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Interactions of various shaped bodies in PCR3BP

Abdullah

Abstract. The dynamical properties of the motion of the infinitesimal body are investigated in
the perturbed circular restricted 3-body problem (PCR3BP). Here primary as radiating oblate,
secondary as dipole, infinitesimal body varies its mass according to Jeans law, interactions between
these bodies, the effects of Coriolis and centrifugal forces are considered. Equations of motions
and quasi-Jacobian integral are determined by assuming the above said perturbations. Further the
stationary points, regions of motion, Poincaré surfaces of section and periodic orbits are illustrated
numerically. Furthermore the stability of the stationary points are examined.
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1. Introduction

Restricted three-body problem in an interesting and application based problem. There-
fore, it is the most studied problem in the celestial mechanics and dynamical astronomy.
The difference among the researchers are the perturbations with various types such as:
the various shapes of the bodies, circular or elliptical motions of the primaries, various
types of the forces acts on the bodies, variable mass of the bodies, interactions between
bodies etc.

R.K. Sharma [1] have studied the solutions and their characteristic exponent in the
restricted three-body problem where they have considered one primary as oblate and
another one as point mass. A. Abdulraheem [2] and E.I. Abouelmagd [3] have investigated
the periodic orbits in the restricted three-body problem where they have assumed radiating
oblate primary and coriolis as well as centrifugal forces. F. Bouaziz [4] have illustrated
the restricted three-body problem where they have considered the variable mass of the
infinitesimal body, radiating primaries and the effects of asteroids belt. A.A. Ansari
[5] have studied the robes restricted three-body problem where the primary is taken as
heterogeneous body, secondary is taken as point mass, the outer layer of the heterogeneous
body contains the viscous fluid where the infinitesimal body is moving. A.A. Ansari
[6] have investigated the dynamical behaviour of the infinitesimal variable mass body
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in the restricted three-body problem where the primaries are radiating and moving in
the elliptical orbits. A.A. Ansari [7] have illustrated the hills problem in the restricted
three-body problem where the primaries triaxial in shapes and are moving in the circular
orbits. S.K. Sahdev[8, 9] have investigated the Robes restricted three-body problem where
primary is taken as heterogeneous in shape and outer layer of this body contains the viscous
fluid in which the infinitesimal body is moving. They have also assumed that the secondary
is radiating oblate with modified Newtonian force.

V.V. Radzievsky [10, 11], Y. A. Chernikov [12], A.A. Perezhogin [13], A.L. Kunitsyn
[14] have studied the restricted three-body problem when the primaries are having the
effects of solar radiation pressure. J. Singh [15, 16] V. Szevehely [17], E. Sarris [18], H.
Peng [19], J. Singh [20], A. Narayan [21], A.A. Ansari([22], [23]) have studied the restricted
three-body problem where the primaries are moving in the elliptical orbits. J. Singh [24],
M.J. Zhang [25], A.A. Ansari ([26, 27], [28], [29], [29]) have investigated the restricted
three-body problem where the infinitesimal body varies its mass according to Jeans law.

Figure 1: Interactions in the restricted three-body problem with radiating oblate primary and dipole secondary

This paper is arranged in many sections: The literature review is given in section 1.
The equations of motion are determined in section 2, section 3 represents the numerical
studies with various sub-sections. The paper is windup with conclusion in section 4.

2. Evaluation of Equations of motion

The perturbed circular restricted three-body problem (PCR3BP) is investigated by
supposing primary as radiating oblate body of mass m1 with radiation factor q as well
as oblateness factor A, and secondary as dipole of mass m2 (dipole is the combination
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of two masses m21 and m22 with separation distance 2 ℓ). These bodies are moving in
circular orbits around their common center of mass which is taken as origin while the third
smallest body (infinitesimal body) of mass m is moving under the gravitational forces of
the primaries and varies its mass according to Jeans law. The effects of interaction between
these bodies with interaction parameter K and the effects of coriolis as well as centrifugal
forces with parameters ϕ, ψ are considered.

Now fixing the units as the sum of the masses, the distance between both bigger
bodies and G are separately considered as unity. Which yields m1 = 1 − 2 ν, where
m2 = m21 +m22, with m21 = m22 = ν.

