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Applications of Laplace Transform Method to the Frac-
tional Linear Integro Differential Equations
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Abstract. In this study, the Laplace Transformation Method (LTM) was used to get the exact
solution to linear fractional integro-differential equations, which play a significant role in fractional
differential equations . The Caputo fractional derivative is considered throughout this study. The
examples considered demonstrate the effectiveness and applicability of LTM, which was used to
provide the exact solution of the linear fractional integro differential equations.
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1. Introduction

Applications of fractional differential equations in mathematics and engineering have
generated a great deal of attention. Particularly, coupled conduction, convection, and
radiation problems are among the several physical phenomena for which fractional integro-
differential equations are widely used in mathematical modeling [1]-[3].

In fractional differential equations, the linear fractional integro differential equation
plays a significant role. The linear fractional integro-differential equation with the Caputo
derivative is presented in the following manner [4];

cDαy(t) = f(t) +

∫ t

0
K(t, s)y(s)ds, 0 ≤ t ≤ 1 (1)

subject to the initial conditions

yi(0) = γi, i = 0, 1, · · · , n− 1 , n ∈ N (2)

where y(t) is an unknown function of the independent variable t and cDα is the αth
order derivative of y in the sense of Caputo fractional differential operator, n−1 < α ≤ n.

In applied sciences, mathematical physics, and problem-solving in engineering, integral
transformations play a significant role [5]. One of the most helpful and efficient techniques
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for solving integral equations, ordinary differential equations, and partial differential equa-
tions is the use of integral transformation methods. These transformations have become
widely employed in the recent past to solve fractional differential equations. Due to the
fact that these transforms convert differential equations into algebraic equations.

The Laplace transform is an integral transform; It is an important transformation used
in physics, mechanics, engineering, telecommunications, mathematics and other applied
sciences. It was described by the famous mathematician Laplace. While this transforma-
tion provides great convenience in solving differential equations, it is also a method that
can be used in the mathematical solution of physics. It has been seen that the equations
obtained in this way also contain the initial conditions [6].

There are some studies concerning approximate solutions of fractional linear integro-
differential equations in the literature. The Taylor expansion approximate method for
solving linear fractional integro-differential equations was introduced [7]. It was proposed
and investigated to solve general linear fractional integro-differential equations numerically
using the spectral Jacobi-collocation technique [4]. For the solution of fractional linear
integro-differential equations with a linear variable order, the collocation method based
on the Haar wavelet is presented [8].

In this study, LTM was applied to find exact solution of linear fractional integro-
differential equations. With the use of LT, the fractional differential equation is first
transformed into an algebraic equation in this method, and the desired solution is then
discovered using the inverse LT.

2. Fractional Calculus

In this section, fundamental fractional calculus concepts which employed throughout
the study were given.

Gamma Function: One of the most fundamental functions in fractional calculus is
the gamma function. For positive n, this function is defined by the Euler integral. The
gamma function is convergent for positive values of n.

The Gamma function is defined by the improper integral [9]

Γ(p) =

∫ ∞

0
xp−1e−xdx, Γ : (0,∞) −→ R (3)

The following equations are provided by the gamma function.

(i) Γ

(
1

2

)
=

√
π

(ii) Γ(n+ 1) = nΓ(n)

(iii) Γ(n+ 1) = n!
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Beta Function: For the Beta function, which is defined as Euler’s second integral,
with m and n positive values,

β(m,n) =

∫ 1

0
xm−1(1− x)n−1dx, β : (0,∞)x(0,∞) −→ R (4)

is defined as. For any non-positive m or n values, this integral is divergent. Besides, the
relation showing the relationship between Beta and Gamma function is given as [9]

β(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
(5)

The Caputo fractional derivative: There are various definitions of fractional
derivatives in the literature. In this study, the Caputo fractional derivative definition
was used. Because for initial value problems, Caputo’s fractional derivative definition is
the one that gives to most appropriate the initial conditions to the physical cases. Let f
function can be continuously differentiable m times. The Caputo fractional derivative of
function f is defined by the integral [10]

CDαf(x) =
1

Γ(m− α)

∫ x

a
(x− t)m−α−1f (m)(t)dt (6)

where α any positive integer and m is a positive integer such that m ∈ N, m−1 < α < m.

3. Laplace Transform Method

In this section, some properties and definition of LT which forms the basis of LTM
were given.

Definition: If f(t) is defined over interval [0,∞), the Laplace transform of f(t),
denoted as F (s), is given as follow in [11, 12]:

L[f(t)] = F (s) =

∫ ∞

0
e−stf(t)dt. (7)

The Inverse Laplace Transform of F (s) is defined as

f(t) = L−1[F (s)]. (8)

The Laplace transform existence theorem states that, if f(t) is piecewise continuous
on every finite interval in [0,∞) satisfying

|f(t)| ≤ Meat

for all t in [0,∞), then L[f(t)] exists for all s > a.

27



The Laplace transform is also unique, in the sense that, given two functions f1(t) and
f2(t) with the same transform so that

L[f1(t)] = L[f2(t)] = F (s).

Properties: The Laplace transform has many important properties. Some of these
features are given below.

Linearity property:

Let LT of f(t) be F (u) and LT of g(t) be G(u). LT of linear sum of functions f(t), g(t)
is given as follow:

L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)] = aF (u) + bG(u)

where a, b ∈ R.

