ∈ L2 (0, l) , |vm (x)| ≤ bm,

0
∀x ∈ (0, l) ,m = 0, 1

}
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under the conditions

i
∂ψp
∂t

+ ia0
∂ψp
∂z
− a1

∂2ψp
∂x2

+ ia2(x)
∂ψp
∂x

+ a(x)ψp + v0 (x)ψp + iv1 (x)ψp =

= fp(x, t, z), p = 1, 2, (x, t, z) ∈ Ω, (2)

ψp (x, 0, z) = ϕ0p (x, z) , p = 1, 2, (x, z) ∈ ΩL, (3)

ψp (x, t, 0) = ϕ1p (x, t) , p = 1, 2, (x, t) ∈ ΩT , (4)

ψ1 (0, t, z) = ψ1 (l, t, z) = 0, (t, z) ∈ QTL, (5)

∂ψ2 (0, t, z)

∂x
=
∂ψ2 (l, t, z)

∂x
= 0, (t, z) ∈ QTL, (6)

where i is an imaginary unit, a0 > 0, a1 > 0, α ≥ 0, b0 > 0, b1 > 0- are given numbers;
0 ≤ x ≤ l, 0 ≤ t ≤ T, 0 ≤ z ≤ L, Ωt = (0, l) × (0, t), Ωz = (0, l) × (0, z), Ωtz =
(0, l) × (0, t) × (0, z) ,Ω = ΩTL, Qtz = (0, t) × (0, z); a (x) , a2 (x) are given measurable
bounded functions satisfying the following conditions:

µ̃0 ≤ a (x) ≤ µ0,
0
∀x ∈ (0, l) , µ0, µ̃0 = const > 0; (7)

|a2 (x)| ≤ µ1,

∣∣∣∣da2 (x)

dx

∣∣∣∣ ≤ µ2,
0
∀x ∈ (0, l) , µ1, µ2 = const > 0, a2 (0) = a2 (l) = 0; (8)

and the measurable functions ϕ0p (x, z) , ϕ1p (x, t),fp (x, t, z) , p = 1, 2 satisfy the conditions

ϕ01 ∈
0
W

2,1

2 (ΩL) , ϕ11 ∈
0
W

2,1

2 (ΩT ) ; (9)

ϕ02 ∈W 2,1
2 (ΩL) ,

∂ϕ02 (0, z)

∂x
=
∂ϕ02 (l, z)

∂x
= 0, z ∈ (0, L) ; (10)

ϕ12 ∈W 2,1
2 (ΩT ) ,

∂ϕ02 (0, t)

∂x
=
∂ϕ02 (l, t)

∂x
= 0, t ∈ (0, T ) ; (11)

fp ∈W 0,1,1
2 (Ω) , p = 1, 2; (12)

ω = (ω0, ω1) ∈ H ≡ L2 (0, l)×L2 (0, l) is a given element; the symbol
0
∀ stands “for almost

all”.

The problem of determining functions from conditions (2)-(6) for each will be called
a reduced problem. It is clear that the reduced problem consists of two initial-boundary
value problems for a linear nonstationary quasi-optics equation with a special gradient
term. For each v ∈ V the first initial boundary value problem is the problem of determining
the function ψ1 = ψ1 (x, t) ≡ ψ1 (x, t; v) from conditions (2)-(5) for p = 1 and the second
initial boundary value problem is the problem of determining ψ2 = ψ2 (x, t) ≡ ψ2 (x, t; v)
from conditions (2)-(4), (6) for p = 2.
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Definition 2.1. By the solution of the reduced problem (2)-(6) for each v ∈ V we mean

the functions ψ1 = ψ1 (x, t, z) ≡ ψ1 (x, t, z; v) from the functional space
0
W

2,1,1

2 (Ω) and
ψ2 = ψ2 (x, t, z) ≡ ψ2 (x, t, z; v) from the functional space W 2,1,1

2 (Ω) satisfying (2) for
almost all (x, t, z) ∈ Ω initial conditions (3), (4) for almost all (x, z) ∈ ΩL and boundary
conditions (5), (6) for almost all (t, z) ∈ Q, respectively.

