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Abstract. In the present paper, the hypersingular integral operator with Hilbert kernel is ap-
proximated by a sequence of operators of the special form and is obtained the estimate of the
convergence rate in Holder spaces.
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1. Introduction

An active development of numerical methods for solving hypersingular integral equa-
tions is of considerable interest in modern numerical analysis. This is due to the fact that
hypersingular integral equations have numerous applications in acoustics, aerodynamics,
fluid mechanics, electrodynamics, elasticity, fracture mechanics, geophysics and etc. (see
[6,7,12,14,16,20,22,23,26,27]). Therefore the construction and justification of numerical
schemes for approximate solutions of hypersingular integral equations is a topical issue
and numerous works [3-11,13,15,16-19,21-25,27-31] are devoted to their development. In
the present paper the hypersingular integral operator

)=t [

is approximated by a sequences of operators of the form
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where k =0, 2n—1, n € N, oz,(gn) (t) are continuous functions on Tp. It should be noted
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that, the determination of the inverse operator [S,({\)] is equivalent to the study of the
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S o e(d) =rw . tem

k=0
at the points ¢,t + 7 ...t + w, because by solving the resulting system of linear
algebraic equations with respect to (gp ), ¢ (t + %) N (t + W)> we can obtain

the function ¢ ().

Note that, for the singular integral operators with Cauchy kernel and Hilbert kernel
similar approximations and their applications to the singular integral equations are given
in the papers [1] and [2], analogous approximations for hypersingular integral operators
with Cauchy kernel are given in [3,4].

2. Hypersingular integral operators with Hilbert kernel

Consider the following integrals
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0
where the function ¢ (t) is Lebesque integrable in the interval Tp. If we define these
integrals similar to the Cauchy integral, even if ¢ = 1 we get the divergent integrals.
Therefore, using the idea of Hadamard finite part integral [16], we will define the integrals
(1) and (2) as follows.

Definition 1.1 Let m € N 27-periodic function ¢ () is Lebesgue integrable on Tj

and (m — 1) times differentiable at the point ¢ € Tp. If a finite limit
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when m =1,
exists, then the Value of this limit is referred to as the hypersingular integral of the
function |CSC Qt‘ (1) on Ty and is denoted by fow |esc 2'5} (1)dr.
Definition 1. 2 Let m € N 0 < A < 1, 2m-periodic functlon @ (t) is Lebesgue
integrable on Ty and (m — 1) times differentiable at the point ¢t € Ty. If a finite limit
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whenm =2p—1,p € N,
exists, then the value of this limit is referred to as the hypersingular integral of the

2m
£|mEA ¢ (7), on Tp and is denoted by [ |csc TT_t’mH‘ p(7)dr.
0

function !csc = ‘

Now consider the following integral

/27r
0

where ¢ (t) is Lebesgue integrable on Tp.
Using definition 1.2, we define the integral (3) as follows:
Definition 1.3. Let 0 < A < 1, 2m-periodic function ¢ (t) is Lebesgue integrable on

Ty. If a finite limit
14+ t+m
o (1)dr + /

t—e
lim /
e—0+ t—m t+e
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L (P dr, Ae[0,1), teTy = [0,2n] (3)
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exists, then the value of this limit is referred to as the hypersingular integral of the function
|esc Qt‘ (1), t € To on Ty and is denoted by fo% |esc %’HA o (7)dr.

Let H, (To), 0 < a <1 be the space of 2m-periodic and Holder continuous functions
with exponent a on the number axis, i.e. the space of the functions which satisfies the
following condition

dM >0 Vt, to € R: ’(p(tl) —(p(tz)’ <M - ’tl —tg‘a

with the norm
el = el + R (p:a),

where

lp (t1) — ¢ (t2)]
[t1 — ta|®

ll¢lloo = lgéggXIsO(t)l h(p;a) = Sup{ D ti,to €R, t # tz}.
0

Show that, if ¢ € Ha(Tp), 0 < X < « < 1, then hypersingular integral
27r !c = ‘/\H (1) dr exists for all t € T.
Indeed if o € H, (1), then according to the definition of the Holder space for any
7, t € R, 7 # t the following relation is true.

