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Abstract. We consider generalized weighted Morrey spaces Mp,ω,|·|γ (Rn) and a general function
ω(x, r) defining the Morrey-type norm. We prove the Riesz potential Iα is bounded from the weighted
Morrey space Mp,ω1,|·|γ (Rn) to Mq,ω2,|·|µ(Rn) , 1 < p < n

α , 1
p −

1
q = α

n , αp−n < γ < n(p− 1) ,
µ = qγ

p .
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1. Introduction

Morrey spaces were introduced by C. B. Morrey in 1938 in connection with certain problems
in elliptic partial differential equations and calculus of variations (see [17]), they are defined by
the norm

‖f‖Lp,λ := sup
x, r>0

r
−λ
p ‖f‖Lp(B(x,r)),

where 0 ≤ λ < n, 1 ≤ p < ∞. In the theory of partial differential equations, together with
weighted Lebesgue spaces, Morrey spaces Lp,λ(Ω) play an important role. Later, Morrey spaces
found important applications to Navier-Stokes ([28]) and Schrödinger ([20], [22], [23], [26], [27])
equations, elliptic problems with discontinuous coefficients ([3], [5]), and potential theory ([1]).
An exposition of the Morrey spaces can be found in the books [6] and [15].

Generalized Morrey spaces of such a kind in the case of constant p were studied in [2], [16],
[18], [19]. In [9] there was proved the boundedness of the maximal operator, singular integral
operator and the potential operators in generalized variable exponent Morrey spaces.

The results on the boundedness of potential operators and classical Calderon-Zygmund singu-
lar operators go back to [1] and [21], respectively, while the boundedness of the maximal operator
in the Euclidean setting was proved in [4].

Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces was proved in H.G.Hardy
and J.E.Littlewood [13] in the one-dimensional case and to E.M.Stein and G.Weiss [25] in the
case n > 1 .
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One of the most important variants of the Hardy-Littlewood maximal function is the so-called
fractional maximal function defined by the formula

Mαf(x) = sup
t>0
|B(x, t)|−1+α/n

∫
B(x,t)

|f(y)|dy, 0 ≤ α < n,

where |B(x, t)| is the Lebesgue measure of the ball B(x, t) .
It coincides with the Hardy-Littlewood maximal function Mf ≡ M0f and is intimately

related to the Riesz potential

Iαf(x) =

∫
Rn

f(y)dy

|x− y|n−α
, 0 < α < n.

The paper is organized as follows. In Section 2 we provide necessary preliminaries on variable
exponent Lebesgue and Morrey spaces. In Section 3 we treat Riesz potentials.

The main results are given in Theorems 3, 3, 3, 3.

2. Preliminaries on Lebesgue and Morrey spaces

Lp ≡ Lp(Rn) is the space of all classes of measurable functions f with finite norm

‖f‖Lp =

∫
Rn

|f(x)|pdx

 1
p

, 1 ≤ p <∞

and also WLp(Rn) , the weak Lp space defined as the set of all measurable functions f on Rn
with the following finite norms

‖f‖WLp
= sup

r>0
r |{x ∈ Rn : |f(x)| > r}|1/p , 1 ≤ p <∞.

For p =∞ the space L∞(Rn) is defined by means of the usual modification

‖f‖L∞ = ess sup
x∈Rn

|f(x)|.

Let Lp,ω(Rn) be the space of measurable functions on Rn with finite norm

‖f‖Lp,ω = ‖f‖Lp,ω(Rn) =

∫
Rn

|f(x)|pω(x)dx

1/p

, 1 ≤ p <∞.

and for p =∞ the space L∞,ω(Rn) = L∞(Rn) .
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Definition 1. The weight function ω belongs to the class Ap(Rn) for 1 ≤ p < ∞ , if the
following statement

sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

ω(y)dy

 1

|B(x, r)|

∫
B(x,r)

ω
− 1
p−1 (y)dy


p−1

is finite and ω belongs to A1(Rn) , if there exists a positive constant C such that for any
x ∈ Rn and r > 0

|B(x, r)|−1
∫

B(x,r)

ω(y)dy ≤ C ess sup
y∈B(x,r)

1

ω(y)
.

The following theorem was proved in [25].

Theorem 1. Let 0 < α < n , 1 < p < n
α , 1

p −
1
q = α

n , αp− n < γ < n(p− 1) , µ = qγ
p .

Then the operator Iα is bounded from Lp,|·|γ (Rn) to Lq,|·|µ(Rn) .