Reduced problem (2)-(6), as noted above, consists of two initial-boundary value prob-
lems, i.e. of the first initial-boundary value problem (2) - (5) and the second initial-
boundary value problem (2)-(4), (6), which were studied earlier in the works [13, 14]. It
should be noted that the initial-boundary value problems for a linear nonstationary quasi-
optics equation without a special gradient term, when the coefficients of the equation are
square-summable functions, were previously studied in [15]. Based on the results of the
works [13, 14], we can establish the validity of the statement:

Theorem 2.2. Let conditions (7)-(12) be satisfied. Then reduced problem (2)-(6) for each

v ∈ V has a unique solution ψ1 ∈
0
W

2,1,1

2 (Ω) , ψ2 ∈ W 2,1,1
2 (Ω) and for this solution the

following estimates are valid:

‖ψ1‖20
W

2,1,1

2 (Ω)
≤ c1

(
‖ϕ01‖20

W
2,1

2 (ΩL)
+ ‖ϕ11‖20

W
2,1

2 (ΩT )
+ ‖f1‖2W 0,1,1

2 (Ω)

)
, (13)

‖ψ2‖2W 2,1,1
2 (Ω)

≤ c2

(
‖ϕ02‖2W 2,1

2 (ΩL)
+ ‖ϕ12‖2W 2,1

2 (ΩT )
+ ‖f2‖2W 0,1,1

2 (Ω)

)
, (14)

where the constants c1 > 0, c2 > 0 do not depend on ϕ0p, ϕ1p, fp, p = 1, 2.

This theorem implies that functional (1) makes sense in the considered class of solutions
to the reduced problem (2)-(6) for each given v ∈ V .

3. Existence and uniqueness of the solution of the optimal control
problems

First, let us establish that optimal control problem (1)-(6) has a unique solution for
α > 0. To this end, we first formulate the following theorem, which is known from [16].

Theorem 3.1. Let X̃ be a uniformly convex space, U be a closed unbounded set from X̃,
the functional I (v) is lower bounded and lower semicontinuous on U , α > 0, β ≥ 1 are
given numbers. Then there is a dense subset G of the space X̃ such that for any ω ∈ G
the functional

Jα (v) = I (v) + α ‖v − ω‖β
X̃

reaches its lowest value on U . If β > 1, then the minimum value of the functional Jα (v)
is attained at the single element of U .

Theorem 3.2. Let the conditions of Theorem 2.2 be satisfied. Let, in addition, ω ∈ H
be a given element. Then there exists a dense subset G of the space H such that, for any
ω ∈ G at α > 0 optimal control problem (1)-(6) has a unique solution.
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Proof. First, we prove the continuity of the functional

J0 (v) = ‖ψ1 − ψ2‖2L2(Ω) (15)

on the set V . Let ∆v ∈ B = L∞ (0, l)×L∞ (0, l) be an increment of any element v ∈ V such
that v + ∆v ∈ V and ∆ψp = ∆ψp (x, t, z) ≡ ψp (x, t, z; v + ∆v) − ψp (x, t, z; v) , p = 1, 2,
where ψp (x, t, z; v) , p = 1, 2 is a solution of the reduced problem (2) -(6) at v ∈ V . From
conditions (2)-(6) follows that ∆ψp = ∆ψp (x, t, z) , p = 1, 2 is a solution to the following
system of initial boundary value problems

i
∂∆ψp
∂t

+ ia0
∂∆ψp
∂z

− a1
∂2∆ψp
∂x2

+ ia2 (x)
∂∆ψp
∂x

+ a (x) ∆ψp + (v0 (x) + ∆v0 (x)) ∆ψp+

+i (v1 (x) + ∆v1 (x)) ∆ψp = −∆v0 (x)ψp − i∆v1 (x)ψp, p = 1, 2, (x, t, z) ∈ Ω, (16)

∆ψp (x, 0, z) = 0, p = 1, 2, (x, z) ∈ ΩL, (17)

∆ψp (x, t, 0) = 0, p = 1, 2, (x, t) ∈ ΩT , (18)

∆ψ1 (0, t, z) = ∆ψ1 (l, t, z) = 0, (t, z) ∈ Q, (19)

∂∆ψ2 (0, t, z)

∂x
=
∂∆ψ2 (l, t, z)

∂x
= 0, (t, z) ∈ Q. (20)

Let’s estimate the solution of this system. For this purpose, we multiply both sides of
equations (16) by functions ∆ψ̄p = ∆ψ̄p (x, t, z) , p = 1, 2 and integrate the obtained
equalities over the domain Ωtz. Then we get the validity of the equalities

∫
Ωtz

(
i
∂∆ψp
∂t

+ ia0
∂∆ψp
∂z

− a1
∂2∆ψp
∂x2

+ ia2 (x)
∂∆ψp
∂x

+ a (x) ∆ψp

)
∆ψ̄pdxdτdθ+

+

∫
Ωtz

(
(v0 (x) + ∆v0 (x)) |∆ψp|2 + i (v1 (x) + ∆v1 (x)) |∆ψp|2

)
dxdτdθ =

= −
∫

Ωtz

(∆v0 (x)ψp + i∆v1 (x)ψp) ∆ψ̄pdxdτdθ, p = 1, 2,∀t ∈ [0, T ] , ∀z ∈ [0, L] .