A+1 A+1 A1
T M-«
. M-t < — 4
lp(T) = )] < (, t‘> [T —¢% < e (4)

—t

CSC

From inequality (4) it follows that, the integral

/27r
0

converges in the sense of Lebesque. Hence and from the existence of the hyper-
t‘ 1+A

14+

U o) — e () dr

CSC

singular 1ntegral fo |csc dr follows the existence of the hypersingular integral

27r{Cc Qt‘ o (1) dr at all t € T.
If we calculate the following integrals

2 ¢ 27 —t 1+A
/ csc ‘ dr and / csc dr
0 0
using definitions 1.1and 1.2, then we get
27 T — t . t—e _ t t-‘r’ﬂ'
cse dr = lim cse dr + cse dr —41In =
0 2 e=0+ [ Ji—n tte
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e—=0+ t—m 2 t+e 2 €

t— t—e —t t+m 1
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e—0+ 4 o 4 €

t+e
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27 1+ t—e 1+
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/ cse dr = lim / cse dr+
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t+e 2 Ae

=2 lim [

/t+7r T2 /”/2(13 A
e=0+ | Jiye (sin%t)lw‘ Ae e=0+ | Joso (sins) T A& A

where 0 < A < 1.
From (5), (6) it follows that

2 1+ 2
/ p(rdr= [
0 0

From relation (7) it follows that, if ¢ € H,(Tp), then hypersingular integral
fo% |esc %‘HA @ (1) dr exists for all t € Tp.
Consider the hypersingular integral operator:

)=t [

where p € H, (Tp), A < a < 1.

Theorem 1. Hypersingular integral operator S®) is bounded from the space H, (Th)
into the space Hy—y—c (Tp) foral0 < A< a<land0<e<a-— A\

Proof. From equation (7) it follows that, it is sufficient to prove

the stated theorem for the following operator:

@@w:;A%

Let ¢ € Hy (Tp). Then
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1+A

m a
T =t]%dr < Cr-h(p;a) < C1-l¢ll, - (8)

< M max / ”
dm  teTy Jy
where C1- constant which only depends on «.

Estimate the difference (Tcp) (t1) — <Tcp> (t2) for any two points t1, to € Ty, t1 # to.
If [t; — to| > 3, then from inequality (8) it follows that

T—1

(Te) (1) = (Te) (t2)]| <21 - il < ACH - il - It2 = 2] 2% (9)

Consider the case |t — ta| > % Without loss of generality, we can assume that t; < to
and denote 0 = 2|t; — ta|. Represent the difference (Tgp) (t1) — <T<p) (t2) as follows:

5 N 1 t1+26 T— tl 1+
(o) )= (Te) = - [ s o () — o (1)) dr—
47T t1—28 2
1 t1+26 p— t2 1+
—— csc e (T) = (t2)]dr+
) | e e )
1 PR ED
+— cse T o () — @ (1)) dr+
am [t —m5t1 7]/ [t1 —28;t1+26] 2
1 B o |1
s o ()=o) ese TG e TSR =
™ [tl—ﬂ';t1 +7T]/ \[t1—25;t1 +2(5}

= j1 +j2+j3+j4. (10)
From ¢ € H, (Tp), 0 < XA < o < 1 we get the following estimate

14+A

A o () — e ()] dr <

2

142
h(pia)-|r—t]"dr <

hp;a) (4N phat2d dr o
< (i0). <> / ——a <O llelly - [t —ta|® A
am ™ t1—285 |7 —t1]

where Cs- constant which only depends on a.
The integral J, is estimated absolutely analogously:

’j2’ <Cslly - [t — 2|5

Estimate the integral Js as follows:

oty |

2

‘jg‘ < lp(ta) — o ()| /
N 4m [t1 — 5ty ]\ [t1 — 2851 +20]
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_ tl ’1+)\ —

1+A
) /[tl—w;t1+7r}\[t1—25;t1+2(5} |T

hpia) =t (4
- 47 s
h(p:a) |t — to]® (4)1“ Cy e
< : | = s <G5 ol [t =t
- L) <O lelac -l
where Cy,C5- constants which only depend on a._
We now turn to the estimate of the integral Jy.
- 1
PAES S @ (1) = o (t2)] x
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14X 14+
—t —t
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(807 )/ T—tQ‘a CSCT
(61— sty +7)\[t1 — 2651 +20] 2
14+X 14+X
—t
sin _ 5 ! dr

<
- A4n
T*tg

14X

T*tg

cse— sin 5
Since for any 7 € [t; —m;t1 + 7]\ [t1 — 2J;t1 + 2d] the following inequality holds
< Cg- |ty — ta] - |7 — t1|*, then we get,

X
‘l—i-/\

dr

fin 758
‘7_ - t1|2+)\7a —

. _ 1+
sin = 2t2 ‘ —

4

Ir— 1] < 37 — o] (
>2+2)\
[t1—m;t1+7)\[61—26;¢1+26]

'C@'|t1—t2'<

h(p; @)
4

‘j4) <

where Cg,C7 -constants which only depend on a.
Comparing obtained estimates for Jp, Jo, J3 and Jy, from relation (10) and inequality

< CO7|l@llg - [t =t
(9) follows the validity of the theorem. This completes the proof of the theorem.

