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On Tensor Fields Generated by Differentiable Functions

Gunay H. Salmanova

Abstract. In the paper it is considered the question on differentiable properties of maps generated
by real smooth functions. In one dimensional case the set of sequential derivatives well defines
the structure of a set of singular points. In this paper we attempt to generalize this theory for
multivariate functions.

Key words: differentiable function, tensor field, functional matrix, tensor product.

2010 Mathematics Subject Classifications: Primary 26D15, 28A35, 57R35

1. Introduction

We shall use the notations from [1]. Let Rn be n-dimensional real space, U ⊂ Rn some
open set, and let f(x̄) ∈C(m)(U ) be a function having all continuous partial derivatives of
orders up to m. We sketch remind the basic notions of the theory. Let x̄, h̄ ∈ U, x̄+ h̄ ∈ U
be some points in the set U ⊂ Rn. Denote by f(x̄) a vector -valued map, that is, some
map f : U → V ⊂ Rk, where k is a natural number. If there is a linear map A ∈ L(Rn,Rk)
such that the limit

lim
h̄→0

∣∣f(x̄+ h̄)− f(x̄)−Ah̄
∣∣∣∣h̄∣∣ (1)

exists then the function f(x̄) is called a differentiable function at the point x̄ ∈ U . Here
∣∣h̄∣∣

denotes the usual Euclidean norm of the vector h̄. When f(x̄) is differentiable at the point
x̄, then we shall use the notation for the linear map A: f ′(x̄) = A. If f(x̄) is differentiable
at any point of the set U , then we say that the map f is differentiable in U . When k=1
we get the definition of the notion of derivative of the function, in which the linear map
A is substituted by the number defining the linear map. Taking h̄ = hēj where h is a real
number, ēj is a basis vector, we get partial derivative with respect to xj .

Considering gradient vector ∇f = (D1f, ...,Dnf) we get map ∇f : U → V ⊂ Rn. If to
take second derivative, in accordance with the definition above, we get the linear operator
A ∈ L(Rn,Rn). The matrix of this operator is a Jacoby matrix of coordinate functions of
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the vector ∇f at the point x̄(acting on the tangential subspace, that is, subspace with the
origin at x̄):

F (x̄) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 ; fj = ∂f/∂xj .

In metric problems connected with this matrix, for example in the question of estimates
of trigonometric integrals, or estimates for areas of surfaces and so on, it stands necessary
to study normal forms of this operator. Let r1(x̄), ..., rn(x̄) be singular numbers of this
matrix at the point x̄. Then singular value decomposition of this matrix by using of
singular bases can be written as follows:

QTF (x̄)T = Λ,

where Q and T are orthogonal functional matrices of order n, and Λ is a diagonal matrix
containing singular number of the matrix F (x̄) (see [6])on the diagonal. The columns
of the matrices Q and T set up, so called, singular bases of the matrixF (x̄). Following
relations are best known (see [3-4]):

rj(x̄) = (F t̄j , q̄j), F t̄j = rj q̄j , F
T q̄j = t̄j . (2)

As it was shown in [2, 6, 7, 9], the functions rj(x̄) are differentiable functions. These func-
tions are defined by the matrix F (x̄) univaludely, if do not count their order of placement.
Therefore, if we define the map r̄ : U → Rn, then its Jacoby matrix will be defined by the
matrix F (x̄) in some neighborhood of the point x̄. In this article we shall investigate this
question, studying the structure of the tensor fields connected with the function F (x̄).
It should be noted that we consider here simplest case of map in which the full space
is mapped into itself. The method of investigation used here can be applied to maps of
manifolds. In both cases the relations (2) plays an essential role.

2. Singular value decomposition of derivative matrix

Let us differentiate the first of relations with respect to any varying direction ξ̄ = ξ̄(x̄).
It means that we take in the relation (1) h̄ = hξ̄, and shall pass to the limit as h → 0.
Using relation (2) we get:

Dξ̄rj(x̄) = (Dξ̄F t̄j , q̄j) + (FDξ̄ t̄j , q̄j) + (F t̄j , Dξ̄ q̄j) =

= (Dξ̄F t̄j , q̄j) + (Dξ̄ t̄j , F
T q̄j) + (F t̄j , Dξ̄ q̄j) =

= (Dξ̄F t̄j , q̄j) + rj(Dξ̄ t̄j , t̄j) + rj(q̄j , Dξ̄ q̄j).