Applying the formula of integration by parts on the left-hand side of these equalities
and using the boundary conditions (19) and (20), it is easy to obtain the validity of the
equalities ∫

Ωtz

(
i
∂∆ψp
∂t

∆ψ̄p + ia0
∂∆ψp
∂z

∆ψ̄p + a1

∣∣∣∣∂∆ψp
∂x

∣∣∣∣2 +

+ia2(x)
∂∆ψp
∂x

∆ψ̄p + a(x) |∆ψp|2
)
dxdτdθ+

+

∫
Ωtz

(
(v0 (x) + ∆v0 (x)) |∆ψp|2 + i (v1 (x) + ∆v1 (x)) |∆ψp|2

)
dxdτdθ =
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= −
∫

Ωtz

(∆v0 (x)ψp + i∆v1 (x)ψp) ∆ψ̄pdxdτdθ, p = 1, 2,∀t ∈ [0, T ] , ∀z ∈ [0, L] . (21)

It is clear that the complex conjugation of these equalities has the form:∫
Ωtz

(
−i∂∆ψ̄p

∂t
∆ψp − ia0

∂∆ψ̄p
∂z

∆ψp + a1

∣∣∣∣∂∆ψp
∂x

∣∣∣∣2−
−ia2(x)

∂∆ψ̄p
∂x

∆ψp + a(x) |∆ψp|2
)
dxdτdθ+

+

∫
Ωtz

(
(v0 (x) + ∆v0 (x)) |∆ψp|2 − i (v1 (x) + ∆v1 (x)) |∆ψp|2

)
dxdτdθ =

= −
∫

Ωtz

(
∆v0 (x) ψ̄p − i∆v1 (x) ψ̄p

)
∆ψpdxdτdθ, p = 1, 2, ∀t ∈ [0, T ] ,∀z ∈ [0, L] .

Subtracting these equalities from equalities (21), we get

i

∫
Ωtz

(
∂∆ψp
∂t

∆ψ̄p +
∂∆ψ̄p
∂t

∆ψp

)
dxdτdθ + ia0

∫
Ωtz

(
∂∆ψp
∂z

∆ψ̄p +
∂∆ψ̄p
∂z

∆ψp

)
dxdτdθ+

+i

∫
Ωtz

a2 (x)

(
∂∆ψp
∂x

∆ψ̄p +
∂∆ψ̄p
∂x

∆ψp

)
dxdτdθ+

+2i

∫
Ωtz

(
(v1 (x) + ∆v1 (x)) |∆ψp|2

)
dxdτdθ = −

∫
Ωtz

∆v0 (x)
(
ψp∆ψ̄p − ψ̄p∆ψp

)
dxdτdθ−

−2i

∫
Ωtz

∆v1 (x)
(
ψp∆ψ̄p + ψ̄p∆ψp

)
dxdτdθ, p = 1, 2, ∀t ∈ [0, T ] ,∀z ∈ [0, L] .

Using these equalities it is easy to establish the validity of the following equalities∫
Ωtz

∂

∂t
|∆ψp|2 dxdτdθ + a0

∫
Ωtz

∂

∂z
|∆ψp|2 dxdτdθ +

∫
Ωtz

∂

∂x

(
a2 (x) |∆ψp|2

)
dxdτdθ =

= −2

∫
Ωtz

(v1 (x) + ∆v1 (x)) |∆ψp|2 dxdτdθ +

∫
Ωtz

da2 (x)

dx
|∆ψp|2 dxdτdθ+

= −2

∫
Ωtz

∆v0 (x) Im
(
ψp∆ψ̄p

)
dxdτdθ − 2

∫
Ωtz

∆v1 (x)Re
(
ψp∆ψ̄p

)
dxdτdθ, p = 1, 2

for ∀t ∈ [0, T ] , ∀z ∈ [0, L]. On the left-hand side of these equalities, the third term is
equal to zero by virtue of the conditions a2 (0) = a2 (l) = 0. Therefore, from this, using

conditions|v1 (x) + ∆v1 (x)| ≤ b1,
0
∀x ∈ (0, l), (8) and initial conditions (17), (18), as well

as the Cauchy-Bunyakovsky inequality, we can establish the validity of the inequalities