Utilizing the method used by J. Singh [30] and E.I. Abouelmagd [31], we can write the
equations of motion of the variable mass body as

α̈ − 2nϕ β̇ +
ṁ

m
(α̇ − nϕ β) =

∂ Q

∂ α
,

β̈ + 2 nϕ α̇ +
ṁ

m
(β̇ + nϕα) =

∂ Q

∂ β
,

γ̈ +
ṁ

m
γ̇ =

∂ Q

∂ γ
,

(1)

where, dots represent the differentiations with respect to time t, and

Q =
n2 ψ

2
(α2 + β2) +

q(1− 2ν)

r1
+
q(1− 2ν)A

2r31
+

ν

r21
+

ν

r22
+

K

r1 r21 r22
,

n2 = 1 + ℓ2 +
3A

2
,

r21 = (α+ 2 ν)2 + β2 + γ2,

r221 = (α+ 2 ν + ℓ− 1)2 + β2 + γ2,

r222 = (α+ 2 ν − ℓ − 1)2 + β2 + γ2.

(2)

Jean’s law (J.H. Jeans [32]) and Meshcherskii space-time transformations (I.V. Meshch-
erskii [33]) will be used due to variable mass of the infinitesimal body as:
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m = m0 e
−ϵ1 t,

(α, α̇, α̈) = ϵ
−1/2
2 (ξ, ξ̇ +

1

2
ϵ1 ξ, ξ̈ + ϵ1 ξ̇ +

1

4
ϵ21 ξ),

(β, β̇, β̈) = ϵ
−1/2
2 (η, η̇ +

1

2
ϵ1 η, η̈ + ϵ1 η̇ +

1

4
ϵ21 η),

(γ, γ̇, γ̈) = ϵ
−1/2
2 (ζ, ζ̇ +

1

2
ϵ1 ζ, ζ̈ + ϵ1 ζ̇ +

1

4
ϵ21 ζ),

(3)

where ϵ1 is variation constant, ϵ2 =
m

m0
, the initial mass m0.

Utilizing Eqs. (1) and (3), we obtain

ξ̈ − 2nϕ η̇ =
∂ P

∂ξ
,

η̈ + 2nϕ ξ̇ =
∂ P

∂η
,

ζ̈ =
∂ P

∂ζ
,

(4)

where,

P =
n2 ψ

2
(ξ2 + η2) +

ϵ21
8
(ξ2 + η2 + ζ2) + ϵ

3/2
2

{
q (1− 2ν)

ℓ1
+
q (1− 2ν)Aϵ2

2 ℓ31

+
ν

ℓ21
+

ν

ℓ22
+

K ϵ2
ℓ1 ℓ21 ℓ22

}
,

ℓ21 = (ξ + 2 ν
√
ϵ2)

2 + η2 + ζ2, ℓ221 = {ξ + (2ν + ℓ− 1)
√
ϵ2}2 + η2 + ζ2,

ℓ222 = {ξ + (2ν − ℓ− 1)
√
ϵ2}2 + η2 + ζ2.

(5)

The quasi-Jacobian integral for this model can be written as:

ξ̇2 + η̇2 + ζ̇2 = 2P + C + 2

∫ t

t0

(
∂P

∂t

)
d t, (6)

where C is the quasi-Jacobian constant.

3. Numerical studies

Here we will investigate the motion dynamical properties of the infinitesimal body such
as stationary points, regions of motion, Poincaré surfaces of section and periodic orbits in
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four cases.
1. Unperturbed case (ϵ1 = 0, ϵ2 = 1,K = 0, ν = 0.019, A = 0, q = 1, d = 0, ϕ = ψ = 1).
2. Perturbed case-I (ϵ1 = 0, ϵ2 = 1,K = 0, ν = 0.019, A = 0.002, q = 0.95, d = 0.02, ϕ =
ψ = 1.2).
3. Perturbed case-II (ϵ1 = 0.2, ϵ2 = 0.4,K = 0, ν = 0.019, A = 0.002, q = 0.95, d =
0.02, ϕ = ψ = 1.2).
4. Perturbed case-III (ϵ1 = 0.2, ϵ2 = 0.4,K = 2, ν = 0.019, A = 0.002, q = 0.95, d =
0.02, ϕ = ψ = 1.2).

3.1. Stationary points

For stationary points, we will put zero to all the derivatives with respect to time t in
Eq. (4) and then we get

∂P

∂ξ
= 0,

∂P

∂η
= 0,

∂P

∂ζ
= 0.

