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Inverse scattering problem for Sturm-Liouville equation
with a rational function of spectral parameter in bound-
ary condition
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Abstract. The inverse scattering problem is analyzed for the Sturm-Liouville equation on the
half line [0,∞) with a rational function of spectral parameter in the boundary condition. The
main equation is derived, its solvability is proved and it is presented that the potential is uniquely
recovered in terms of the scattering data.
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1. Introduction

The determination of potential from an appropriate set of spectral data is known as
inverse problem of scattering theory. Problems with spectral parameters in equations and
boundary conditions are extremely important in spectral theory. Sturm Liouville problems
appear in studies of heat conduction problems and vibrating string problems when bound-
ary condition contains spectral parameter [1]. Many examples of spectral problems which
arise in mechanical engineering and contain eigen parameter in the boundary conditions
were presented in the book [2].

In this work let us consider the boundary value problem generated by the differential
equation and boundary condition:

−v′′(x) + {q(x)− λ2}v(x) = 0, (0 ≤ x < ∞) (1)

v′(0)− f (λ) v (0) = 0, (2)

where λ is a spectral parameter, q (x) is real valued function with the condition

∞∫
0

(1 + x) |q (x)| dx < ∞ (3)
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and

f (λ) =
b0 + b1λ

2 + b2λ
4

a0 + a1λ2 + a2λ4

for αi, βj ∈ R (i, j = 0, 1, 2)

a1b0 − b0a1 ≥ 0, a2b1 − b1a2 ≥ 0, a2b0 − b2a0 = 0. (4)

Marchenko [3] and Levitan [4] studied inverse scattering problem of the Sturm-Liouville
operator on the half line with a boundary condition at the origin when there is no spectral
parameter. Inverse problem for second order differential operator pencil on the axis was
studied in [5]. Problems with boundary conditions depending on spectral parameter were
examined in finite interval by several authors [6, 7, 8, 9, 10, 11, 12] and on the half line
by [13, 14, 15, 16, 17, 18, 19, 20].

The main goal of this paper is to introduce inverse scattering problem for Sturm-
Liouville equation involving fourth order spectral parameter in the boundary condition.
More precisely, we will extend the Marchenko method to a more general situtaion in which
the boundary condition contains a rational function of spectral parameter.

The remaining paper is organized as follows: In section 2, the required results for
boundary value problem (1)-(3) are provided. In Section 3, the main equation is derived,
which is needed in recovering potential q(x) uniquely. Finally, in Section 4, we present the
uniqueness and reconstruction of the potential of equation (1).

2. Preliminaries

This section provides basic tools and results from the work [20] which allow us to
achieve this research.

It is well known [3] when the condition (3) holds, the equation (1) has a unique solution
e(λ, x) which satisfies the asymptotic behavior, for Imλ ≥ 0,

lim
x→+∞

e−iλxe (λ, x) = 1.

This is called Jost solution and can be expressed by

e (λ, x) = eiλx +

∞∫
x

K (x, t) eiλtdt, (5)

where the kernel function K(x, t) satisfies the inequality

|K(x, t)| ≤ 1

2
Ω

(
x+ t

2

)
exp

{
Ω1 (x)− Ω1

(
x+ t

2

)}
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and the functions Ω (x) and Ω1 (x) have the following notations:

Ω (x) ≡
∞∫
x

|q (t)| dt, Ω1 (x) ≡
∞∫
x

Ω (x) dt.

Also,

K(x, x) =
1

2

∞∫
x

q (t) dt. (6)

Denote by σ(λ, x) the solution of (1) satisfying the conditions

σ(λ, 0) = a0 + a1λ
2 + a2λ

4, σ′(λ, 0) = b0 + b1λ
2 + b2λ

4.

Lemma 2.1. [20] The following identity holds:

2iλσ(λ, x)

P (λ)
= e (λ, x)− S (λ) e (λ, x) (7)

for all real λ ̸= 0, and

S(λ) =
P (−λ)

P (λ)
, (8)

S(−λ) = S(λ), |S(λ)| = 1, (9)

where

P (λ) =
(
a0 + a1λ

2 + a2λ
4
)
e′ (λ, 0)− (b0 + b1λ

2 + b2λ
4)e (λ, 0) .

The function S(λ) defined by (8) is called the scattering function of the boundary value
problem (1)-(3).

Lemma 2.2. [20] The function P (λ) may have only a finite number of zeros on the upper
half plane. All zeros are simple and lie on the imaginary axis.

The zeros iλk, (λk > 0), k = 1, . . . , n, of the function P (λ) are called the singular
values of the boundary value problem (1)-(3).

The numbers mk, k = 1, . . . , n are defined with

m−2
k ≡

∞∫
0

|e (iλk, x)|2 dx+
|e (iλk, 0)|2

|a(iλk)|2
[
(a1b0 − a0b1) + (a2b1 − a1b2)λ

4
k

)
] (10)

and called norming numbers for the boundary value problem (1)-(3).

Definition 2.3. [20] The collection {S (λ) ; iλ1, ..., iλn;m1, ...,mn} is called the scattering
data of the boundary value problem (1)-(3).
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With the help of the solution (5), we have

S0(λ)− S(λ) = O

(
1

λ

)
, |λ| → ∞,

where

S0(λ) =

{
1, a2 = 0
−1, a2 ̸= 0.

S0(λ)− S(λ) ∈ L2 (−∞,∞) and the function

FS (x) =
1

2π

∞∫
−∞

(S0(λ)− S(λ))eiλxdλ

belongs to the space L2 (−∞,∞).