Let M ] be the sharp maximal function defined by

M ]f(x) = sup
r>0
|B(x, r)|−1

∫
B(x,r)

|f(y)− fB(x,r)|dy,

where fB(x,t)(x) = |B(x, t)|−1
∫
B(x,t) f(y)dy .

Definition 2. We define the BMO(Rn) space as the set of all locally integrable functions f
with finite norm

‖f‖BMO = sup
x∈Rn, r>0

|B(x, r)|−1
∫
B(x,r)

|f(y)− fB(x,r)|dy

or

‖f‖BMO = inf
C

sup
x∈Rn, r>0

|B(x, r)|−1
∫
B(x,r)

|f(y)− C|dy,

where fB(x,t)(x) = |B(x, t)|−1
∫
B(x,t) f(y)dy .

Definition 3. We define the BMOp,ω(Rn) ( 1 ≤ p <∞ ) space as the set of all locally integrable
functions f with finite norm

‖f‖BMOp,ω = sup
x∈Rn, r>0

‖(f(·)− fB(x,r))χB(x,r)‖Lp,ω(Rn)
‖χB(x,r)‖Lp,ω(Rn)

.

Theorem 2. [14, Theorem 4.4] Let 1 ≤ p < ∞ and ω be a Lebesgue measurable function. If
ω ∈ Ap(Rn) , then the norms ‖ · ‖BMOp,ω and ‖ · ‖BMO are mutually equivalent.

We find it convenient to define the generalized Morrey spaces in the form as follows.
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Definition 4. Let 1 ≤ p < ∞ . The generalized Morrey space Mp,ω(Rn) and generalized
weighted Morrey space Mp,ω,|·|γ (Rn) are defined by the norms

‖f‖Mp,ω = sup
x∈Rn,r>0

r
−n
p

ω(x, r)
‖f‖Lp(B(x,r)),

‖f‖Mp,ω,|·|γ = sup
x∈Rn,r>0

r
−n
p

ω(x, r)
‖f‖Lp,|·|γ (B(x,r)).

Everywhere in the sequel we assume that

inf
x∈Rn,r>0

ω(x, r) > 0 (1)

which makes the space Mp,ω(Rn) nontrivial. Note that when p is constant, in the case of
w(x, r) ≡ const > 0, we have the space L∞(Rn).

3. Riesz potential operator in the spaces Mp,ω,|·|γ (Rn)

Theorem 1. Let 0 < α < n , 1 < p < n
α , 1

p −
1
q = α

n , αp − n < γ < n(p − 1) , µ = qγ
p .

Then
‖Iαf‖Lq,|·|µ (B(x,t)) ≤ Ct

n
q
+ γ
p

∫ ∞
t

s
−n
q
− γ
p
−1‖f‖Lp,|·|γ (B(x,s))ds, t > 0 (1)

where C does not depend on f , x and t.

Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χB(x,2t)(y), f2(y) = f(y)χRn\B(x,2t)(y), t > 0, (2)

and have
Iαf(x) = Iαf1(x) + Iαf2(x).

By Theorem 2 we obtain

‖Iαf1‖Lq,|·|µ (B(x,t)) ≤ ‖Iαf1‖Lq,|·|µ (Rn) ≤ C‖f1‖Lp,|·|γ (Rn) = C‖f‖Lp,|·|γ (B(x,2t)).

Then

‖Iαf1‖Lq,|·|µ (B(x,t)) ≤ C‖f‖Lp,|·|γ (B(x,2t)),

where the constant C is independent of f .
Taking into account that

‖f‖Lp,|·|γ (B(x,2t)) ≤ Ct
n
q
+ γ
p

∫ ∞
t

s
−n
q
− γ
p
−1‖f‖Lp,|·|γ (B(x,s))ds,
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we get

‖Iαf1‖Lq,|·|µ (B(x,t)) ≤ Ct
n
q
+ γ
p

∫ ∞
t

s
−n
q
− γ
p
−1‖f‖Lp,|·|γ (B(x,s))ds. (3)

When |x− z| ≤ t , |z − y| ≥ 2t, we have 1
2 |z − y| ≤ |x− y| ≤

3
2 |z − y| , and therefore

|Iαf2(x)| ≤
∫
Rn\B(x,2t)

|z − y|α−n|f(y)|dy ≤ C
∫
Rn\B(x,2t)

|x− y|α−n|f(y)|dy.