‖∆ψp (·, t, ·)‖2L2(Ωz) + a0 ‖∆ψp (·, ·, z)‖2L2(Ωt)
≤ (2 + µ2)

∫
Ωtz

|∆ψp|2 dxdτdθ+
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+
(
‖∆v0‖2L∞(0,l) + ‖∆v1‖2L∞(0,l)

)
‖ψp‖2L2(Ω) , p = 1, 2, ∀t ∈ [0, T ] , ∀z ∈ [0, L] .

Hence, by virtue of estimates (13), (14), we obtain the validity of the following inequalities:

‖∆ψp (·, t, ·)‖2L2(Ωz) + a0 ‖∆ψp (·, ·, z)‖2L2(Ωt)
≤ c3

(
‖∆v0‖2L∞(0,l) + ‖∆v1‖2L∞(0,l)

)
+

+ (2 + µ2)

∫
Ωtz

|∆ψp|2 dxdτdθ , p = 1, 2, ∀t ∈ [0, T ] , ∀z ∈ [0, L] .

From these inequalities, we can derive the following two types of inequalities:

‖∆ψp (·, t, ·)‖2L2(ΩL) ≤ c3

(
‖∆v0‖2L∞(0,l) + ‖∆v1‖2L∞(0,l)

)
+

+ (2 + µ2)

∫ t

0
‖∆ψp (., τ, .)‖2L2(ΩL) dτ, p = 1, 2, ∀t ∈ [0, T ] , (22)

‖∆ψp (·, ·, z)‖2L2(ΩT ) ≤ c4

(
‖∆v0‖2L∞(0,l) + ‖∆v1‖2L∞(0,l)

)
+

+c5

∫ z

0
‖∆ψp (., ., θ)‖2L2(ΩL) dθ, p = 1, 2, ∀z ∈ [0, L] . (23)

Applying Gronwall’s lemma, it is easy to establish the following estimates in these
inequalities

‖∆ψp (·, t, ·)‖2L2(ΩL) ≤ c6

(
‖∆v0‖2L∞(0,l) + ‖∆v1‖2L∞(0,l)

)
, p = 1, 2,∀t ∈ [0, T ] , (24)

‖∆ψp (·, ·, z)‖2L2(ΩT ) ≤ c7

(
‖∆v0‖2L∞(0,l) + ‖∆v1‖2L∞(0,l)

)
, p = 1, 2,∀z ∈ [0, L] , (25)

where the constants c6 > 0, c7 > 0 do not depend on ∆v = (∆v0,∆v1). Summing up these
estimates, we have:

‖∆ψp (·, t, ·)‖2L2(ΩL) + ‖∆ψp (·, ·, z)‖2L2(ΩT ) ≤
≤ c8

(
‖∆v0‖2L∞(0,l) + ‖∆v1‖2L∞(0,l)

)
, p = 1, 2

(26)

for ∀t ∈ [0, T ] , ∀z ∈ [0, L], where the constant c8 > 0 does not depend on ∆v = (∆v0,∆v1).
Directly from these estimates we have:

‖∆ψp‖2L2(Ω) ≤ c9 ‖∆v‖2B , p = 1, 2 (27)

where the constant c9 > 0 does not depend on ∆v.
Now let’s consider the increment of the functional J0 (v) on any element v ∈ V . Using

formula (15), the increment of the functional J0 (v) can be represented as

∆J0 (v) = J0 (v + ∆v)− J0 (v) =

= 2

∫
Ω
Re
[
(ψ1 (x, t, z)− ψ2 (x, t, z))

(
∆ψ̄1 (x, t, z)−∆ψ̄2 (x, t, z)

)]
dxdtdz+
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+ ‖∆ψ1‖2L2(Ω) + ‖∆ψ2‖2L2(Ω) − 2

∫
Ω
Re
(
∆ψ1 (x, t, z) ∆ψ̄2 (x, t, z)

)
dxdtdz. (28)

Hence, by virtue of the Cauchy-Bunyakovsky inequality and estimates (13), (14), (27), it
is easy to establish the validity of the inequality

|∆J0 (v)| ≤ c10

(
‖∆v‖B + ‖∆v‖2B

)
.

