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On a Periodic Solution for an Impulsive System
of Differential Equations with Gerasimov–Caputo
Fractional Operator and Maxima

Tursun K. Yuldashev, Khanlar R. Mamedov, Tohirjon A. Abduvahobov

Abstract. Existence and uniqueness of (ω, c)−periodic solution of boundary value problem for a
system of ordinary differential equations with Gerasimov–Caputo operator, impulsive effects and
maxima are investigated. This problem is reduced to the investigation of solvability of the system
of nonlinear functional integral equations. The method of contracted mapping is used in the proof
of one-valued solvability of nonlinear functional integral equations. Obtained some estimates for
the (ω, c)−periodic solution of the studying problem.
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1. Introduction

Differential equations, the solution of which is functions with first kind discontinu-
ities at times, are called differential equations with impulse effects. One can see a lot
of publications of studying on differential equations with impulsive effects, describing
many natural and practical processes (for examples, [1, 2, 3, 4, 5, 6, 7]). The interest in
the study of nonlocal problems for the impulsive differential equations is only increasing
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Fractional calculus plays an important role in the mathematical modeling of many
problems in scientific and engineering disciplines [20, 21, 22, 23]. In the works [24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34], the problems of applying of the fractional order integro-
differential operators to the theory of differential equations are considered.

In the works [18, 19], the periodic solutions of impulsive differential equations are
studied. In the works [35, 36, 37], the problems of existence of (ω, c)−periodic solutions
for impulsive differential equations are considered.

According to the works [35, 36, 37], a continuous function f : R → X is (ω, c)−periodic,
if f(t+ω) = c · f(t) for all t ∈ R, where 0 < c = const, c ̸= 1, 0 < ω < ∞, X is closed set.
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In our present paper on the interval Ω ≡ [0, ω] \
{
ti
}
for i = 1, 2, ..., p we consider the

questions of existence of the (ω, c)−periodic solutions of the impulsive nonlinear system
of α−order differential equations with maxima

CD
α
0 tx(t) = f (t, x(t),max {x(τ) |τ ∈ [t− h, t]}) , (1)

where 0 < h = const is delay.
The equation (1) we study with (ω, c)−periodic condition

x(ω) = c · x(0) (2)

and nonlinear impulsive effects

x
(
t+i

)
− x

(
t−i

)
= Fi (x (ti)) , i = 1, 2, ..., p, (3)

where CD
α
0 t is the Gerasimov–Caputo α−order fractional derivative for a function x(t)

and defined by

CD
α
0tx(t) = I 1−α

0t x′(t) =
1

Γ(1− α)

t∫
0

x′(s) ds

(t− s)α
, t ∈ (0, ω), (4)

I α
0tx(t) =

1

Γ(α)

t∫
0

(t− s)α−1x(s)ds, 0 < α ≤ 1, (5)

Γ(α) is the Gamma-function, 0 = t0 < t1 < ... < tp < tp+1 = ω, x ∈ X, X is the
closed bounded domain in the space Rn, f ∈ Rn, x

(
t+i

)
= lim

ν→0+
x (ti + ν) , x

(
t−i

)
=

lim
ν→0−

x (ti − ν) .

We note that this paper is further development of the work [18]. We recall that in the
work [18] it is studied the differential equation (1) when α = c = 1. However, the work [18]
is not particular case of the present paper. Because in our work we assume that c ̸= 1.

By C ([0, ω],Rn) is denoted the Banach space, which consists continuous vector func-
tions x(t), defined on the segment [0, ω], with the norm

∥x(t) ∥ =

√√√√ n∑
j=1

max
0≤t≤ω

|xj(t) |.