Since columns of the matrices Q and T are the unite vectors, then (t̄j , t̄j) = 1. So, for any
vector ξ̄

Dξ̄(t̄j , t̄j) = 2(Dξ̄ t̄j , t̄j) = 0.
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Therefore,
Dξ̄rj(x̄) = Dξ̄(F t̄j , q̄j) = ((Dξ̄F )t̄j , q̄j). (3)

The last relation shows that the vectors of singular bases remain unchanged when we
differentiate the singular numbers of the matrix. So, despite that these vectors are the
functions of independent variables, they behave themselves as a constant vectors when
differentiation of singular numbers is taken with respect arbitrary direction. From the
relation (3) it is seen that the Jacoby matrix of the map s̄ : x̄ 7→ r̄(x̄), where r̄T (x̄) =
(r1(x̄), ..., rn(x̄)) is possible write as below

∂(r1, ..., rn)

∂(x1, ..., xn)
= (((Dx̄iF )t̄j , q̄j)) =


((Dx̄1F )t̄1, q̄1) · · · ((Dx̄1F )t̄n, q̄n)
((Dx̄2F )t̄1, q̄1) · · · ((Dx̄2F )t̄n, q̄1n)

...
. . .

...
((Dx̄nF )t̄1, q̄1) · · · ((Dx̄nF )t̄n, q̄n)

 .

İt is not difficult to see that

((Dx̄iF )t̄j , q̄j) =
n∑

m=1

n∑
k=1

∂F

∂xi
tmjqkj =

=
n∑

m=1

n∑
k=1

∂3f

∂xm∂xk∂xi
tmjqkj . (4)

Consider now the linear map f ′′ : Rn → Rn2
as a vector function the components of

which are elements of the matrix F. Let’s arrange the elements of each column of the
matrix F consequently in a line, and take the transposed Jacoby matrix of the system of
functions

B =

(
∂2f1

∂x1∂x1
, ...,

∂2f1

∂x1∂xn
,
∂2f2

∂x1∂x1
, ...,

∂2f2

∂x1∂xn
, ...,

∂2fn
∂x1∂x1

, ...,
∂2fn
∂x1∂xn

)
.

It is easy to observe that this matrix will be transposed to the matrix of the linear map
conditionally denoted as above f ′′′ : Rn → Rn3

. Then the relations can be written more
briefly as follows:

((Dx̄iF )t̄j , q̄j) = ((DxiB)(t̄i ⊗ q̄i)) ,

where the expression t̄i ⊗ q̄i means the vector-column

t̄i ⊗ q̄i =



ti1qi1
...

ti1qin
...

tinqi1
...

tinqin


.
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So, the Jacoby matrix S(x̄) of the map s̄ : x̄ 7→ r̄(x̄) is possible express as follows:

S(x̄) =

 Dx1B
...

DxnB

 (t̄1 ⊗ q̄1 · · · t̄n ⊗ q̄n) = B′(T ∗Q), (5)

where the symbol B′ used for “derivative” of B, and the symbol T ∗ Q is used for the
matrix constructed from columns t̄1 ⊗ q̄1, ..., t̄n ⊗ q̄n.

Following two theorems is proved for matrices with polynomials entries ([6]). Below we
generalize it for smooth functions and clarify the structure of the tensor fields generated
by real smooth functions, giving the singular value decomposition for functional matrices
entered above.

Theorem 2.1. Let f(x̄) be a real smooth function, and the matrices S(x̄) and B′ defined
as above. If det(B′ ·B′T ) 6= 0 for all x̄ ∈ U then the relation below holds:

(detS(x̄))2 = det(B′ ·B′T ).

Proof. Now express the number (detS(x̄))−1 as follows (see [5, p. 131, the problem 35]):

(detS(x̄))−1 = c−1

∫
‖U(x̄)w̄‖≤1

dw1 · · · dwn.