From this inequality we obtain the following limiting relation

|∆J0 (v)| → 0 at ‖∆v‖B → 0 for ∀v ∈ V.

This inequality means the continuity of the functional J0 (v) on the set V . The set V is
a closed bounded and convex set of space B = L∞ (0, l)×L∞ (0, l). It is easy to prove that
it is a closed bounded and convex set in a uniform convex space H = L2 (0, l) × L2 (0, l)
[17]. Then, by virtue of Theorem 3.1 formulated above, there exists a dense subset G of
the space H such that for any ω ∈ G and for any α > 0 optimal control problem (1) - (6)
has a unique solution. Theorem 3.2 is proved.

This theorem shows that optimal control problem (1)-(6) for α > 0 has a solution not
for every ω ∈ H. The next statement shows that the problem is that the optimal control
problem (1)-(6) has at least one solution at α ≥ 0 for any ω ∈ H.

Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied. Then there exists at least
one solution to the optimal control problem (1)-(6) at α ≥ 0 for any ω ∈ H.

Proof. Take any minimizing sequence
{
vk
}
⊂ V

lim
k→∞

Jα

(
vk
)

= Jα∗ = inf
υ∈V

Jα (v)

and set ψpk = ψpk (x, t, z) ≡ ψp
(
x, t, z; vk

)
, p = 1, 2, k = 1, 2, .... By virtue of Theorem

2.2, for each vk ⊂ V reduced problem (2) - (6) has a unique solution from the space

ψ1k ∈
0
W

2,1,1

2 (Ω) , ψ2k ∈W 2,1,1
2 (Ω) and the following estimates hold

‖ψ1k‖20
W

2,1,1

2 (Ω)
≤ c1

(
‖ϕ01‖20

W
2,1

2 (ΩL)
+ ‖ϕ11‖20

W
2,1

2 (ΩT )
+ ‖f1‖2W 0,1,1

2 (Ω)

)
, k = 1, 2, ..., (29)

‖ψ2k‖2W 2,1,1
2 (Ω)

≤ c2

(
‖ϕ02‖2W 2,1

2 (ΩL)
+ ‖ϕ12‖2W 2,1

2 (ΩT )
+ ‖f2‖2W 0,1,1

2 (Ω)

)
, k = 1, 2, ..., (30)

where the right hand side does not depend on k.

Since there V is a closed bounded and convex set from the Banach spaceB = L∞ (0, l)×
L∞ (0, l), then from the sequence

{
vk
}
⊂ V one can choose such a subsequence

{
vkl
}

(which we again denote by
{
vk
}

) such that

vkm → vm, m = 0, 1 (∗)− weekly in L∞ (0, l) at k →∞. (31)
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In addition, the set V is (*)-weakly closed set from space B. Therefore v ∈V . By virtue
of the limit relation (31), we can write the following limit relation∫ l

0
vkm (x) q (x) dx→

∫ l

0
vm (x) q (x) dx,m = 0, 1, (32)

at k →∞ for any function q ∈ L1 (0, l).
It follows from estimates (29), (30) that the sequences {ψpk (x, t, z)} , p = 1, 2 are uni-

formly bounded in the norm of the spaces
0
W

2,1,1

2 (Ω) and W 2,1,1
2 (Ω), respectively. Then

from these sequences one can choose such subsequences {ψpkl (x, t, z)} , p = 1, 2, (for sim-
plicity of presentation we again denote them by {ψpk (x, t, z)} , p = 1, 2) such that

ψpk → ψp, p = 1, 2 weekly in W 2,1,1
2 at k →∞. (33)

From these limit relations we can derive the following limit relations:

ψpk → ψp, p = 1, 2 weekly in L2(Ω), (34)

∂ψpk
∂x

→ ∂ψp
∂x

, p = 1, 2 weekly in L2(Ω), (35)

∂2ψpk
∂x2

→ ∂2ψp
∂x2

, p = 1, 2 weekly in L2(Ω), (36)

∂ψpk
∂t
→ ∂ψp

∂t
, p = 1, 2 weekly in L2(Ω), (37)

∂ψpk
∂z
→ ∂ψp

∂z
, p = 1, 2 weekly in L2(Ω) (38)

at k →∞.
Since the elements of subsequences {ψpk (x, t, z)} , p = 1, 2 are almost everywhere a

solution to the reduced problem (2)-(6) from the space W 2,1,1
2 (Ω), i.e.