By PC ([0, ω],Rn) is denoted the following linear vector space

PC ([0, ω],Rn) =
{
x : [0, ω] → Rn; x(t) ∈ C ((ti, ti+1] ,Rn) , i = 1, ..., p

}
,

where x
(
t+i

)
and x

(
t−i

)
(i = 0, 1, ..., p) exist and are bounded; x

(
t−i

)
= x (ti). Note, that

the linear vector space PC ([0, ω],Rn) is Banach space with the norm

∥x(t) ∥PC = max
{
∥x(t) ∥C(ti,ti+1]

, i = 1, 2, ..., p
}
.
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We use also the vector space BD ([0, ω],Rn), which is Banach space with the following
norm

∥x(t) ∥BD = ∥x(t) ∥PC + h ·
∥∥x′(t) ∥∥

PC
,

where 0 < h = const is delay given by equation (1).
Formulation of problem. To find the (ω, c)−periodic function x(t) ∈ BD ([0, ω],Rn),
which for all t ∈ Ω satisfies the system of differential equations (1) for 0 < α ≤ 1,
(ω, c)−periodic condition (2) and for t = ti, i = 1, 2, ..., p, 0 < t1 < t2 < ... < tp < ω,
satisfies the nonlinear limit condition (3).

2. Reduction to functional integral equation

Let the function x(t) ∈ BD ([0, ω],Rn) is a solution of the (ω, c)−periodic boundary
value problem (1)–(3). Then, by virtue of (4) and (5), after integration on the intervals
(0, t1] , (t1, t2] , . . . , (tp, tp+1] we have:

I α
0 t1CD

α
0 t1 (x(t)) = I α

0 t1I
1−α
0 t1

x′(t) = I 1
0 t1x

′(t) =

t1∫
0

x′(s)ds = x(t−1 )− x(0+), (6)

I α
0t1f (t, x(t), y(t)) =

1

Γ(α)

t1∫
0

(t1 − s)α−1f (s, x(s), y(s)) ds, (7)

1

Γ(α)

t2∫
t1

(t2 − s)α−1f (s, x(s), y(s)) ds = x(t−2 )− x(t+1 ), (8)

...

1

Γ(α)

ω∫
tp

(T − s)α−1f (s, x(s), y(s)) ds = x(t−p+1)− x(t+p ), (9)

where f (t, x(t), y(t)) = f (t, x(t),max {x(τ) |τ ∈ [t− h, t]}) .
From the formulas (6)–(9) and x(0+) = x(0), x(t−p+1) = x(t), on the interval (0, ω] we

have

1

Γ(α)

t∫
0

(t− s)α−1f (s, x(s), y(s)) ds =

= −x(0)−
[
x
(
t+1

)
− x (t1)

]
−
[
x
(
t+2

)
− x (t2)

]
− . . . −

[
x
(
t+p

)
− x (tp)

]
+ x(t).

Taking into account the impulsive condition (3) in the last equality, we obtain

x(t) = x(0) +
∑

0<ti<t

Fi (x (ti)) +
1

Γ(α)

t∫
0

(t− s)α−1f (s, x(s), y(s)) ds. (10)
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Hence, we have

x(ω) = x(0) +
∑

0<ti<ω

Fi (x (ti)) +
1

Γ(α)

ω∫
0

(ω − s)α−1f (s, x(s), y(s)) ds. (11)

Let the function x(t) ∈ BD ([0, ω],Rn) in (10), satisfies the boundary value condition
(2). Then from (11) we have

x(0) =
1

c− 1

∑
0<ti<ω

Fi (x (ti)) +
1

(c− 1)Γ(α)

ω∫
0

(ω − s)α−1f (s, x(s), y(s)) ds. (12)

By virtue of (12), from (10) we obtain the functional differential equation

x(t) = J(t;x) ≡ 1

c− 1

∑
0<ti<ω

Fi (x (ti)) +
∑

0<ti<t

Fi (x (ti))+

+
1

(c− 1)Γ(α)

ω∫
0

(ω − s)α−1f (s, x(s),max {x(τ) |τ ∈ [s− h, s]}) ds+

+
1

Γ(α)

t∫
0

(t− s)α−1f (s, x(s),max {x(τ) |τ ∈ [s− h, s]}) ds. (13)

Lemma 2.1. For the equation (13) is true the following estimate

∥ J(t;x) ∥PC ≤
∣∣∣∣ c

c− 1

∣∣∣∣ [ ωα

αΓ(α)
M1 + p ·M2

]
, (14)

where M1 = ∥ f ∥ , M2 = max
1≤i≤p

∥Fi ∥ .

