
Journal of Contemporary Applied Mathematics
V. 11, No 2, 2021, December
ISSN 2222-5498

A Unified Treatment of The Generalised Poisson Distri-
bution with Implications for Characterization and Esti-
mation of Properties
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Abstract. Noting the wide variety in the consideration and parameter estimation of the Gener-
alized Poison Distribution (GPD), this paper presents a unified treatment of the GPD suitable for
any configuration of mean and variance, and making allowance for the q-truncated normalization
factor Fq(λ, θ) such that Fq(λ, θ) ≤ 1 ≤ Fq+1(λ, θ).
It is established that the GPD model satisfies the second-order linear partial differential equation
(PDE):

Φ2

(
L(λ, θ)

N
+ F ∗

q (λ, θ)

)
= −m1,

where L(λ, θ) and F ∗
q (λ, θ) are the log of the likelihood and the normalization factor respectively,

λ, θ are the parameters, N is the sample size and Φ2 is the curvature operator:

λ2∂2

∂λ2
+ 2λθ

∂2

∂λ∂θ
+ θ2

∂2

∂θ2

This suggests a PDE for which the case λ > 0, 0 ≤ θ < 1 manifests as a credible boundary
condition. We provide an illustration for maximum likelihood estimation purposes with a copiously
used data from the literature.
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1. Introduction

Ever since [1] introduced the generalized Poisson Distribution (GPD) as a generaliza-
tion of the discrete Poisson distribution, a variety of authors have made many valuable
contributions on its properties and estimation procedures. The list includes [3], [4], [8],
[10], as well as [12]. As pointed out by [2], the variance of the GPD can be greater (over
dispersed), equal (equi dispersed), or less (under dispersed) than the mean as one of the
parameters (θ) is positive, zero or negative. The model thus provides a very good fit
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to a wide range of data, from biological or queuing applications for which we may have
contagious, crowding or bursty data as well as actuarial or even fertility studies for which
there can be some under dispersion as found with multinomial situations. The applied
estimation procedures have included maximum likelihood, Bayes procedures, minimum
chi-squared, weighted discrepancies, empirical rates of change as well as moment estima-
tors and minimum variance unbiased estimators.
In this paper, we specifically allow for the q-truncated normalization factor Fq(λ, θ) such
that Fq(λ, θ) ≤ 1 ≤ Fq+1(λ, θ) and established that GPD can be characterized by a pair
of curvature partial differential equations (PDE)

λ∂H

∂λ
+ θ

∂H

∂θ
= −(λ− (1− θ) m1)

and
λ2∂2H

∂λ2
+ 2λθ

∂2H

∂λ∂θ
+ θ2

∂2H

∂θ2
= −m1,

where

H =
L(λ, θ)

N
+ F ∗q (λ, θ),

L(λ, θ) is the log-likelihood, F ∗q (λ, θ) is the log-normalization factor, λ, θ are the
parameters, N is the sample size and m1 is the first raw sample moment. This suggests
a PDE for which the less problematic case λ > 0 and 0 ≤ θ < 1 manifests as a credible
boundary condition for which H is replaced by L(λ, θ)/N.
Let X∞, Xq be random variables defined by

Pr{X∞ = x} = f(λ, θ, x) =
λ

x!
(λ+ xθ)x−1e−(λ+θx) (1.1)

and (See [6]),

Pr{Xq = x} = g(λ, θ, x) =

{
f(λ,θ,x)
Fq(λ,θ)

for x = 0, 1, . . . , q

0 otherwise,
(1.2)

with

Fq(λ, θ) = Pr{X∞ ≤ q} =

q∑
x=0

f(λ, θ, x), q = 0, 1, 2, . . . (1.3)

As noted in [9], the random variables X∞, Xq thus have the generalized Poisson distri-
bution (GPD) with f(λ, θ, x), appropriate only when λ > 0; θ ≥ 0, while g(λ, θ, x)
is appropriate, amongst the other cases, in the proven case of under dispersion when

λ > 0; θ < 0, and max

(
−1,
−λ
q

)
≤ θ < 1 and q(> 4) is the largest positive integer

for which λ+ θq ≥ 0 when θ < 0. It is considered apt to adopt g(λ, θ, x) as a unified
case with q =∞ when θ ≥ 0 such that F∞(λ, θ) = 1. It should be noted in the general
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case that

