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Eigenvalues of Fredholm type limit integral equations in
the space of Bohr almost periodic functions
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Abstract. In present paper it is considered the question on eigenvaluesof Fredholm type limit
integral equations in the space of Bohr almost periodic functions. We prove basic results of the
theory of ordinary Fredholm integral equations for limit integral equations’ case.
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1. Introduction

Let us consider the limit integral equation of Fredholm type in Bohr space of almost
periodic functions, introduced in [12]:

ϕ(x) = f(x) + λ lim
T→∞

1

T

∫ T

0
K(x, ξ)ϕ(ξ)dξ (1)

We shall use some known facts from the theory of almost periodic functions of Bohr.
Recall definition of almost periodic function of H. Bohr [8, p. 41] (see also [1-3]). Let we
are given with a continuous real function f(x), given on all real axes f : R → X, where X
is some normed space.

The number τ is called to be ε-almost period, if for every x ∈ R the following inequality
is satisfied

|f(x+ τ)− f(x)| ≤ ε.

Let E ∈ R be some enumerable subset in R. This subset is called to be relatively
dense, if there exists a nimber L > 0 such that every interval of the view

a < x < a+ L, a ∈ R

of the length L contains a point from the subset E.
The function f(x) is said to be almost periodic, if for everyε > 0 the set of ε-almost

periods is relatively dense in R.
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Definition 1. Let F1, F2, ... be a sequence of continuous periodic functions, Fk : Rn →
R. If Fk → F , uniformly with respect to x ∈ Rn, then the function F is said to be the
almost periodic.

Denote by R∞ the set of all sequences of real numbers of a view ( α1, α2, ..., αk, ...).
This sets up a linear space in which it is possible introduce the Tichonoff metric as below:

d(x, y) =
∞∑
n=1

e1−n |xn − yn| ,

where x ∈ R∞, y ∈ R∞. Every function in finite number of variables of a view Φ : Rm → R
could considered as a function Φ′ : R∞ → R in denumerable number of variables by taking
αk = 0 for all k > m.

Definition 2. Let we are given with a sequence of continuous periodic functions
Fk : Rmk → R, m1 < m2 < · · · , mk → ∞. If Fk → F uniformly with respect to x ∈ R∞,
then the limit of this sequence, that is the function F : R∞ → R is called a limit periodic
function in denumerable number of variables.

Lemma 1. Every almost periodic function is a diagonal function of some limit-periodic
function in finite or infinite number of variables.

These notions are generalized to infinite dimensional case. Ther pair of real numbers
(τ, η) we call an ε-almost period for the function f(x, y), if for every pair of real numbers
(x, y) the following relations are satisfied:

|f(x+ τ, y)− f(x, y)| ≤ ε,

|f(x, y + η)− f(x, y)| ≤ ε.

Definition 3. A continuous function defined in all plane (x, y) ∈ R × R is called
to be almost periodic, if for every real ε > 0 there exists a number l = l(ε) > 0 such
that for every pair (x, y) ∈ R× R there exists a pair (τ, η) of ε-almost period in the open
quadrate(x, x+ l)× (y, y + l) ∈ R× R.

It is best known that almost periodic functions can uniformly approximated in all
plane by trigonometric polynomials. The corresponding result is formulated as follows [3,
p. 66].

Lemma 2. Every continuous function f(x, y) is almost periodic in R× R. For every
ε > 0 it is possible to find natural numbers Nε and Lε such that the inequality∣∣∣∣∣f(x, y)−

Nε∑
n=1

Lε∑
r=1

an,re
2πi(τnx+µry)

∣∣∣∣∣ < ε

is satisfied for all (x, y) ∈ R× R.
From this result one deduces

Lemma 3. Every almost periodic function f(x, y) is a diagonal function for some
limit-periodic function in two system of finite or infinite number of variables.
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Let the function φ(x1, x2, ..., xn; y1, y2, ..., ym) be a limit periodic function of two system
of variables. This means that

φ(x1, x2, ..., xn; y1, y2, ..., ym) = lim
k→∞

Gk(x1, x2, ..., xn; y1, y2, ..., ym)

uniformly in Rn+m, moreover the functions Gk(x1, x2, ..., xn; y1, y2, ..., ym) are periodic.
Then taking values of the function Gk on the principle diagonal of the spaces Rn and Rm,
we get almost periodic function of two variables.