Proof. From the equation (13) we obtain

∥ J(t;x) ∥PC ≤ 1

| c− 1 |
∑

0<ti<ω

∥Fi∥+
∑

0<ti<t

∥Fi∥+

+
1

| c− 1 |Γ(α)

ω∫
0

(ω − s)α−1 ∥ f ∥ ds+ 1

Γ(α)

t∫
0

(t− s)α−1 ∥ f ∥ ds ≤

≤ p

∣∣∣∣ c

c− 1

∣∣∣∣ max
1≤i≤p

∥Fi ∥+ ∥ f ∥
[

1

| c− 1 |Γ(α)

ω∫
0

(ω − s)α−1ds+
1

Γ(α)

t∫
0

(t− s)α−1ds

]
≤

≤
∣∣∣∣ c

c− 1

∣∣∣∣ [p · max
1≤i≤p

∥Fi ∥+
ωα

αΓ(α)
∥ f ∥

]
. (15)

From the estimate (15) follows (14). Lemma 2.1 is proved.
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Lemma 2.2. Let the following conditions to be met: there exist constants P1, P2, Q1, Q2

such that

∥ f (t, x(t), y(t)) ∥ ≤ P1 ∥x(t) ∥+Q1 < ∞, max
1≤i≤p

∥Fi (x(ti)) ∥ ≤ P2 max
1≤i≤p

∥x(ti) ∥+Q2 < ∞.

Then the following estimate is true

∥x(t) ∥PC ≤ µ

1− ν
, (16)

where

µ = pQ2

∣∣∣∣ c

c− 1

∣∣∣∣+Q1
1 + | c− 1 |
| c− 1 |

ωα

αΓ(α)
, ν = p

∣∣∣∣ c

c− 1

∣∣∣∣P2 +
1 + | c− 1 |
| c− 1 |

ωα

αΓ(α)
P1 < 1.

Proof. Similar to the proof of the Lemma 2.1 above, we obtain

∥ J(t;x) ∥PC ≤ 1

| c− 1 |
∑

0<ti<ω

∥Fi∥+
∑

0<ti<t

∥Fi∥+

+
1

| c− 1 |Γ(α)

ω∫
0

(ω − s)α−1 ∥ f ∥ ds+ 1

Γ(α)

t∫
0

(t− s)α−1 ∥ f ∥ ds ≤

≤ p

∣∣∣∣ c

c− 1

∣∣∣∣ [P2 max
1≤i≤p

∥x(ti) ∥+Q2

]
+

+
[
P1 ∥x(t) ∥+Q1

][ 1

| c− 1 |Γ(α)

ω∫
0

(ω − s)α−1ds+
1

Γ(α)

t∫
0

(t− s)α−1ds

]
≤

≤ p

∣∣∣∣ c

c− 1

∣∣∣∣P2 max
1≤i≤p

∥x(ti) ∥+
1 + | c− 1 |
| c− 1 |

ωα

αΓ(α)
P1 ∥x(t) ∥+

+pQ2

∣∣∣∣ c

c− 1

∣∣∣∣+Q1
1 + | c− 1 |
| c− 1 |

ωα

αΓ(α)
.

Hence, we derive the estimate (16). The Lemma 2.2 is proved.