Fq(λ, θ) ≡ Fq =

q∑
x=0

λ(λ+ θx)x−1

x!
e−(λ+θx),

with Fq(λ, θ) ≤ 1 < Fq+1(λ, θ)

(1.4)

Suppose we introduce the following notations:

µj = E[Xj ] =

q∑
x=0

g(λ, θ, x) xj = jth population raw moment.

mj =

q∑
x=0

nx x
j/N = jth sample raw moment for counts, nx for values of x and sample sizeN.

G(µ, z) =
∞∑
j=0

µjz
j = z transform for population raw moments of, Xq.

M(z) =

∞∑
j=0

mjz
j = z transform for population raw moments of Xq.

Denote G = G(µ,−θ/λ) and M = M(−θ/λ), we note as follows:

q∑
x=0

g(λ, θ, x)(x− 1)

λ+ θx
= −1

θ

(
λ+ θ

λ
G− 1

)
(1.5)

q∑
x=0

g(λ, θ, x)x(x− 1)

λ+ θx
=

1

θ2
((λ+ θ) (G− 1) + θµ1) (1.6)

q∑
x=0

nx(x− 1)

λ+ θx
= −1

θ

(
λ+ θ

λ
M − 1

)
N (1.7)

q∑
x=0

nxx(x− 1)

λ+ θx
=

1

θ2
((λ+ θ) (M − 1) + θm1)N (1.8)

It follows that

∂F ∗

∂λ
=

1

Fq(λ, θ)

∂Fq(λ, θ)

∂λ
=

1

λθ
((λ+ θ) (1−G)− λθ) (1.9)

∂F ∗

∂θ
=

1

Fq(λ, θ)

∂Fq(λ, θ)

∂θ
=

1

θ2
((λ+ θ) (G− 1) + θ(1− θ)µ1) (1.10)

λ2
∂2F ∗q (λ, θ)

∂λ2
= −(1−G)− λ

θ
(λ+ θ)G′λ (1.11)
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θ2
∂2F ∗q (λ, θ)

∂θ2
= −

(
2λ+ θ

θ

)
(G− 1)− µ1 + θ(1− θ)∂µ1

∂θ
+ (λ+ θ)G′θ (1.12)

λθ
∂2F ∗q (λ, θ)

∂λ∂θ
=
λ

θ

(
G− 1 + (λ+ θ)G′λ + θ(1− θ)∂µ1

∂λ

)
(1.13)

λθ
∂2F ∗q (λ, θ)

∂θ∂λ
=
λ

θ
(G− 1)− (λ+ θ)G′θ (1.14)

2. Log-likelihood Function

The log-likelihood function L(λ, θ, n1, n2, . . . , nq) ≡ L(λ, θ) for GPD is given by

L(λ, θ) = Ln

[
q∏

x=0

(g(λ, θ, x))nx

]
(2.1)

Differentiating 2.1 w.r.t. λ, θ we have

∂L

∂λ
= N

(
1− λ
λ

)
− N

Fq(λ, θ)

∂Fq(λ, θ)

∂λ
+

q∑
x=0

nx

(
x− 1

λ+ θx

)
(2.2)

∂L

∂θ
= − N

Fq(λ, θ)

∂Fq(λ, θ)

∂θ
+

q∑
x=0

nx

(
x(x− 1)

λ+ θx

)
−m1N (2.3)

So that, using 1.7-1.10, we have

∂L

∂λ
=

(
λ+ θ

λθ

)
(G−M)N (2.4)

∂L

∂θ
=

((
λ+ θ

θ2

)
(M −G)

)
N +

(
1− θ
θ

)
(m1 − µ1)N (2.5)

and
λ2

N

∂2L

∂λ2
= (M −G)− λ

θ
(λ+ θ)

(
M ′λ −G′λ

)
(2.6)

θ2

N

∂2L

∂θ2
= −

(
2λ+ θ

θ

)
(M −G) + (λ+ θ)

(
M ′θ −G′θ

)
+ (µ1 −m1)− θ(1− θ)