In infinite dimensional case, the said above is possible reformulate as follows: it is
possible to find two system of variables x1, ..., xm, ... and y1, ..., ys, ..., and a sequence of
periodic with respect to every variable functions Gk(x1, x2, ...; y1, y2, ...), k = 1, 2, ... such
that

G(x1, x2, ...; y1, y2, ...) = lim
k→∞

Gk(x1, x2, ...; y1, y2, ...),

uniformly (in the Tichonoff metric introduced above), and moreover,

K(x, ξ) = G(x, x, ...; ξ, ξ, ...).

In this work we consider the case of symmetric kernel when both system of variables
are finite. Then the function

G(x1, ..., xm, y1, ..., ym)

will be limit –periodic in 2m variables, moreover the periods with respect to pairs of
variables xi and yi are coinsident.

In the works of H. Bohr [8] there were studied means of a view (1) on the base of
theorem of Croneker’s theorem on uniform distribution (mod 1) of some curves in multi-
dimensional unite cube. Cronecer’s theorem [6, p. 345] ([11]) states:

Lemma 4. Let the real numbers α1, α2, ..., αN be linearly independent over the field
of rational numbers. Let, further, Iγ(T ) be the measure of such points t ∈ (0, T ) for which
(α1t, α2t, ..., αN t) ∈ γ(mod1). Then

lim
T→∞

Iγ(T )

T
= Γ.

We shall use also the following definition [9].
Definition 3. The family F of functions f defined in the subset E of the metric

space X is called to be equicontinuous in E, if for any ε > 0 there is δ > 0 such that
|f(x)− f(y)| < ε, when d(x, y) < δ, x ∈ E, y ∈ E, f ∈ F; here d means the distance in
X.

Following lemma is given in [6, p. 348] ([7]).
Lemma 5. Let the curve γ(t) be uniformly distributed (mod 1) in Rn, D is a closed do-

main in the unite cube being measurable in Jordan meaning, Φ means a family of complex
valued continuous functions defined in D. If Φ is uniformly bounded and equicontinuous
family, then the following relation is satisfied uniformly with respect to f ∈ Φ :

lim
T→∞

T−1

∫ T

0
f({γ(t)})dt =

∫
D
fdx1...dxN ,
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where in the left hand side of the equality the integration is taken over such t ∈ (0, T ), for
which

γ (t) = ({γ1 (t)}, . . . , {γN (t)}) ∈ D(mod 1).

2. Basic auxiliary results

In [12] it was given the general formula for solving of the equation (1) at the points λ
at which the Fredholm function D(λ) is distinct from zero D(λ) ̸= 0. We have considered
only the case of symmetric kernel. Let us consider now the general case of arbitrary kernel
being almost periodic in two variables and solve this equation by the method of sequel
substitutions. Substitute the expression of the function ϕ(ξ) in right hand side of the
equation (1). We get

ϕ(x) = f(x) + λ lim
T→∞

1

T

∫ T

0
K (x, ξ)

(
f(ξ) + λ lim

T→∞

1

T

∫ T

0
K (ξ, η)ϕ (η) dη

)
dξ =

= f (x) + λ lim
T→∞

1

T

∫ T

0
K (x, ξ) f (ξ) dξ + λ2 lim

T→∞

1

T 2

∫ T

0

∫ T

0
K (x, ξ)K (ξ, η)ϕ (η) dξdη.

Substituting again the expression of the function ϕ (x) from the equation (1) in both
integrals we get