(7)

When we will solve first two equations of Eq. (7) by taking ζ = 0, we will get in-plane
stationary points and when we will solve first and last equations of Eq. (7) by taking
η = 0, we will get out-of-plane stationary points. We have studied these in four cases as
defined above.
At the study of in-plane stationary points, in unperturbed case, there are five stationary
points out of which three are collinear and two are non-collinear in sub-figure (2(a)). In
perturbed case-I, there are six stationary points out of which four are collinear and two
are non-collinear in sub-figure (2(b)). In perturbed case-II, there are six stationary points
out of which four are collinear and two are non-collinear, in this case all the stationary
points move towards the origin in sub-figure (2(c)). In perturbed case-III, there are only
four collinear stationary points, in this case non-collinear stationary points are no more
exist in sub-figure (2(d)).
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(d) Perturbed case-III

Figure 2: In-plane locations of stationary points

At the study of out-of-plane stationary points, in unperturbed case and perturbed
case-I, there are no out-of-plane stationary points exists in sub-figures (3(a)) and (3(b))
respectively. In perturbed case-II and III, there are two out-of-plane stationary points
exists in sub-figures (3(c)) and (3(d)) respectively.
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Figure 3: Out-of-plane locations of stationary points

3.2. Regions of motion

Using the procedure given by L.G. Lukyanov [34], we have performed the regions of
motion for our model. For this firstly, we have calculated the value of jacobian constant
C corresponding to each stationary points with the help of Eq. (6) and then we have
illustrated the regions of motion in unperturbed case (figure (4)) and in perturbed case-
III (figure (5)). In both the figures (4) and (5), colored regions are prohibited regions
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while white regions are allowed regions.
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Figure 4: Regions of motion corresponding to stationary points in unperturbed case
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Figure 5: Regions of motion corresponding to stationary points in perturbed case-III

3.3. Poincaré surfaces of section

Here we have performed the Poincaré surfaces of section in unperturbed case and
perturbed case-III. There are chaos in unperturbed case (figures (6(a)) and (6(b))) while
there are no chaos in perturbed case-III (figures (6(c)) and (6(d))).
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Figure 6: Poincaré surfaces of section

3.4. Periodic orbits

Utilizing the equations of motion (i.e. Eq. (4)), we have illustrated the periodic
orbits in unperturbed case (figure (7(a))) and in perturbed case-III (figure (7(b))). In the
unperturbed case, we used the initial conditions ξ(0) = -0.2, η(0) = 0, ζ(0) = 0.134, u(0)
= 0, v(0) = - 0.2456, w(0) = 0 with time period 6.3 units. While in the perturbed case-III,
we used the initial conditions ξ(0) = -2.2, η(0) = 0, ζ(0) = 0.01, u(0) = 0, v(0) = - 2.2,
w(0) = 0 with time period 26.1 units.
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(a) Unperturbed case (b) Perturbed case-III

Figure 7: Periodic Orbits

3.5. Stability of stationary points

The stability of stationary points can be examined for this model for which we as-
sume the motion near stationary point (ξ0, η0 ζ0) as (ξ0 + ξ01, η0 + η01, ζ0 + ζ01), where
(ξ01, η01, ζ01) are minor shift from the stationary point.

Eq. (4) can be written in phase space as:

ξ̇01 = ξ02,

η̇01 = η02,

ζ̇01 = ζ02,

ξ̇02 = 2nϕ η02 + (Pξ ξ)
0 ξ01 + (Pξ η)

0 η01 + (Pξ ζ)
0 ζ01,

η̇02 = − 2nϕ ξ02 + (Pη ξ)
0 ξ01 + (Pη η)

0 η01 + (Pη ζ)
0 ζ01,

ζ̇02 = (Pζ ξ)
0 ξ01 + (Pζ η)

0 η01 + (Pζ ζ)
0 ζ01,

(8)

where the superscript 0 represents the value of the 2nd derivatives of P at the
corresponding stationary point (ξ0, η0, ζ0) from Eq. (5).
Following the procedure given in F. Bouaziz [35], the characteristic equation for the
system (8) can be written as:

λ6 + D5 λ
5 + D4 λ

4 + D3 λ
3 + D2 λ

2 + D1 λ + D0 = 0, (9)
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where

D5 = − 3ϕ,

D4 = 4 ϵ21 n
2 − (Pξ ξ)

0 − (Pη η)
0 − (Pζ ζ)

0 +
15

4
ϕ2,

D3 =
2

3
D4D5,

D2 =
15

16
ϕ4 +

3

2
ϕ2 (4 ϵ21 n

2 − (Pξ ξ)
0 − (Pη η)

0 − (Pζ ζ)
0 )

− [ {4 ϵ21 n2 − (Pξ ξ)
0 − (Pη η)