∂µ1
∂θ

(2.7)

λ θ

N

∂2L

∂θ∂λ
=

(
λ

θ

)
(M −G)− (λ+ θ)

(
M ′θ −G′θ

)
(2.8)

λθ

N

∂2L

∂λ∂θ
=

(
λ

θ

)
(M −G) +

(
λ(λ+ θ)

θ

)(
M ′λ −G′λ

)
− λ(1− θ)∂µ1

∂λ
(2.9)
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Under the assumptions of existence of partial derivatives continuity for
Fq(λ, θ) and L(λ, θ), we have

∂2F ∗q (λ, θ)

∂θ∂λ
≡
∂2F ∗q (λ, θ)

∂λ∂θ
∂2L(λ, θ)

∂θ∂λ
≡ ∂2L(λ, θ)

∂λ∂θ

So that from Equations (1.13), (1.14), (2.8) and (2.9),

(λ+ θ)
(
λG′λ + θG′θ

)
= −λθ(1− θ)∂µ1

∂λ
(2.10)

λM ′λ + θM ′θ = 0 (2.11)

3. Preliminary Remarks

Remark 3.1. The normalizing constant Fq(λ, θ) for the GPD (λ, θ), satisfies the partial
differential equation

λ
∂Fq(λ, θ)

∂λ
+ θ

∂Fq(λ, θ)

∂θ
= −(λ− (1− θ)µ1)Fq(λ, θ) (3.1)

as well as the parabolic equation

λ2
∂2Fq(λ, θ)

∂λ2
+ 2λθ

∂2Fq(λ, θ)

∂θ∂λ
+ θ2

∂2Fq(λ, θ)

∂θ2
= (λ− (1− θ)µ1)2Fq(λ, θ)− µ1Fq(λ, θ)

+ (1− θ)
(
λ
∂µ1
∂λ

+ θ
∂µ1
∂θ

)
Fq(λ, θ)

(3.2)

Proof. Equation 3.1 follows from Equations 1.9 and 1.10. Differentiating Equations 1.9
and 1.10 as appropriate and applying Equation 2.10, we obtain Equation 3.2

Remark 3.2. The logarithm of the normalization factor F ∗q (λ, θ) for the GPD (λ, θ),
satisfies the partial differential equation

λ
∂F ∗q (λ, θ)

∂λ
+ θ

∂F ∗q (λ, θ)

∂θ
= −(λ− (1− θ)µ1) (3.3)

as well as the parabolic equation

λ2
∂2F ∗q (λ, θ)

∂λ2
+ 2λθ

∂2F ∗q (λ, θ)

∂θ∂λ
+ θ2

∂2F ∗q (λ, θ)

∂θ2
= −µ1 + (1− θ)

(
λ
∂µ1
∂λ

+ θ
∂µ1
∂θ

)
(3.4)

where

F ∗q (λ, θ) = logFq(λ, θ) (3.5)

97



Proof. Results follow easily from Equations 1.9 to 1.13.
Furthermore, by the method of characteristics [7], Equation 3.1 can be replaced by the

ordinary differential equation called characteristics form

dF

dθ
= −(λ− (1− θ)E[X])θ−1Fq(λ, θ) (3.6)

along the characteristic curve obtained by solving

dλ

dθ
=
λ

θ
(3.7)

It follows therefore, and without prejudice to equation 1.3, that Fq(λ, θ) can be given in
general by

Fq(λ, θ) = fq

(
λ

θ

)
e−

∫
(λ−(1−θ)E[X])θ−1dθ (3.8)

where fq

(
λ

θ

)
is an arbitrary function. In view of the fact that the dynamics of the gen-

eralized Poisson process may involve some natural process of mutation selection, growth,
division synchronization and the like which may translate in some populations into some
affine transformation of parameters, we are motivated to consider relations between pro-
cesses

N0 ≈ GPD(λ, θ), N± ≈ GPD(λ(1−±α), θ(1± α))

and some others. We also generally denote that corresponding to GPD(λ, θ) are mgf
M0(t) and empirical moment generating function (emgf) ψ0, etc.
We observe that

(i.)
∞∑
n=0

λ

n!
(λ+ nθ)n−1zne−z(λ+nθ) = 1 (3.9)

(ii.)
∞∑
n=0

λ

n!
(λ+ nθ)n−1(zeθz)n = e(−

λ
θ
W (−θze−θz)) (3.10)

where W (z) is the product, log or Lambert function [5] defined by W (z)eW (z) = z
as well as W (θeθ) = θ.