ϕ (x) = f (x) + λ lim
T→∞

1

T

∫ T

0
K (x, ξ) f (ξ) dξ + λ2 lim

T→∞

1

T 2

∫ T

0

∫ T

0
K (x, ξ)K (ξ, η)×

×f (η) dξdη + λ3 lim
T→∞

1

T 3

∫ T

0

∫ T

0

∫ T

0
K (x, ξ)K (ξ, η)K(η, θ)ϕ (θ) dξdηdθ.

And so on. Repeating this procedure, after of n steps we get

ϕ (x) = f (x) + λ lim
T→∞

1

T

∫ T

0
K (x, ξ) f (ξ) dξ+

+λ2 lim
T→∞

1

T 2

∫ T

0

∫ T

0
K (x, ξ)K (ξ, η) f (η) dξdη + · · ·+

+λn lim
T→∞

1

Tn

∫ T

0

∫ T

0
· · ·

∫ T

0
K(x, ξ)K (x, ξ1) · · ·K(ξn−2, ξn−1)f (ξn−1) dξdξ1 · · · dξn−1+

+λn+1 lim
T→∞

1

Tn+1

∫ T

0

∫ T

0
· · ·

∫ T

0
K(x, ξ)K (x, ξ1) · · ·K(ξn−1, ξn)ϕ (ξn) dξdξ1 · · · dξn.

Tending the number of steps to infinity we find a series

f (x) + λ lim
T→∞

1

T

∫ T

0
K (x, ξ)ϕ (ξ) dξ +
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+λ2 lim
T→∞

1

T 2

∫ T

0

∫ T

0
K (x, ξ)K (ξ, η)ϕ (η) dξdη+ · · · .

We show that this series is uniformly convergent and its sum is a solution of the equation
(1). Denoting

un (λ, x) =

= λn lim
T→∞

1

Tn

∫ T

0

∫ T

0
· · ·

∫ T

0
K(x, ξ)K (x, ξ1) · · ·K(ξn−2, ξn−1)f (ξn−1) dξdξ1 · · · dξn−1

we consider the functional series
∞∑
n=1

un (λ, x) . (2)

Since the functions f (x) and K (x, ξ) are almost periodic, then this function is uniformly
bounded. So, there is a constant M such that |K (x, ξ)| ≤ M. We see that the function
un (λ, x) has a bound

|un (λ, x)| ≤ |λ|nMn+1 ≤ M1−n,

when |λ| ≤ M−2. We can suppose that M > 1. So, the function un (λ, x) uniformly
bounded and ∣∣∣∣∣

∞∑
n=1

un (λ, x)

∣∣∣∣∣ ≤ M

M − 1
.

Consequently, the series (2) converges uniformly and has a sum being continuous and
bounded in every finite segment on real axes. Now we can formulate the following result.

Theorem 1. Let the functions f (x) and K (x, ξ) be almost periodic in Bohr sense,
and the function f (x) is not zero identically. Then the integral equation (1) has for every
fixed λ, |λ| ≤ M−2 a unique solution given by the uniform convergent series

ϕ (x) = f (x) + λ lim
T→∞

1

T

∫ T

0
K (x, ξ) f (ξ) dξ +

+λ2 lim
T→∞

1

T 2

∫ T

0

∫ T

0
K (x, ξ)K (ξ, η) f (η) dξdη + · · · .

Proof. Take the function

H (ξ) = f (ξ) +
∞∑
n=1

un (λ, ξ) .

This function is continuous on all real axes and uniformly bounded as it was showed above.
Multiplying both sides of this equality by K (x, ξ) f (ξ), let us take the mean value. We
get

λ lim
T→∞

1

T

∫ T

0
K (x, ξ)H (ξ) dξ = λ lim

T→∞

1

T

∫ T

0
K (x, ξ) f (ξ) dξ+
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+

∞∑
n=1

λ lim
T→∞

1

T

∫ T

0
K (x, ξ)un (λ, ξ) f (ξ) dξ =

= λ lim
T→∞

1

T

∫ T

0
K (x, ξ) f (ξ) dξ+λ2 lim

T→∞

1

T 2

∫ T

0

∫ T

0
K (x, ξ)K (ξ, ξ1) f (ξ1) dξdξ1+

+λn+1 lim
T→∞

1

Tn+1

∫ T

0

∫ T

0
· · ·

∫ T

0
K (x, ξ)K (x, ξ1) · · ·K (ξn−1, ξn)f (ξn) dξdξ1 · · · dξn.

The series in the right hand side is equal to H (ξ)− f (ξ). So, the function H (ξ) satisfices
the equation (1).