ψ1k ∈
0
W

2,1,1

2 (Ω) , ψ2k ∈W 2,1,1
2 (Ω) , k = 1, 2, ....

Therefore, the elements of subsequences {ψpk (x, t, z)} , p = 1, 2 will satisfy the integral
identities ∫

Ω

(
i
∂ψpk
∂t

+ ia0
∂ψpk
∂z
− a1

∂2ψpk
∂x2

+ ia2 (x)
∂ψpk
∂x

+ a (x)ψpk+

+vk0 (x)ψpk + ivk1 (x)ψpk − f (x, t, z) η̄p (x, t, z)) dxdtdz = 0, p = 1, 2, k = 1, 2, ... (39)

for any functions ηp ∈ L2 (Ω) , p = 1, 2 and the following initial

ψpk (x, 0, z) = ϕ0p(x, z), p = 1, 2,
0
∀ (x, z) ∈ ΩL, k = 1, 2, ..., (40)

ψpk (x, t, 0) = ϕ1p(x, t), p = 1, 2,
0
∀ (x, t) ∈ ΩT , k = 1, 2, ..., (41)
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and boundary conditions

ψ1k (0, t, z) = ψ1k (l, t, z) = 0,
0
∀ (t, z) ∈ Q, k = 1, 2, ..., (42)

∂ψ2k (0, t, z)

∂x
=
∂ψ2k (l, t, z)

∂x
= 0,

0
∀ (t, z) ∈ Q, k = 1, 2, .... (43)

Let us now show that the limit functions ψp = ψp (x, t, z) , p = 1, 2 are a solution to
the reduced problem (2)-(6). For this purpose, we first show that the limit functions

ψp (x, t, z) , p = 1, 2 from W 2,1,1
2 (Ω) satisfy (2) for

0
∀ (x, t, z) ∈ Ω. By virtue of the limit

relations (34)-(38), we can write the following limit relations∫
Ω

(
i
∂ψpk
∂t

+ ia0
∂ψpk
∂z
− a1

∂2ψpk
∂x2

+ ia2
∂ψpk
∂x

+ a (x)ψpk

)
η̄pdxdtdz →

→
∫

Ω

(
i
∂ψp
∂t

+ ia0
∂ψp
∂z
− a1

∂2ψp
∂x2

+ ia2
∂ψp
∂x

+ a (x)ψp

)
η̄pdxdtdz, p = 1, 2 (44)

for any functions ηp ∈ L2 (Ω) , p = 1, 2 at k →∞. Now let us show that the following limit
relations hold ∫

Ω
vkm (x)ψpk (x, t, z) η̄p (x, t, z) dxdtdz →

→
∫

Ω
vm (x)ψp (x, t, z) η̄p (x, t, z) dxdtdz,m = 0, 1, p = 1, 2 (45)

for any functions ηp ∈ L2 (Ω) , p = 1, 2 at k → ∞. It is clear that the following equalities
hold ∫

Ω
vkm (x)ψpk (x, t, z) η̄p (x, t, z) dxdtdz =

=

∫
Ω

(
vkm (x)− vm (x)

)
ψp (x, t, z) η̄p (x, t, z) dxdtdz+

+

∫
Ω
vkm (x) (ψpk (x, t, z)− ψp (x, t, z)) η̄p (x, t, z) dxdtdz+

+

∫
Ω
vm (x)ψp (x, t, z) η̄p (x, t, z) dxdtdz,m = 0, 1, p = 1, 2, k = 1, 2, ... (46)

for any functions ηp ∈ L2 (Ω) , p = 1, 2. Since ψp ∈ L2 (Ω) , p = 1, 2 and ηp ∈ L2 (Ω) , p =
1, 2 we can state that the functions qp (x) =

∫
Q ψp (x, t, z) η̄p (x, t, z) dtdz belong to the

space L1 (0, l). Therefore, using limit relations of the form (32), we establish the validity
of the fact that the first term on the right-hand side of equalities (46) tends to zero at
k →∞ i.e. the following limit relations hold∫

Ω

(
vkm (x)− vm (x)

)
ψp (x, t, z) η̄p (x, t, z) dxdtdz → 0,m = 0, 1, p = 1, 2 (47)
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for any functions ηp ∈ L2 (Ω) , p = 1, 2 at k →∞.
Now let’s evaluate the second term on the right-hand side of equalities (46). Applying

the Cauchy-Bunyakovsky inequality, we get∣∣∣∣∫
Ω
vkm (x) (ψpk (x, t, z)− ψp (x, t, z)) η̄p (x, t, z) dxdtdz