(iii.)
(λ+ rθ)(n)rf(λ, θ, n) = λ(λ+ nθ)rf(λ+ rθ, θ, n− r) (3.11)

Of course, nr is the rth falling factorial. We state the following preliminary re-
marks: The moment generating function (mgf) MX∞(t) and probability generating
function (pgf) PX∞(t) for the random variable X∞ are given by [.e.g [11]]

MX∞(t) = e−
λ
θ
[W (−θe(−θ+t))+θ] (3.12)
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PX∞(t) = e−
λ
θ
[W (−θte(−θ+t))+θ] (3.13)

Of course,
MX∞(t) = PX∞(t)

It is also the case that all moments of are obtainable from MX∞(t).

(iv.) Taking summations over n as appropriate in the recurrence relations Equation 3.11,
we remark that

E[(N0)r] =
λ

λ+ rθ

Fq−r(λ+ rθ, θ)

Fq(λ, θ)
E[(θNr + λ+ rθ)r] (3.14)

where N0 ≈ GPD(λ, θ) and Nr ≈ GPD(λ+ rθ, θ). Of course, (N0)r
denotes N0(N0 − 1), . . . , (N0 − r + 1).

(v.) Similarly, with N−r ≈ GPD(λ− rθ, θ), we have

E[(N−r)r] =
λ− rθ
λ

Fq(λ, θ)

Fq−r(λ− rθ, θ)
E[(θN0 + λ)r] (3.15)

E[(N−r1)r1+r2 ] =
λ− r1θ
λ+ r2θ

Fq−r2(λ+ r2θ, θ)

Fq+r1(λ+ r1θ, θ)
E[(θNr2 + λ+ r2θ)

r1+r2 ] (3.16)

(vi.) Further, putting r ≡ q in Equation 3.14 and r2 ≡ q in Equation 3.16, we obtain

Fq+r(λ− rθ, θ) = eλ+qθ
λ− rθ
λ+ qθ

E[(θNq + λ+ qθ)r+q]

E[(N−r)r+q]
(3.17)

as well as

Fq(λ, θ) = eλ+qθ
λ

λ+ qθ

E[(θNq + λ+ qθ)q]

E[(N0)q]
(3.18)

so that

Fq+r(λ− rθ, θ) =
λ− rθ
λ

E[(θNq + λ+ qθ)r+q]E[(N0)q]

E[(θNq + λ+ qθ)q]E[(N−r)r+q]
Fq(λ, θ)

(vii.) Taking summations over n as appropriate in the recurrence relations Equation 3.12,
we remark that for

N0 ≈ GPD(λ, θ), N−α ≈ GPD(λ(1− α), θ(1− α))

and Nβ ≈ GPD(λ(1 + β), θ(1 + β))

respectively with mgf M0(t), M−α(t) and Mβ(t), we have

Fq(λ, θ)M0(In(1− α)) = e−λαM−α(−θα)Fq(λ(1− α), θ(1− α)) (3.19)

Fq(λ, θ)M0(−θβ) = eλβMβ(−In(1 + β))Fq(λ(1 + β), θ(1 + β)) (3.20)

and Equations 3.14 - 3.20 gives the recurrence relation for the normalization factors
involving parameters λ and θ and their affine transformations.

99



4. Main Results

Theorem 4.1. The log-likelihood L(λ, θ) satisfies the partial differential equation

1

N

(
λ
∂L

∂λ
+ θ

∂L

∂θ

)
= (1− θ)(m1 − µ1) (4.1)

as well as the parabolic equation

1

N

(
λ2
∂2L

∂λ2
+ 2λθ

∂2L

∂θ∂λ
+ θ2

∂2L

∂θ2

)
= (µ1 −m1)− (1− θ)

(
λ
∂µ

∂λ
+ θ

∂µ1
∂θ

)
(4.2)

Proof. Equation 4.1 follows from Equations 2.4 and 2.5. Equation 4.2 follows from Equa-
tions 2.6 - 2.8 and applying Equations 2.10 and 2.11.