To prove that the equation (1) has no other solutions, take any it’s solution. Repeating
the reasoning spend above we get for this solution the same expansion into series, which
shows uniqueness of the solution. Theorem 1 is proven.

It is clear that taking

K1 (x, y) = K (x, y) , Kj+1 (x, y) =
1

T

∫ T

0
K (x, ξ)Kj (ξ, y) dξ,

we get, so called, iterated kernels. In terms of iterated kernels, the formula of the lemma
1 can be written as follows:

ϕ (x) = f (x) +

∞∑
n=1

λn lim
T→∞

1

T

∫ T

0
K (x, η)Kn−1 (η, ξ) f (η) dη. (3)

3. Hilbert-Smith theory for limit integral equations in the case of
symmetric kernels

In [12] it was shown that the limit integral equation (1) in the Bohr space of almost
periodic functions equivalent to some family of ordinary integral equations ([10]) in some
multidimensional unite cubes, solutions of which defines the solution of limit integral
equation by tending to the limit. From the theory of ordinary Fredholm type integral
equations it is best known that in the case of non-symmetric kernel the equation may not
have eigenvalues. By this reason to introduce and study the corresponding properties of
limit integral equations of a view (1), we assume that the kernel is a symmetric. In this
case the all of results established for ordinary integral equations have their analogs in the
limit integral equations cases. In this paper we shall consider the question on existence of
eigenvalues in the case of symmetric kernel.

Theorem 2. If the kernel of the equation (1) is symmetric, then it has an eigenvalue.

For the proof of Theorem 2 we need in several auxiliary lemmas.

Lemma 6. The function D (x, y;λ) /D(λ) has the following expansion into power
series:

D (x, y;λ)

D (λ)
=

∞∑
n=1

Kn (x, y)λ
n,
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which converges uniformly in some neighborhood of the origin on complex plane.

Proof. For establishing this relation let us to get the expansion of the logarithmic
derivative of the Fredholm functionD(λ) into power series with respect to λ. In accordance
with the theorem 2 of the work [12], ifD(λ) ̸= 0 then the equation (1) has a unique solution
given by the formula

ϕ(x) = f(x) + lim
T→∞

1

T

∫ T

0
f(ξ)

D(x, ξ;λ)

D(λ)
dξ. (4)

Such a value for the function D(λ) exists, because D(0) = 1. Moreover, it could found
such an interval |λ| < δ, δ < 1, in which D(λ) ̸= 0. Then the function 1/D(λ) is an
analytic function in the considered in some disk with the center at the origin on complex
plane. By this reason this function can expanded into power series as follows

1

D(λ)
= d0 + d1λ+ d2λ

2 + · · · .

Since the function D(x, ξ;λ) is also an entire function, then it has also the expansion into
power series:

D (x, y;λ) = λK (x, y) +
∞∑
n=1

(−1)n
Qn(x, y)

n!
λn+1.

Then the function D (x, y;λ) /D(λ) also has the expansion into power series. Let us write
it as:

D (x, y;λ)

D (λ)
=

∞∑
n=1

qn (x, y)λ
n, (5)

which is convergent in some disc |λ| < δ. From the formula [5], we deduce that this
function has not a term with λ0. Then from (4) we have

ϕ (x) = f (x) + lim
T→∞

1

T

∫ T

0

∞∑
n=1

λnqn (x, ξ)f (ξ) dξ =

= f (x) +

∞∑
n=1

λn lim
T→∞

1

T

∫ T

0
qn (x, ξ) f (ξ) dξ.