We choose β > n
q and obtain∫

Rn\B(x,2t)
|x− y|α−n|f(y)|dy

= β

∫
Rn\B(x,2t)

|x− y|α−n+β|f(y)|

(∫ ∞
|x−y|

s−β−1ds

)
dy

= β

∫ ∞
2t

s−β−1

(∫
{y∈Rn:2t≤|x−y|≤s}

|x− y|α−n+β|f(y)|dy

)
ds

≤ C
∫ ∞
2t

s−β−1‖f‖Lp,|·|γ (B(x,s))‖|x− y|α−n+β‖L
p′(·),|·|γ/(1−p) (B(x,s))ds

≤ C
∫ ∞
2t

s
α−n

p
− γ
p
−1‖f‖Lp,|·|γ (B(x,s))ds

Hence

‖Iαf2‖Lq,|·|µ (B(x,t)) ≤ C
∫ ∞
2t

s
−n
q
− γ
p
−1‖f‖Lp,|·|γ (B(x,s))ds‖χB(x,t)‖Lq,|·|µ (Rn).

Therefore

‖Iαf2‖Lq,|·|µ (B(x,t)) ≤ Ct
n
q
+ γ
p

∫ ∞
2t

s
−n
q
− γ
p
−1‖f‖Lp,|·|γ (B(x,s))ds (4)

which together with (3) yields (1).

Theorem 2. Let 0 < α < n , 1 < p < n
α , 1

p −
1
q = α

n , αp−n < γ < n(p− 1) , µ = qγ
p and

the functions ω1(x, r) and ω2(x, r) fulfill the condition∫ ∞
r

t
α− γ

pω1(x, t)
dt

t
≤ C r−

γ
pω2(x, r). (5)

Then the operators Mα and Iα are bounded from Mp,ω1(·),|·|γ (Rn) to Mq,ω2(·),|·|µ(Rn) .

Proof. Let f ∈Mp,ω1,|·|γ (Rn) . As usual, when estimating the norm

‖Iαf‖Mq,ω2,|·|µ (Rn) = sup
x∈Rn, t>0

t
−n
q

ω2(x, t)
‖IαfχB(x,t)‖Lq,|·|µ (Rn). (6)
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We estimate ‖IαfχB(x,t)‖Lq,|·|µ (Rn) in (6) by means of Theorem 3 and obtain

‖Iαf‖Mq,ω2,|·|µ (Rn)

≤ C sup
x∈Rn, t>0

t
γ
p

ω2(x, t)

∫ ∞
t

r
−n
q
− γ
p
−1‖f‖Lp,|·|γ (B(x,r))dr

≤ C‖f‖Mp,ω1,|·|γ (Rn) sup
x∈Rn, t>0

t
γ
p

ω2(x, t)

∫ ∞
t

r
α− γ

pω1(x, r)

r
dr.

It remains to make use of condition (5).

Theorem 3. Let 0 < α < n , 1 < p < n
α , 1

p −
1
q = α

n , γ , µ satisfy condition

0 ≤ γ < n

p′
, µ =

γ

p
, (7)

and let ω(x, t) satisfy condition

rαω(x, r) ≤ C, (8)

Then the operators Mα is bounded from Mp,ω(·),|·|γ (Rn) to L∞,|·|µ(Rn) .

Proof. Let x ∈ Rn and r > 0 . By the Hölder inequality we get successively

rα−n
∫
B(x,r)

|f(y)|dy

≤ Crα−nr
n
p ω(x, r)r

−n
p ω−1(x, r)‖f‖Lp,|·|γ (B(x,r))‖χB(x,r)‖L

p′,|·|γ/(1−p)

≤ Crαω(x, r)|x|−
γ
p ‖f‖Mp,ω(·),|·|γ ≤ C|x|−

γ
p ‖f‖Mp,ω(·),|·|γ .

Theorem 4. Let 0 < α < n , 1 < p < n
α , 1

p −
1
q = α

n , αp − n < γ < n(p − 1) , γ , µ
satisfy condition (7), 0 < α < n and let ω(x, t) satisfy condition (8).

Then the operator Iα is bounded from Mp,ω(·),|·|γ (Rn) to BMO(Rn) .

Proof. Let f ∈Mp,ω(·),|·|γ (Rn) . In [1] was proved

M ](Iαf)(x) ≤ CMαf(x). (9)

The proof Theorem 3, by the Theorem 3 and inequality (9).
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