Theorem 4.2. The logarithm of the normalized constant F ∗q (λ, θ) and the log-likelihood
L(λ, θ) are connected by the partial differential equation

λ
∂

∂λ

(
L(λ, θ)

N
+ F ∗q (λ, θ)

)
+ θ

∂

∂θ

(
L(λ, θ)

N
+ F ∗q (λ, θ)

)
= −(λ− (1− θ)m1) (4.3)

as well as the second order linear partial differential equation

Φ2

(
L(λ, θ)

N
+ F ∗q (λ, θ)

)
= −m1 (4.4)

where Φ2(.) is the operator λ2
∂2

∂λ2
+ 2λθ

∂2

∂θ∂λ
+ θ2

∂2

∂θ2
.

Proof. Equation 4.3 follows from adding Equations 3.3 and 4.1. Equation 4.4 follows from
adding Equations 3.4 and 4.2.

Remark 4.3. Equations 4.3 and 4.4 give a characteristics pair of curvature equation
for the unified GPD model defined in Equation 1.1. For the GPD,X∞ for which
F∞(λ,θ) = 1 and F ∗∞(λ,θ) = 0, equation 4.3 and 4.4 reduce to

λ
∂L

∂λ
+ θ

∂L

∂θ
= −(λ− (1− θ)m1)

and

Φ2

(
L(λ, θ)

N

)
= −m1 (4.5)

Equation 4.5 will be valid for all cases where λ > 0 and 0 ≤ θ < 1. This suggests that one

only needs to replace
L(λ, θ)

N
with

L(λ, θ)

N
+ F ∗q (λ, θ) estimation purposes in the general

case. We remark that a solution to Equation 4.4 must involve certain boundary conditions.
It follows from Equations 3.1 and 3.3 that the idea that the first population mean is given
by

µ1 = λ/(1− θ)
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can be taken as a mere necessary boundary condition for the solution to the second order
linear partial differential equation 4.4 on the curve θ = 0 for which F ∗q (λ, θ) = 0. How-
ever, for Equation 4.3,a maximum likelihood estimator for the population mean is given
by

m1 = λ/(1− θ).

5. MLE Numerical Illustration

In clear terms, the appropriate MLE equation for the unified system are:

∂H

∂λ
=

(
λ+ θ

λθ

)(
1−M

(
−θ
λ

))
− 1

=

(
1− λ
λ

)
+

1

N

q∑
x=2

(x− 1)nx
λ+ θx

,

∂H

∂θ
=

(
λ+ θ

θ2

)(
M

(
−θ
λ

)
− 1

)
+

(
1− θ
θ

)
m1

= −
(

1

θ

)
(1− (1− θ)m1)−

λ

θN

q∑
x=2

(x− 1)nx
λ+ θx

,

with

λ̂ = (1− θ̂)m1.

Table 1 gives a goodness of fit analysis of the data on number of Dicentrics per cell as
reproduced by [4] for 600 doses of rad. Our model gave λ̂ = 1.7568, θ̂ = −0.1261 as did
[4].

6. Conclusion

In this note we have, by a proper weighing with a q− truncated normalization
constant Fq(λ, θ), considered a unified model of the Generalized Poisson Distribution as
applicable for all configurations of parameters λ and θ. Some basic recurrence relations
on the factor Fq(λ, θ) are presented. We have expressed all relevant derivatives for
the maximum likelihood estimation of the parameters in terms of the raw moments z
transform M(z). We have also derived a modified characterization of the model. As
these relations have implications for hypothesis testing and estimation procedures, these
contributions promote a better and less confusing utilization of the Generalized Poisson
Distribution for testing and fitting purposes.
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Table 1: Fitted Values and Observed Number of Dicentrics ([4])
600 Rad

No of Dicentrics Observed Fitted

0 27 26.1152

1 50 52.0451

2 45 44.4139

3 18 21.2089

4 10 6.2169

5 - -

χ2 2.5056

Acknowledgement: The authors hereby acknowledge the editors for their helpful
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