Convolution property:

Let LT of f(t) be F (u) and LT of g(t) be G(u). Convolution property of the Laplace
transform is given as follow:

L[f(t) ∗ g(t)] = L
[∫ t

0
F (τ)G(t− τ)dτ

]
= L[f(t)]L[g(t)] = F (s)G(s)

Laplace transform of integration:

L
[∫ t

0
f(u)du

]
=

F (s)

s
(9)

Laplace transform of derivative:

L[f ′(t)] = sF (s)− f(0)

L[f ′′(t)] = s2F (s)− sf(0)− f ′(0)

...

L[f (n)(t)] = snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − sf (n−2)(0)− f (n−1)(0)

Laplace transform of Caputo fractional derivative:

L[CDαf(t)] =
snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0)

sn−α
(10)
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where n ∈ N, n− 1 < α ≤ n.

Laplace transforms of some fundamental functions are given in Table 1.

Table 1: Laplace transforms of some functions.

f(t) F (s)

1
1

s

eat
1

s− a

√
t

√
π

2s3/2

tn, n = 1, 2, 3, · · · n!

sn+1

tp, p > −1
Γ(p+ 1)

sp+1

sin(at)
a

s2 + a2

cos(at)
s

s2 + a2

4. Illustrative Examples

In this section, the application of LTM to fractional linear integro differential equation
is presented for three test problems.

Example 1. As the first example, linear fractional integro differential equation was
considered as following form:

cD1/2y(t) = y(t) +
8

3Γ(1/2)
t3/2 − t2 − 1

3
t3 +

∫ t

0
y(s)ds

and initial condition

y(0) = 0

The algebraic equation that results from applying LT on this equation is as follows:

L
[
cD1/2y(t)

]
= L

[
y(t) +

8

3Γ(1/2)
t3/2 − t2 − 1

3
t3 +

∫ t

0
y(s)ds

]
s1/2Y (s) = Y (s) +

2

s5/2
− 2

s3
− 2

s4
+

Y (s)

s
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Y (s)(s3/2 − s− 1) = s

(
2

s5/2
− 2

s3
− 2

s4

)
Y (s)(s3/2 − s− 1) =

2s3/2 − 2s− 2

s3

Y (s) =
2

s3

where L[y(t)] = Y (u). The exact solution to the initial value problem is founded by
calculating the inverse LT of this algebraic equation.

L−1 [Y (u)] = L−1

[
2

s3

]
y(t) = t2

Example 2. As the second example, linear fractional integro differential equation was
considered as following form:

cD
√
3y(t) =

2

Γ(3−
√
3)
t2−

√
3 + 2 sin t− 2t+

∫ t

0
cos (t− s)y(s)ds

and initial conditions

y(0) = 0, y′(0) = 0.

The algebraic equation that results from applying LT on this equation is as follows:

L
[
cD

√
3y(t)

]
= L

[
2

Γ(3−
√
3)
t2−

√
3 + 2 sin t− 2t+

∫ t

0
cos (t− s)y(s)ds

]

s
√
3Y (s) =

2

Γ(3−
√
3)
s
√
3−3Γ(3−

√
3) +

2

s2 + 1
− 2

s2
+

s

s2 + 1
Y (s)

Y (s)
(
s
√
3(s2 + 1)− s

)
= (s2 + 1)

(
2s

√
3−3 +

2

s2 + 1
− 2

s2

)

Y (s)(s2+
√
3 + s

√
3 − s) =

2s
√
3+1 + 2s

√
3−1

s2

Y (s) =
2

s3

where L[y(t)] = Y (u). The exact solution to the initial value problem is founded by
calculating the inverse LT of this algebraic equation.

L−1[Y (u)] = L−1

[
2

s3

]
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y(t) = t2

Example 3. As the third example, linear fractional integro differential equation was
considered as following form:

cD6/5y(t) =
6

Γ(14/5)
t9/5 + t3 + 3t2 + 6t+ 6et +

∫ t

0
e(t−s)y(s)ds

and initial conditions

y(0) = 0, y′(0) = 0.

The algebraic equation that results from applying LT on this equation is as follows:

L
[
cD6/5y(t)

]
= L

[
6

Γ(14/5)
t9/5 + t3 + 3t2 + 6t+ 6et +

∫ t

0
e(t−s)y(s)ds

]
s6/5Y (s) =

6

s14/5
+

6

s4
+

6

s3
+

6

s2
+

6

s
− 6

s− 1
+

Y (s)

s− 1

Y (s)(s11/5 − s6/5 − 1) = 6

(
s− 1

s14/5
+

s− 1

s4
+

s− 1

s3
+

s− 1

s2
+

s− 1

s
− 1

)

Y (s)(s11/5 − s6/5 − 1) = 6

(
(s− 1)s6/5 − 1

s4

)

Y (s) =
6

s4

where L[y(t)] = Y (s). The exact solution to the initial value problem is founded by
calculating the inverse LT of this algebraic equation.

L−1[Y (s)] = L−1

[
6

s4

]
y(t) = t3.

5. Conclusion

In this study, LTM was used to determine the exact solution to the linear fractional
integro-differential equation. To show the viability and effectiveness of the suggested
method, three separate test problems for the linear fractional integro differential equa-
tion were examined. LTM has been seen to be a very efficient method for determining
this equation’s exact solution. Because of this, it is expected that this study will make
significant contributions to the literature.
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