Substituting the expression (5) for the matrix S(x̄), we find:

(detS(x̄))−1 = c−1

∫
‖B′(x̄)(T∗Q)w̄‖≤1

dw1 · · · dwn.

where c expresses the volume of the unite ball c = π−n/2Γ(n/2). Let’s change variables
under the last integral by the formula v̄ = (T ∗ Q)w̄. Since the columns of the matrix
T ∗Q are pare wisely orthogonal, we can represent the last integral in the form of a surface
integral

(detS(x̄))−1 = c−1

∫
‖B′(x̄)v̄‖≤1

ds

(indeed, the surface element equals
√

det((T ∗Q)T (T ∗Q)dw1 · · · dws = dw1 · · · dws). The
matrix B′ has the size n× n2 and has a singular value decomposition of the form:

B′ = LΛM

where the matrices L and M are orthogonal matrices of order n and n2, correspondingly.
Let’s make orthogonal change of variables under the surface integral above by using formula

ȳ = Mx̄.

Since this is an orthogonal transformation, the surface integral does not change its value.
We shall use arguments of the works [6, 10] to complete the proof. Assume that singular
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numbers are placed at the first n columns of the matrix Λ (they can placed in any order).
Noting that all of these singular numbers are distinct from zero, we take the columns
at which they are placed. If some of them are equal to zero, then we must consider all
possible their situation (as it was made in [8], we can assume that all of singular numbers
are non-zero, because if not, then we can instead of it take small perturbation of the matrix
F (x̄) of a view

F (x̄) +


εx1 0 · · · 0
0 εx2 · · · 0
...

...
. . .

...
0 0 · · · εxn


with next passing to the limit). We get∫

‖B′(x̄)v̄‖≤1
ds =

∫
λ21u

2
1+···+λ2nu2n≤1

du1 · · · dun = c(λ1 · · ·λn)−1 = (det(B′ ·B′T ))−1/2.

This is a needed result. Theorem 2.1 is proven.

Note that the got result does not mean that singular numbers of the matrices S(x̄) and
B′ are identical. From the proof of the theorem 2.1 it is visible that these matrices have
different transformations to get singular value decomposition. For the matrix S(x̄) such
reducing demands transformation in the subspace generated by the vectors t̄1⊗q̄1, ..., t̄n⊗q̄n
in Rn⊗Rn, but singular value decomposition of the matrix B′ is possible find by orthogonal
transformation in the full space Rn ⊗ Rn.

Corollary 2.2. Jacoby matrix of the map s̄ : x̄ 7→ r̄(x̄) is non-singular at every inner
point in some neighborhood of which the matrix B′ has maximal rank.

This corollary is an easy consequence of the theorem 2.1. It shows that the Jacobian
of the corollary can vanish only in a subset of zero Jordan measure, where the matrix B′

degenerates.
Theorem 2.1 expresses important property of tensor fields generated by smooth func-

tions. From the proof of the theorem we conclude that the forms which arise during
differentiation can be reduced to normal forms by engaging convenient geometric interpre-
tation. Since the scalar product in the right hand side of (2) is a bilinear form, then it can
be written as a linear form in Rn ⊗ Rn, as a scalar product (F̃ , (t̄j ⊗ q̄j)) in which (F̃ )T

denote the row got by arranging of the elements of columns of the matrix F consequently
in a row. So, (F̃ )T (T ∗Q) is a matrix of the size 1×n, which consists of singular numbers
of the matrix F . Let’s write this matrix symbolically as F ◦ (T ∗Q).

After of differentiation we get rows (DxiF ) ◦ (T ∗ Q). Placing all partial derivatives
in a column, we get a cubic matrix every layer of which acts to the matrix T ∗ Q by
operation defined as ◦. So, every layer of the cubic matrix define a row of the matrix
S(x̄) in consent with the formula (5). The operation T ∗Q defines a subspace in Rn⊗Rn,
which we shall call as “prime subspace” and denote by Pm(Rn⊗Rn). Note that the prime
subspace depends on taken bases in both spaces. If we take singular value decomposition
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for the matrix S(x̄) (or equivalently for the matrix B′(T ∗ Q) from (5)) we get singular
bases at which the matrix of diagonal section of the cubic matrix reduces to diagonal form
(diagonal of the cubic matrix). We can now continue the same reasoning to go forward by
taking higher derivatives.