3. Approximation of hypersingular integral operator with Hilbert
kernel.

Consider the sequences of operators
2%k + 1) |1 ™ (2k +1 G
D o (+ D) 0] + 2 w0
n 4

1= T
S0) (t) - 2n Z ¢ 2n
k=0
2> A< 1
)\6\7)\ ) O < < .

(5
w/2 J
e 0+ [/f2 (sins) T*

te Ty, ne N, where 7o =4In4, 7y =4 lim
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It is clear that, operators Sfl)‘), n=1,2
space Hy,, (Tp) for all 0 < o < 1.
Theorem 2.1. For any ¢ € H, (

, ... is bounded from the space H, (1), into the

To), the following estimates hold

Cy
HS(*)w — Sff)tpHoo <5 hlpa)n=12. (11)
when 0 < A < 1 and

In(n+1
s© - 50| < Cfﬁn?iz”r) h(pa),n=1,2,.. (12)

when A = 0, where Cg and (g are constants which depend on «.
Proof. From (7) it follows that, for any ¢ € Tj

(59) - (s070) ] - & | [
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<=y /+ Lo (1) = ¢ () dr -
k=0 n
27 m(2k+ 1)1 m(2k+1) 1 .

Estimate the difference I, k = 0,n — 1. For difference I, we get
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o0+ 7)-ot0]

<
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where C1g- constant which depends on a. Analogously it follows that

~ C
In—l < nal_OA “h ((P;O‘> .

For I, k = 1, [n/2], where [n/2] is the integer part of the number n/2, we have

—t H/\. [<p <t+7r(2];+1>> —W(t)] dr—
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2 2%k + 1) |1 2% + 1
2w  m(2k+1) [@ <t+7f<k+>)_@(t)}+
n 2n n
o+ 20 — g % + 1 -
+ / cse . [@(T)—(p(t—l-ﬂ(—i_))] dr :I,il)—&-I,gZ).
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Now estimate the difference I ,il) as follows:

LY < ’w (t+ 77(2/2+1)> —p(t)

X
. 4 2D _ A b 2| T2k L+
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w(k+1)
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<h(p;a)- | ——=| - cse — |ecsc ————= dr.
n 422k 2n
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7 —t|HA ' m(2k+1) M
cse — |esc —— =
2n
r—t[M r2k+ 1) | =)t _w(2k+ 1)
= |csc csc - ||sin — |sin ———= <
2 2n 2n
< 4\ 22 1 n At o r—t w(2k+1)| |7—t|
= \r i — ¢\ 7 (2k+1) 1 2n 2
A+1
n
< Ciz2- T2

where C11,C12- constants which only depend on .
Then from the inequality (15) we get the following inequality

ke pAML o 1 1

(1
Ié) < CHBh(¢§a)';E"%X;§‘;£::Ch3h(W§a)'%ﬁij"%XI§:E

where C13- constant which only depends on «.

Now turn to the estimate of the integral j]gz).

27 (k+1)

t+ 142
[ " —t 2% + 1
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< | = . . . <
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2w (k+1)

4\ mye [T dr 11
< (ﬂ) h(p;a) - (g) /t+27’§k m < Cuh (p;a) - po—x " JIEA

where C14- constant which only depends on «.
Comparing obtained estimates for T ,gl) and T, IEQ)from inequality (14) it follows the fol-
lowing inequality

1 1 1 1 1 1

I < Cl3'h(<P§04)'W'W-FCM'}L((P;@)'W'W < Cls'h(%@)'m'rlﬂy

where £ = 1, [n/2] and Cj5- constant which only depends on «. But, for k¥ =
[n/2] + 1, n — 2 analogously we get

1 1

I < 015'h(90;04)'na,,\ : (n—1—

Comparing obtained estimates for Iy, k = 0,n — 1, from inequality (13) follows that

[n/2]

2C 2C 1
ey — (g™ 10 : 215 o .
(sM) o) = (sM) e 0] < werh(#i0) 4 B ) 3 s (10
(/2] [n/2] 0
Since we get Y kl% <In(l+4+n), when A = 0 and kl% < > kﬁM = (7, when
k=1 k=1 k=1

0<A<l1
Then from (16) follows the estimates (11) and (12). This completes the proof of the
stated theorem.
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