0} (Pζ ζ)
0

+((Pξ η)
0)2 + ((Pξ ζ)

0)2 + ((Pη ζ)
0)2 − (Pξ ξ)

0 (Pη η)
0 ],

D1 = − 3

16
ϕ5 +

ϕ3

2
{ (Pξ ξ)

0 + (Pη η)
0 + (Pζ ζ)

0 − 4 ϵ21 n
2}

+ϕ [((Pξ η)
0)2 + ((Pξ ζ)

0)2 + ((Pη ζ)
0)2 − (Pξ ξ)

0 (Pη η)
0

{ 4 ϵ21 n2 − (Pξ ξ)
0 − (Pη η)

0 } (Pζ ζ)
0 ],

D0 =
1

64
ϕ6 +

1

16
ϕ4{4 ϵ21 n2 − (Pξ ξ)

0 − (Pη η)
0 − (Pζ ζ)

0}

− 1

4
ϕ2 [{4 ϵ21 n2 − (Pξ ξ)

0 − (Pη η)
0 } (Pζ ζ)

0 + ((Pξ η)
0)2 + ((Pξ ζ)

0)2

+((Pη ζ)
0)2 − (Pξ ξ)

0 (Pη η)
0 ] + ((Pξ ζ)

0)2 (Pη η)
0 + (Pξ ξ)

0 ((Pη ζ)
0)2

+((Pξ η)
0)2 (Pζ ζ)

0 − (Pξ ξ)
0 (Pη η)

0 (Pζ ζ)
0 − (Pξ η)

0 (Pξ ζ)
0 (Pη ζ)

0 .

(10)

The characteristic roots are evaluated numerically for the characteristic equation (9)
and given in the tables (1, 2) from where we got that all the stationary points are unstable
because all the roots have either at-least one positive real root or a positive real part of
the complex roots.

4. Conclusion

The effects of perturbations (radiating oblate, dipole, variable mass, interactions be-
tween the bodies, coriolis and centrifugal forces) have investigated on the motion of in-
finitesimal body. The equations of motion and quasi-jacobian integral have determined

94



under above said perturbations. The important dynamical properties (locations of sta-
tionary points, regions of motion, Poincaré surfaces of section and periodic orbits) have
studied numerically in four cases (unperturbed case and perturbed cases-I, II, III). In the
unperturbed case, we got five stationary points while in the perturbed cases-I, II, III, we
got four collinear stationary points in three cases but two non-collinear stationary points
in first two cases (I, II) in in-plane. In the out-of-plane, there are no stationary points
exists in unperturbed case and perturbed case-I while two stationary points exists in per-
turbed cases I, II. In the regions of motion, colored regions are prohibited regions while
white regions are allowed regions in the unperturbed case and perturbed case-III. In the
Poincaré surfaces of section, there are chaos exists in unperturbed case while no chaos in

Table 1: Nature of stationary points for Perturbed case-III in ξ − η-plane.

Stationary Point CharacteristicRoots Nature

ξ − Co. η − Co.

− 0.7415901976 0.0000000000 0.0999999999± 1.0448057624 i Unstable0.0999999999 ± 0.7181961471 i
0.1000000001 ± 0.9602580857 i

0.2095130200 0.0000000000 0.0999999999± 13.6877489804 i Unstable0.1000000001± 13.7433644537 i
14.5218191189

− 14.3218191189

0.6085486206 0.0000000000 0.0999999999 ± 5001.5143072229 i Unstable0.1000000000 ± 5001.6349575365 i
5001.8441885653

− 5001.6441885653

1.2671447710 0.0000000000 0.0999999999 ± 1.3475574029 i Unstable0.1000000000 ± 1.4196498707 i
2.0637711582

− 1.8637711582

Table 2: Nature of stationary points for Perturbed case-III in ξ − ζ-plane.

Stationary Point CharacteristicRoots Nature

ξ − Co. ζ − Co.

− 0.0006425196 ± 3.1052477154 0.0999999999 ± 1.6926544868 i Unstable0.1000000003 ± 0.7114209254 i
0.2835009113

− 0.0835009113
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perturbed case-III. Further, in the unperturbed case and perturbed case-III, we got the
periodic orbits with time period 6.3 units and 26.1 units respectively. Finally, we have
examined the stability of the stationary points in the perturbed case-III and found that
all the stationary points are unstable. In this way, the perturbations, we considered have
excellent influence on the motion properties.
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to complete this manuscript.
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