Lemma 2.3 ([18]). For the difference of two functions with maxima there holds the fol-
lowing estimate

∥max {x(τ) |τ ∈ [t− h, t]} −max {y(τ) |τ ∈ [t− h, t]} ∥ ≤

≤ ∥x(t)− y(t) ∥+ 2h

∥∥∥∥ ∂

∂ t
[x(t)− y(t)]

∥∥∥∥ ,
where 0 < h = const.
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Theorem 2.4. Let f : Ω×Rn×Rn → Rn be a continuous function and f(t+ω, cx, cy) =
c f(t, x, y). Assume that there exist positive quantities M1, M2, L1, L2i such that for all
t ∈ Ω are fulfilled the following conditions:
1. For the positive integer p, there hold Fi = Fi+p, ti+p = ti + ω;
2. ∥ f (t, x(t), y(t)) ∥ ≤ M1 < ∞, max

1≤i≤p
∥Fi (x(ti)) ∥ ≤ M2 < ∞;

3. ∥ f (t, x1, y1)− f (t, x2, y2) ∥ ≤ L1

[
∥x1 − x2 ∥+ ∥ y1 − y2 ∥

]
;

4. ∥Fi (t, x1)− Fi (t, x2) ∥ ≤ L2i ∥x1 − x2 ∥ ;
5. The radius of the inscribed ball in X is greater than

∣∣∣ c
c−1

∣∣∣ [ ωα

αΓ(α)M1 + p ·M2

]
;

6. ρ < 1, where ρ = max {β1 + β2; γ1 + γ2} and β1, β2, γ1, γ2 are defined from (20), (21),
(23) and (24) below.

Then the problem (1)–(3) has a unique (ω, c)−periodic solution for all t ∈ Ω.

Proof. The theorem we proof by the fixed-point method. According to the theorem con-
dition, we have

f(t+ ω, x(t+ ω), y(t+ ω)) = f(t+ ω, c x(t), c y(t)) = c f(t, x(t), y(t)).

We differentiate (13):

x′(t) = J(t;x′) ≡ α− 1

Γ(α)

t∫
0

(t− s)α−2f (s, x(s),max {x(τ) |τ ∈ [s− h, s]}) ds. (17)

For the difference of two operators in (13), we have estimate

∥J(t;x)− J(t; y)∥ ≤

≤ 1

| c− 1 |
∑

0<ti<ω

∥Fi (x (ti))− Fi (y (ti)) ∥+
∑

0<ti<t

∥Fi (x (ti))− Fi (y (ti)) ∥+

+
1

| c− 1 | Γ(α)

ω∫
0

(ω − s)α−1 ∥f (s, x(s),max {x(τ) |τ ∈ [s− h, s]})−

−f (s, y(s),max {y(τ) |τ ∈ [s− h, s]}) ∥ ds+

+
1

Γ(α)

t∫
0

(t− s)α−1 ∥ f (s, x(s),max {x(τ) |τ ∈ [s− h, s]})−

−f (s, y(s),max {y(τ) |τ ∈ [s− h, s]}) ∥ ds.

Hence, using conditions of the theorem, we have

∥J(t;x)− J(t; y)∥ ≤

≤ 1

| c− 1 |
∑

0<ti<ω

L 2i ∥x (ti)− y (ti) ∥+
∑

0<ti<t

L 2i ∥x (ti)− y (ti) ∥+
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+
L1

| c− 1 | Γ(α)

ω∫
0

(ω − s)α−1
[
∥x(s)− y(s) ∥+ ∥max {x(τ) |τ ∈ [s− h, s]}−

−max {y(τ) |τ ∈ [s− h, s]} ∥
]
ds+

+
L1

Γ(α)

t∫
0

(t− s)α−1
[
∥x(s)− y(s) ∥+ ∥max {x(τ) |τ ∈ [s− h, s]}−

−max {y(τ) |τ ∈ [s− h, s]} ∥
]
ds. (18)

By virtue of estimate given in the Lemma 2.3, from (18) we obtain that

∥J(t;x)− J(t; y)∥ ≤
∣∣∣∣ c

c− 1

∣∣∣∣ p∑
i=1

L 2i ∥x (ti)− y (ti) ∥+

+
2L1

| c− 1 | Γ(α)