∣∣∣∣ ≤
≤
∫

Ω

∣∣∣vkm (x)
∣∣∣ |ψpk (x, t, z)− ψp (x, t, z)| |ηp (x, t, z)| dxdtdz ≤

≤ bm ‖ηp‖L2(Ω) ‖ψpk − ψp‖L2(Ω) ,m = 0, 1, p = 1, 2, k = 1, 2, ..... (48)

Due to the compact embedding of space W 2,1,1
2 (Ω) into the space L2 (Ω), we can write

the following limit relations

ψpk → ψp, p = 1, 2 strongly in L2 (Ω) at k →∞. (49)

By virtue of these limit relations, passing to the limit in both sides of inequalities (48) for,
we obtain the following limit relations∫

Ω
vkm (x) (ψpk (x, t, z)− ψp (x, t, z)) η̄p (x, t, z) dxdtdz → 0,m = 0, 1, p = 1, 2 (50)

for any functions ηp ∈ L2 (Ω) , p = 1, 2 at k → ∞. Thus, using the limit relations (47),
(49), if we pass to the limit in both parts of (46), then for k → ∞ we obtain the limit
relations (45).

Now, using the limit relations (44), (45), if we pass to the limit in both parts of the
integral identity (39), then for k →∞ we obtain the following integral identities∫

Ω

(
i
∂ψp
∂t

+ ia0
∂ψp
∂z
− a1

∂2ψp
∂x2

+ ia2 (x)
∂ψp
∂x

+ a (x)ψp+

+v0 (x)ψp + iv1 (x)ψp − f (x, t, z)) η̄p (x, t, z) dxdtdz = 0, p = 1, 2 (51)

for any functions ηp ∈ L2 (Ω) , p = 1, 2. From this we obtain that the limit functions

ψp (x, t, z) , p = 1, 2 from W 2,1,1
2 (Ω) satisfy equations (2) for

0
∀ (x, t, z) ∈ Ω.

Now we show that the limit function ψp (x, t, z) , p = 1, 2 satisfies conditions (3) and

(4). It is evident that the elements {ψ1k} ∈
0
W

2,1,1

2 (Ω) and {ψ2k} ∈W 2,1,1
2 (Ω) satisfy the

following relations

ψ1k ∈ L2

(
0, T ;

0
W

2,1

2 (ΩL)

)
,
∂ψ1k

∂t
∈ L2 (0, T ; L2 (ΩL)) , (52)

ψ2k ∈ L2

(
0, T ; W 2,1

2 (ΩL)
)
,
∂ψ2k

∂t
∈ L2 (0, T ; L2 (ΩL)) (53)

and there are limiting relations

ψpk → ψp, p = 1, 2 weekly in L2

(
0, T ; W 2,1

2 (ΩL)
)
, (54)
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∂ψpk
∂t
→ ∂ψp

∂t
, p = 1, 2 weekly in L2 (0, T ; L2 (ΩL)) (55)

at k → ∞. From these relations and from the embedding theorem (see [18, p. 33]) we
establish that

‖ψpk (·, t, ·)− ψp (·, t, ·)‖L2(ΩL) → 0, p = 1, 2 at k →∞, ∀t ∈ [0, T ] . (56)

Similarly, we establish that

‖ψpk (·, ·, z)− ψp (·, ·, z)‖L2(ΩT ) → 0, p = 1, 2 at k →∞, ∀z ∈ [0, L] . (57)

Using the limit relations (56), (57) and conditions (40), (41) with passing to the limit by
k →∞ in the inequalities

‖ψp (·, 0, ·)− ϕ0‖L2(ΩL) ≤ ‖ψp (·, 0, ·)− ψpk (·, 0, ·)‖L2(ΩL)+‖ψpk (·, 0, ·)− ϕ0‖L2(ΩL) , p = 1, 2,

‖ψp (·, ·, 0)− ϕ1‖L2(ΩT ) ≤ ‖ψp (·, ·, 0)− ψpk (·, ·, 0)‖L2(ΩT )+‖ψpk (·, ·, 0)− ϕ1‖L2(ΩT ) , p = 1, 2

we obtain the validity of the relations

‖ψp (·, 0, ·)− ϕ0‖L2(ΩL) = 0, ‖ψp (·, ·, 0)− ϕ1‖L2(ΩT ) = 0, p = 1, 2.

