
Journal of Contemporary Applied Mathematics
V. 12, No 1, 2022, July
ISSN 2222-5498

The Jost Solutions to the Schrödinger Equation with an
Additional Complex Periodic Potential

A. Kh. Khanmamedov, H.M.Masmaliev, A.R.Latifova

Abstract. We consider the one-dimensional Schrodinger equation with an additional complex
periodic potential. Using transformation operators, we obtain representations of solutions of this
equation with conditions at infinity. Estimates for the kernels of the transformation operators are
obtained.
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1. Introduction and main result

We consider the differential equation

−y′′ + p(x)y + q (x) y = k2y, (1)

where p (x) =
∞∑
n=1

pne
inx,

∞∑
n=1

|pn| < ∞ and q(x) is a continuously differentiable function

with bounded support. When q(x) = 0, the unperturbed equation

−y′′ + p(x)y = k2y (2)

was first considered by M.G.Gasymov in [1],(see also [2]-[4]) which found sufficient condi-
tions for the solvability of the inverse problem. He showed that equation (2) has a Floquet
solution of the form

f0 (x, k) = eikx

(
1 +

∞∑
n=1

1

n+ 2k

∞∑
α=n

Vnαe
iαx

)
,

where the series
∞∑
n=1

1

n

∞∑
α=n+1

α (α− n) |Vnα|,
∞∑
n=1

n |Vnα|
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converge. It was proved in [2], for any k with Imk > 0, the function f0(x, k) belongs
to L2 (0,+∞) and the function f0(x,−k) belongs to L2 (−∞, 0). Moreover, the functions
f0(x, k) and f0(x,−k) are linearly independent, and their Wronslian is equal to 2ik.

This paper is devoted to the study of the solutions of (1) with asymptotic conditions

f± (x, k) = f0 (x,±k) [1 + o (1)] , x → ±∞.

We shall derive the integral representation, which is usually called the Jost translation
representation between f± (x, k) and f0 (x,±k). The obtained results can be used to
study the spectral properties of the non-self-adjoint differential operator L, generated by
the differential expression l(y) = −y′′ + p(x)y + q(x)y in the space L2 (−∞,+∞) .

The main result of the present paper is as follows.

Theorem 1.1. For any k ̸= ∓n
2 , n = 1, 2, ... from the complex plane, equation (1) has

solutions f± (x, k), which can be represented in the form

f± (x, k) = f0 (x,±k)±
±∞∫
x

K± (x, t) f0 (t,±k) dt, (3)

where the kernels K±(x, t) are continuous functions and satisfy the following conditions:

K± (x, t) = ±1

2

±∞∫
x

q(t)dt. (4)

2. Proof of the theorem

Without loss of generality, we consider the case ′′+′′ and assume that x ≥ 0. We shall
use the following notation

σ (x) =
1

2

+∞∫
x

|q (t)| dt.

We first consider the following lemmas before turning to the proof of the theorem.

Lemma 2.1. If q(x) is a continuously differentiable function with bounded support, then
the integral equation

U (ξ0, η0) =
1

2

+∞∫
ξ0

q (ξ) dξ +

η0∫
0

+∞∫
ξ0

[p (ξ − η)− p (ξ + η) + q (ξ − η)]U (ξ, η) dξdη, (5)

has one and only one solution U (ξ0, η0). Furthermore, if q(x) = 0 when x > a, then

U (ξ0, η0) = 0 when ξ0 ≥ a. (6)
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Proof. Using the method of successive approximation, let

U0 (ξ0, η0) =
1

2

+∞∫
ξ0

q (ξ) dξ, (7)

Un (ξ0, η0) =

η0∫
0

+∞∫
ξ0

[p (ξ − η)− p (ξ + η) + q (ξ − η)]Un−1 (ξ, η) dξdη. (8)

Because the function q(x) with bounded support, there exists an a > 0 such that
q(x) = 0 for x > a . By induction with respect to n, we have

Un (ξ0, η0) = 0 for ξ0 > a, n = 0, 1, 2, ... (9)

For any R > 0, suppose that 0 < η0 < R, 0 < ξ0 < +∞. By (7), we have

|U0 (ξ0, η0)| ≤ σ (ξ0) .

Taking the notation

M = max
0≤ξ≤2a
0≤η≤R

|p (ξ − η)− p (ξ + η) + q (ξ − η)|

into account, we obtain

|U1 (ξ0, η0)| ≤ σ (ξ0) (Mη0) .