From the relation (3), we have

ϕ (x) = f (x) +

∞∑
n=1

λn lim
T→∞

1

T

∫ T

0
f (ξ)Kn (x, ξ) dξ.

Comparing the two last equalities, we can write

lim
T→∞

1

T

∫ T

0
f (ξ)n (x, ξ) dξ = lim

T→∞

1

T

∫ T

0
f (ξ)qn (x, ξ) dξ.
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So,

lim
T→∞

1

T

∫ T

0
f (ξ)(Kn (x, ξ)− qn (x, ξ))dξ = 0.

We can take f (ξ) = Kn(x, ξ)− qn (x, ξ), for every fixed x. Then we get

lim
T→∞

1

T

∫ T

0
f (ξ)(Kn (x, ξ)− qn(x, ξ))

2dξ = 0.

This is a key relation from which we deduce that Kn(x, ξ)− qn (x, ξ) = 0. The reasoning
is not trivial and based on basic properties of almost periodic functions, explained above.
First of all we note that the coefficients qn (x, ξ) of the series (5), and also iterated kernels
could expressed as mean values of determinants ([12]), with almost periodic entries. Rep-
resenting almost periodic functions, using Lemma 3, as a diagonal function of multivariate
limit periodic functions, we can express this mean values as Riemann integral taken over
unite cubes of corresponding dimensions using Lemma 5, as in the work [12]. Then we get
the equality of the type ∫

∆

∣∣Gn(x̄, ξ̄)−Hn(x̄, ξ̄)
∣∣2 dξ̄d x̄ = 0.

Using continuity, from this equality we deduce the identity Gn(x̄, ξ̄) = Hn(x̄, ξ̄). From this
relation it follows that Kn(x, ξ)− qn (x, ξ) = 0, for all fixed x, identically with respect to
ξ. So, we have proved that

D (x, y;λ)

D (λ)
=

∞∑
n=1

Kn (x, y)λ
n.

Lemma 6 is proved.
Lemma 7. In some neighborhood of the origin on complex plane the following relation

holds true:
D′ (λ)

D (λ)
=

∞∑
n=1

Un+1λ
n;

here

Un = lim
T→∞

1

T

∫ T

0
Kn (ξ, ξ) dξ.

Proof. Take x = y in the lemma 6. Then we have

D (x, x;λ)

D (λ)
=

∞∑
n=1

Kn (x, x)λ
n.

Since the series converges uniformly, then we can integrate over x:

lim
T→∞

1

T

∫ T

0

D (ξ, ξ;λ)

D (λ)
dξ =

∞∑
n=1

λn. lim
T→∞

1

T

∫ T

0
Kn (ξ, ξ) dξ.
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As it was shown in [J-N-A],

lim
T→∞

1

T

∫ T

0
D (ξ, ξ;λ) dξ = −λdD (λ)

dλ
.

Dividing by D (λ) and using the equality above, we find:

D′(λ)

D (λ)
= −

∞∑
n=0

λn. lim
T→∞

1

T

∫ T

0
Kn+1 (ξ, ξ) dξ = −

∞∑
n=0

Un+1λ
n.

Lemma 7 is proved.
For continue our reasoning we must note that from symmetricity of the kernel K (x, y)

it follows that the kernel Kn (x, y) is also symmetric. We suffice with the proof of this fact
when n=2. Really,

K2 (x, y) = lim
T→∞

1

T

∫ T

0
K1 (x, ξ)K1 (ξ, y) dξ =

= lim
T→∞

1

T

∫ T

0
K1 (y, ξ)K1 (ξ, x) dξ = K2 (y, x) .

The general case can be established as above.
Lemma 8. For any natural n, the kernel Kn (x, y) is not equal to zero identically.
Proof. If we have Kn (x, y) ≡ 0 identically, then Km (x, y) ≡ 0 for every m ≥ n. Since

one of the numbers n or n+1 is an even number of a view 2k, then we have

K2k (x, y) = lim
T→∞

1

T

∫ T

0
Kk (x, ξ)Kk (ξ, y) dξ = lim

T→∞

1

T

∫ T

0
(Kk (y, ξ))

2dξ = 0.