It follows that the limit the functions ψp (x, t, z) , p = 1, 2 satisfy conditions (3) and (4)
for almost all (x, z) ∈ ΩL, (x, t) ∈ ΩT , respectively.

Finally, we show that the limit functions ψp (x, t, z) , p = 1, 2 satisfy boundary con-
ditions (5) and (6), respectively, for almost all (t, z) ∈ Q. From the compactness of the

embedding of the space
0
W

2,1,1

2 (Ω) into the space L2 (Q;C [0, l]) we obtain

‖ψ1k (s, ., .)− ψ1 (s, ., .)‖L2(Q) → 0, s = 0, l at k →∞. (58)

Using this and the boundary conditions (42) from the inequalities

‖ψ1 (s, ., .)‖L2(Q) ≤ ‖ψ1 (s, ., .)− ψ1k (s, ., .)‖L2(Q) + ‖ψ1k (s, ., .)‖L2(Q) , s = 0, l

passing to the limit, we find that the limit function ψ1 (x, t, z) satisfies the following
relations

‖ψ1 (s, ., .)‖L2(Q) , s = 0, l.

It follows immediately from these relations that the limit function ψ1 (x, t, z) satisfies the
boundary conditions (5) for almost all (t, z) ∈ Q.

Now we show that the limit function ψ2 (x, t, z) satisfies boundary conditions (6) for al-
most all (t, z) ∈ Q. Due to the fact that elements of a subsequence {ψ2k (x, t, z)} from space
W 2,1,1

2 (Ω) have a generalized derivative ∂ψ2k
∂x , k = 1, 2, ... from the space L2

(
Q;W 1

2 (0, l)
)

i.e. from the space W 1,0,0
2 (Ω).
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It is not difficult to establish that this space is boundedly limitedly embed-
ded into the space C0 ([0, l] , L2 (Q)) . Then it is clear that for the subsequences{
∂ψ2k(0,t,z)

∂x

}
,
{
∂ψ2k(l,t,z)

∂x

}
the following limiting relations hold

∂ψ2k (s, ., .)

∂x
→ ∂ψ2 (s, ., .)

∂x
, s = 0, l weekly in L2 (Q) (59)

at k →∞. On the other hand, one can write the following equalities∫
Q

∂ψ2 (s, t, z)

∂x
η̄ (t, z) dtdz =

∫
Q

(
∂ψ2 (s, t, z)

∂x
− ∂ψ2k (s, t, z)

∂x

)
η̄ (t, z) dtdz+

+

∫
Q

∂ψ2k (s, t, z)

∂x
η̄ (t, z) dtdz, s = 0, l, k = 1, 2, ... (60)

for any function η ∈ L2 (Q). Using the boundary conditions (43), we can assert that the
second terms on the right-hand sides of equalities (60) vanish. Taking this and the limit
relations (59) into account, if we pass to the limit in equalities (60), then for k → ∞ we
obtain the following relations∫

Q

∂ψ2 (s, t, z)

∂x
η̄ (t, z) dtdz = 0, s = 0, l.

for any function η ∈ L2 (Q). From these relations we obtain the validity of the following
second boundary conditions

∂ψ2 (0, t, z)

∂x
=
∂ψ2 (l, t, z)

∂x
= 0,

0
∀ (t, z) ∈ Q.

Thus we proved that the limit functions ψ1 ∈
0
W

2,1,1

2 (Ω) , ψ2 ∈ W 2,1,1
2 (Ω) are solutions

for reduced problem (2)-(6) corresponding to the limit function v = v (x) from V of
the subsequence

{
vk
}
⊂ V i.e. ψp = ψp (x, t, z) ≡ ψp (x, t, z; v) , p = 1, 2. Moreover,

this solution satisfies estimates (13), (14), which follow from estimates (29), (30) with
passing to the lower limit along weakly converging to the functions ψp (x, t, z) , p = 1, 2
subsequences {ψpk (x, t, z)} , p = 1, 2. By virtue of the limit relations (31) and (34) and
the weak lower semicontinuity of the norms of the spaces L2 (Ω) and H, as well as the
conditions α ≥ 0 for ∀ω ∈ H we obtain the relation

Jα∗ ≤ Jα (v) ≤ lim
−−−−−
k→∞

Jα (vk) = inf
υ∈V

Jα (v) = Jα∗.

This means that the limit function v = v (x) from of the subsequence from V gives
minimum to the functional Jα (v) on the set V i.e. v ∈ V is a solution to the optimal
control problem (1)-(6). Theorem 3.3 is proved.
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