Using induction, by (8) we next prove that

|Un (ξ0, η0)| ≤ σ (ξ0)
1

n!
(Mη0)

n . (10)

Hence the series

U (ξ0, η0) =

∞∑
n=0

Un (ξ0, η0) (11)

is uniformly and absolutely convergent, so U (ξ0, η0) is the solution of the integral equation
(5). From (10) and (11), it follows that

|U (ξ0, η0)| ≤ σ (ξ0) exp (Mη0) . (12)

This implies obviously the uniqueness of the solution to the equation (5). The assertion
(6) is justified by (9) and (11).

Lemma 2.2. Suppose q(x) is a continuously differentiable function with bounded support.
Then the solution U (ξ0, η0) of the integral equation (5) satisfies the following differential
equation
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∂2U (ξ0, η0)

∂ξ0∂η0
+ [p (ξ − η)− p (ξ + η) + q (ξ − η)]U (ξ0, η0) = 0 (13)

and

U (ξ0, 0) =
1

2

+∞∫
ξ0

q (ξ) dξ. (14)

Proof. From (5) the differentiability of U (ξ0, η0) is evident. Differentiating equation (5)
directly, we get the equation (14). Putting η0 = 0 in (6), we get the result (14).

We now let ξ0 = t+x
2 , η0 = t−x

2 and express the function K(x, t) = U (ξ0, η0) as a
function of x, t. Then the function K(x, t) is twice continuously differentiable. Moreover,
from the two preceding lemmas we get the following lemma.

Lemma 2.3. Suppose q(x) is a continuously differentiable function with bounded support.
Then the function K(x, t) = U

(
t+x
2 , t−x

2

)
satisfies both the differential equation

∂2K (x, t)

∂x2
− [p (x) + q (x)]K (x, t) =

∂2K (x, t)

∂t2
− p (t)K (x, t) (15)

and the condition

K (x, x) =
1

2

+∞∫
x

q (t) dt.

Furthermore, if q(x) = 0 when x > a, then K(x, t) = 0 when x+ t > 2a.

Now the theorem can be proved. By differentiation from (1), we have

f ′
+ (x, k) = f ′

0 (x, k)−K (x, x) f0 (x, k) +

+∞∫
x

Kx (x, t) f0 (t, k) dt, (16)

f ′′
+ (x, k) = f ′′

0 (x, k)− dK(x,x)
dx f0 (x, k)−K (x, x) f ′

0 (x, k)−

−Kx (x, x) f0 (x, k) +
+∞∫
x

K ′′
xx (x, t) f0 (t, k) dt.

(17)

From Lemma 2.3, it is easily seen that when t sufficiently large, K(x, t) = 0, so the
last terms of (3), (16),(17) are integrable. From

−f ′′
0 (x, k) + p (x) f0 (x, k) = k2f0 (x, k) (18)

and (3), we have

k2f+ (x, k) = k2f0 (x, k) +
+∞∫
x

K (x, t) p (t) f0 (t, k) dt−

−
+∞∫
x

K (x, t) f ′′
0 (t, k) dt.

(19)
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Hence, integrating by parts, we obtain

+∞∫
x

K (x, t) f ′′
0 (t, k) dt = −K (x, x) f ′

0 (x, k)−
+∞∫
x

K ′
t (x, t) f

′
0 (t, k) dt =

= −K (x, x) f ′
0 (x, k) +K ′

t (x, x) f0 (x, k) +
+∞∫
x

K ′′
tt (x, t) f0 (t, k) dt.

(20)

By virtue of (3) and (17)-(20),we have

−f ′′
+ (x, k) + p (x) f+ (x, k)− k2f+ (x, k) =

=
+∞∫
x

[K ′′
tt (x, t)−K ′′

xx (x, t) +K (x, t) (p (x) + q (x)− p (t))] f0 (t, k) dt+

+
[
2dK(x,x)

dx + q (x)
]
f0 (x, k) .

From the lemma 3 and the last relation, f+(x, k), when K+(x, t) = K(x, t) satisfies
equation (1). Furthermore, by virtue of (12)-(18), it follows that f+(x, k) = f0(x, k) when
x sufficiently large. Hence, the f+(x, k) is a Jost solution. Thus, the proof of the theorem
is complete.
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