Then the reasoning was spend above, during proof or previous lemma, shows that
Kk (x, y) ≡ 0. So, supposing that n is a least natural number for which Kn (x, y) ≡ 0, we
arrive at contradiction, because n > k (since n > 1). The Lemma 8 is proved.

From Lemma 8 it follows that U2n > 0, so all of coefficients with even indices are
positive. By an induction one can establish the result

Ks+t (x, y) = lim
T→∞

1

T

∫ T

0
Ks (x, ξ)Kt (ξ, y) dξ .

Then for every n > s we have

K2n (x, y) = lim
T→∞

1

T

∫ T

0
Kn+s (x, ξ)Kn−s (ξ, y) dξ .

Lemma 9. For every natural n, the following inequalities are satisfied:

U2n+2

U2n
≥ U2n

U2n+2
≥ · · · ≥ U4

U2
.
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Proof. It is enough to show only first inequality, that is the inequality

U2n

U2n−2
≥ U2n−2

U2n−4
.

As it was shown above

K2n (x, y) = lim
T→∞

1

T

∫ T

0
Kn+1 (x, ξ)Kn−1 (ξ, y) dξ .

Applying the Swartz inequality, we get:(
lim
T→∞

1

T

∫ T

0
K2n (x, x) dx

)2

=

=

(
lim
T→∞

1

T

∫ T

0
lim
T→∞

1

T

∫ T

0
Kn+1 (x, y)Kn−1 (y, x) dydx

)2

≤

≤
(

lim
T→∞

1

T

∫ T

0
lim
T→∞

1

T

∫ T

0
Kn+1 (x, y)dydx

)2

×

×
(

lim
T→∞

1

T

∫ T

0
lim
T→∞

1

T

∫ T

0
Kn−1 (y, x)dydx

)2

≤

≤
{

lim
T→∞

1

T

∫ T

0
lim
T→∞

1

T

∫ T

0
K2

n+1 (x, y)dydx

}
×

×
{

lim
T→∞

1

T

∫ T

0
lim
T→∞

1

T

∫ T

0
K2

n−1 (x, y)dydx

}
=

=

{
lim
T→∞

1

T

∫ T

0
K2n+2 (x, y)dydx

}{
lim
T→∞

1

T

∫ T

0
K2n−2 (x, y)dydx

}
= U2n+2U2n−2.

So, we have proved that

(U2n)
2 ≤ U2n+2U2n−2.

Then
U2n

U2n−2
≥ U2n−2

U2n−4
,

and first inequality of the Lemma 8. The other relations can be established similarly.
Lemma 9 is proved.

Lemma 10. The radius of convergence of the power series

∞∑
n=1

U2nλ
2n

does not exceed
√

U2
U4

.
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Proof. It is known that the radius of given power series coincides with the supremum
of such positive λ for which the series is convergent. From Lemma 2 we get∣∣∣∣ U2n

U2n−2
λ2

∣∣∣∣ ≥ U4

U2
|λ|2.

If now U4
U2

|λ|2 ≥ 1, or |λ| >
√

U2
U4

, the series diverges, by the Ratio test for series [9, p.66]

([4]). Lemma 10 is proved.

Proof of Theorem 2. If the kernel K(x, y) has not eigenvalues, that is the func-
tion D (λ) has not complex roots, then the logarithmic derivative can be expanded into
convergent power series on all complex plane. From Lemma 9 it follows that the series

∞∑
n=1

U2n|λ|2n

diverges when |λ| >
√

U2
U4

. Since this series is a subseries of the series

∞∑
n=1

Un+1|λ|n+1,

then the last series diverges for considered values of |λ|. So, the series

D′ (λ)

D (λ)
=

∞∑
n=0

Un+1λ
n

diverges also. This contradicts our assumption. So, the proof of Theorem 2 is finished.
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