ω∫
0

(ω − s)α−1
[
∥x(s)− y(s) ∥+ h ·

∥∥x′(s)− y′(s)
∥∥ ]ds+

+
2L1

Γ(α)

t∫
0

(t− s)α−1
[
∥x(s)− y(s) ∥+ h ·

∥∥x′(s)− y′(s)
∥∥ ]ds ≤

≤ β1 ∥x(t)− y(t) ∥+ γ1h
∥∥x′(t)− y′(t)

∥∥ , (19)

where

β1 =

∣∣∣∣ c

c− 1

∣∣∣∣ p∑
i=1

L 2i +
1 + | c− 1 |
| c− 1 |

2L1

Γ(α)

ωα

α
, (20)

γ1 = 2
1 + | c− 1 |
| c− 1 |

L1

Γ(α)

ωα

α
. (21)

Now for the difference of two operators in (17). Similarly, we have estimate∥∥J(t;x′)− J(t; y′)
∥∥ ≤

≤ 2L1
α− 1

Γ(α)
sup
t∈Ω

t∫
0

(t− s)α−2
[
∥x(s)− y(s) ∥+ h ·

∥∥x′(s)− y′(s)
∥∥ ]ds ≤

≤ β2 ∥x(t)− y(t) ∥+ γ2h
∥∥x′(t)− y′(t)

∥∥ , (22)

where

β2 = 2hL1
α− 1

Γ(α)
max
t∈Ω

t∫
0

(t− s)α−2ds, (23)
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γ2 = 2hL1
α− 1

Γ(α)
max
t∈Ω

t∫
0

(t− s)α−2ds. (24)

We multiply both sides of (22) to h term by term. Then, adding the estimates (19) and
(22) term by term, we obtain that

∥J(t;x)− J(t; y)∥BD ≤ ρ · ∥x(t)− y(t) ∥BD , (25)

where ρ = max
{
β1 + β2; γ1 + γ2

}
.

According to the last condition of the theorem ρ < 1, so right-hand side of (13) as an
operator is contraction mapping. From the estimates (14), (16) and (25) implies that there
exists a unique fixed point x(t), satisfying equation (1) and (ω, c)−periodic condition (2).
Moreover, we obtain that

∥x(t) ∥ ≤ 1

| c− 1 |
∑

0<ti<ω

[
L 2i ∥x (ti) ∥+ ∥Fi (0) ∥

]
+

∑
0<ti<t

[
L 2i ∥x (ti) ∥+ ∥Fi (0) ∥

]
+

+
L1

| c− 1 | Γ(α)

ω∫
0

(ω − s)α−1
[
∥x(s) ∥+ ∥max {x(τ) |τ ∈ [s− h, s]} ∥+

+ ∥ f(s, 0, 0) ∥
]
ds+

+
L1

Γ(α)

t∫
0

(t− s)α−1
[
∥x(s) ∥+ ∥max {x(τ) |τ ∈ [s− h, s]} ∥+

+ ∥ f(s, 0, 0) ∥
]
ds ≤

∣∣∣∣ c

c− 1

∣∣∣∣ p∑
i=1

L 2i ∥x (ti) ∥+

+
1 + | c− 1 |
| c− 1 |

2L1

Γ(α)

ω∫
0

(ω − s)α−1 ∥x(s) ∥ ds+

+p

∣∣∣∣ c

c− 1

∣∣∣∣M2 +M1
1 + | c− 1 |
| c− 1 |

2L1

Γ(α)

ω∫
0

(ω − s)α−1ds. (26)

From (26) we derive the following estimate

∥x(t) ∥BD ≤ q

1− ρ
, (27)

where

q = p

∣∣∣∣ c

c− 1

∣∣∣∣M2 +M1
1 + | c− 1 |
| c− 1 |

2L1

Γ(α)

ω∫
0

(ω − s)α−1ds < ∞.

The theorem is proved.
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