3. The main equation

In this section, we shall present the main equation in order to discuss inverse scattering
problem.

Theorem 3.1. For every fixed x ≥ 0, the kernel K(x, t) of the solution (5) satisfies the
integral equation

K(x, y) + F (x+ y) +

∞∫
x

K(x, t)F (t+ y)dt = 0, y > x (11)

where

F (x) =

n∑
k=1

m2
ke

−λkx +
1

2π

∞∫
−∞

(S0(λ)− S(λ))eiλxdλ. (12)

The integral equation (11) is called the main equation for the boundary value problem
(1)-(3).

Proof. In order to obtain the main equation for the kernel K (x, t) of the solution (5), we
use the equality (7) derived in Lemma 2.1. By rewriting the identity (7), we provide the
following result

2iλσ(λ, x)

P (λ)
− e−iλx + S0(λ)e

iλx = [S0(λ)− S (λ)] eiλx +

∞∫
x

K (x, t) e−iλtdt
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−
∞∫
x

S0(λ)K (x, t) eiλtdt+

∞∫
x

[S0(λ)− S (λ)]K (x, t) eiλtdt.

Multiplying both sides of this equality by 1
2πe

iλy and integrating it according to λ over
(−∞,∞), we get

1

2π

∞∫
−∞

[
2iλσ(λ, x)

P (λ)
− e−iλx + S0(λ)e

iλx

]
eiλydλ =

1

2π

∞∫
−∞

[S0(λ)− S (λ)] eiλ(x+y)dλ

+
1

2π

∞∫
−∞

∞∫
x

K (x, t) e−iλ(t−y)dtdλ− 1

2π

∞∫
−∞

∞∫
x

S0(λ)K (x, t) eiλ(t+y)dtdλ

+
1

2π

∞∫
−∞

∞∫
x

[S0(λ)− S (λ)]K (x, t) eiλ(t+y)dtdλ. (13)

Here

1

2π

∞∫
−∞

∞∫
x

K (x, t) e−iλ(t−y)dtdλ =

∞∫
x

K (x, t)
1

2π

∞∫
−∞

e−iλ(t−y)dλdt

=

∞∫
x

K (x, t) δ(t− y)dt = K (x, y)

and since K (x,−y) = 0 for y > x, it yields

1

2π

∞∫
−∞

∞∫
x

S0(λ)K (x, t) eiλ(t+y)dtdλ =

∞∫
x

S0(λ)K (x, t)
1

2π

∞∫
−∞

eiλ(t+y)dλdt

= S0(λ)

∞∫
x

K (x, t) δ(−t− y)dt = S0(λ)K (x,−y) = 0.

Therefore, on the right of (13), we obtain

K(x, y) + Fs(x+ y) +

∞∫
x

K(x, t)Fs(t+ y)dt, y > x

where

FS (x) =
1

2π

∞∫
−∞

(S0(λ)− S(λ))eiλxdλ. (14)
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On the other side, using the residue theorem and Jordan’s lemma, we find

1

2π

∞∫
−∞

[
2iλσ(λ, x)

P (λ)
− e−iλx + S0(λ)e

iλx

]
eiλydλ = −

n∑
k=1

2iλkσ (iλk, x)

Ṗ (iλk)
e−λky.

Taking formula (10) into account, we can transform this expression to the form

−
n∑

k=1

2iλkσ (iλk, x)

Ṗ (iλk)
e−λky = −

n∑
k=1

2iλka(iλk)

e (iλk, 0) Ṗ (iλk)
e (iλk, x) e

−λky

= −
n∑

k=1

m2
ke (iλk, x) e

−λky = −
n∑

k=1

m2
k

e−λk(x+y) +

∞∫
x

K(x, t)e−λk(t+y)dt

 .

Substituting this value into the left side of (13), we get the desired integral equation (11)
and F (x) is defined by the formula (12). This completes the proof of theorem.

4. Solvability of the main equation

The inverse scattering problem deals with the recovery q(x) from the scattering data
of the boundary value problem (1)-(3). To determine q(x), it is evident from (6) that it is
sufficient to know K(x, t). Therefore, suppose that the data {S (λ) ; iλ1, ..., iλn;m1, ...,mn}
is given. We construct the equation (11), take kernel K(x, t) as unknown and regard the
equation as a Fredholm-type equation for every fixed x.

In this part, we shall investigate the solvability of the main equation and show that
the potential q(x) can be recovered uniquely from the scattering data.

Theorem 4.1. For every fixed x ≥ 0, the main equation (11) has a unique solution K(x, .)
in the space L1 [x,∞) .

Proof. Assume that the collection {S (λ) ; iλ1, ..., iλn;m1, ...,mn} is the scattering data of
the boundary value problem (1)-(3). The function F (x) is written by the formula (12).
The transition function F (x) possesses similar properties to the transition function of
the problem without the spectral parameter in the boundary condition. Thus, applying
Theorem 2.3.1 in [3], the result is obtained that the equation (11) has a unique solution
K(x, y). This proves the theorem.

Corollary 4.2. The scattering data of the boundary value problem (1)-(3) determines
potential q(x) in equation (1) uniquely.
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Proof. The main equation (11) is constructed only on the basis of the scattering data and
by Theorem 4.1, it has a unique solution K(x, y) for every x ≥ 0. Hence, we have the
kernel K(x, y) of the solution (5) and find the potential function with

q(x) = −2
d

dx
K(x, x).
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