Consider now the case of derivatives of order 3. Let the matrix S(x̄) has following
singular value decomposition: S(x̄) = HΣG (equivalently, QT1 S(x̄)T1 = Σ) in which the
H and G are orthogonal matrices, and Σ is a diagonal matrix of singular numbers. Denote
by S1(x̄) the Jacoby matrix of the system of functions consisting of singular numbers of
S(x̄).

Theorem 2.3. Let f(x̄) be real smooth function, and the matrices S(x̄) and B′ defined
as above. If det(B′′ ·B′′T ) 6= 0 for all x̄ ∈ U then the relation below holds:

(detS1(x̄))2 = det(B′′ ·B′′T ).

Proof. Proof of the theorem is carried out by applying the resoning of the proof of Theorem
1. İt is easy to observe that

S1(x̄) = B′′(Q1 ∗ ((Q ∗ T )T1)).

The matrix Q1 ∗ ((Q ∗ T )T1)is a matrix of the size n3 × n with orthonormal columns
lying in some prime subspace of tensor product Rn⊗ (Pm(Rn⊗Rn)). The remaining part
of the proof spends as in the proof of Theorem 2.1. Theorem 2.3 is proved.

3. General case

Applying the method of mathematical induction we can generalize the results of previ-
ous section. To do this we need in some designations. Let f(x̄) be some smooth function
f(x̄) ∈C(m)(U ), m is a natural number greater than 2. Consider two sequences of ma-
trices: S(x̄), S1(x̄),. . . ,Sm−2(x̄) and B(x̄), B′(x̄),. . . ,B(m−2)(x̄) which are constructed by
following way.

1. Construction of the first sequence. S(x̄) is a matrix constructed above, that is, this
matrix is a Jacoby matrix of the system of functions consisting of coordinate function of
the gradient ∇f . S1(x̄) is a transposed Jacoby matrix of the system of singular numbers
of the matrix S(x̄). Further, by induction, if the matrix Sj(x̄) is defined then by Sj+1(x̄)
we denote the transposed Jacoby matrix for the system of singular number of the matrix
Sj(x̄).

2. Construction of the second sequence we begin from the matrix B0(x̄) = S(x̄).
We take as a matrix B1(x̄) = S′(x̄) the transposed Jacoby matrix of the system of n2

functions got arranging the elements of columns, consequently, in a line. So, this a matrix
is of the size n × n2. Further, we arrange the elements of columns of the matrix B1(x̄),
consequently, in a row, and take the transposed Jacoby matrix of got system of functions,
denoting the last one as B2(x̄). Continuing by such way, we get the sequence of matrices
B1(x̄),. . . ,Bm−2(x̄). The matrix Bm−2(x̄) consists of all partial derivatives of the function
f(x̄) of order m.

Applying the method used above we can prove the following theorem.
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Theorem 3.1. Let m ≥ 3, and 0 ≤ k ≤ m − 3, If det(Bk+1 · BT
k+1) 6= 0 for all x̄ ∈ U

then the relation below holds:

(detSk(x̄))2 = det(Bk ·BT
k ).

The following result is a generalization of the corollary 2.2 of the theorem 2.1.

Corollary 3.2. Let conditions of Theorem 3.1 are satisfied. Then the Jacoby matrix of
the map s̄ : x̄ 7→ r̄(x̄) is non-singular at every inner point in some neighborhood of which
the matrix Bm−2(x̄) has maximal rank.

Corollary 3.2 shows that in conditions of the theorem 3.1 the set of singular points of
the map s̄ : x̄ 7→ r̄(x̄) cannot have inner points. So, in the conditions of Theorem 3.1 the
set of all singular points of the last map has zero Jordan mesure.

Corollary 3.3. Let conditions of Theorem 3.1 are satisfied. Then the set of singular
points of the map s̄ : x̄ 7→ r̄(x̄) has zero Jordan measure.

From the corollary 3.3 it follows that in conditions of the theorem 3.1 the set of all of
singular points of the function f(x̄) and its derivative matrices has zero Jordan measure.

The author expresses gratitude to professor M. Bayramoglu for posing of the problem
and to assoc. prof. Ilgar Jabbarov for useful discussions concerning the results of the
work.
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