The m-Order Linear Recursive Quaternions

Orhan Dişkaya and Hamza Menken

Abstract

This study considers the m-order linear recursive sequences yielding some well-known sequences (such as the Fibonacci, Lucas, Pell, Jacobsthal, Padovan, and Perrin sequences). Also, the Binet-like formulas and generating functions of the m-order linear recursive sequences have been derived. Then, we define the m-order linear recursive quaternions, and give the Binet-like formulas and generating functions for them.

Key Words and Phrases: Linear Recursive, Fibonacci numbers, quaternions, generating functions.

2010 Mathematics Subject Classifications: Primary 11B39, 11R52, 05A15

1. Introduction

Primarily, we will consider a linear recursion sequence that gives us some special sequences such as Fibonacci, Lucas, Pell, Jacobsthal, Padovan, Perrin, and Tribonacci with certain initial conditions and coefficients. Then, we obtain the Binet-like formula and generating functions of the linear recursive sequence to find the Binet-like formulas and the generating functions of some special sequences by choosing certain initial conditions and coefficients. Thus, we will make it easier for us to prove the Binet-like formulas and generating functions of some special sequences as a result of this study. The m-order linear recursive sequence definition given below is given by Matyas and Szakacs in [1, 4]. Now, let's examine some identities by reminding this definition again.
For $a_{0}, a_{1}, \ldots, a_{m-1} \in \mathbb{Z}$ with $a_{m-1} \neq 0$ and $m \in \mathbb{Z}^{+}$, the m-order linear recursive sequence $\left\{S_{n}\right\}_{n \geq 0}$ are defined by reccurence relation

$$
\begin{equation*}
S_{n+m}=\sum_{k=0}^{m-1} a_{k} S_{n+k} \tag{1}
\end{equation*}
$$

where the initial conditions $S_{0}, S_{1}, \ldots, S_{m-1}$ with $\left|S_{0}\right|+\left|S_{1}\right|+\cdots+\left|S_{m-1}\right| \neq 0$. The reccurence relation (1) involves the characteristic equation

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}-x^{m}=0
$$

By the complex numbers $q_{1}, q_{2}, \ldots, q_{m}$, we donete the roots of the characteristic equation. Assume that the numbers a_{i} 's are chosen such that the roots of the characteristic equation are distinct.
Linear recursive sequences have been studied by many authors $[1,2,3,4,5,42]$. Matyas investigated some sequence transformations of $\left\{G_{n+d} / G_{n}\right\}_{n=0}^{\infty}$ of linear recursive sequences and linear recurrences and roots-finding methods in $[1,5]$ where $\left\{G_{n}\right\}$ is a linear sequence with m-order. Gatta and D'amito studied sequences H_{n} for which H_{n+1} / H_{n} approaches the golden ratio in [2] where $\left\{H_{n}\right\}$ is a third order linear sequence. Komatsu continued the work of Gatta and D'amito, and examined the sequence H_{n} for which H_{n+1} / H_{n} approaches an irrational number in [3]. Szakacs investigated sequence $\left\{G_{n+1} / G_{n}\right\}_{n=1}^{\infty}$ which are approaching the Golden Ratio, in case $\left\{G_{n}\right\}_{n=0}^{\infty}$ is defined the k-order linear recursive sequence of real numbers [4]. In the present work, we derive the Binet-like Formula and generating functions in the general case.
In [41, 43], the Binet-like formula of the m-order linear recursive sequences is

$$
\begin{equation*}
S_{n}=\sum_{r=1}^{m} p_{r} q_{r}^{n}, \quad(n \geq 0) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& p_{1}=\frac{\left|\begin{array}{cccc}
S_{0} & 1 & \ldots & 1 \\
S_{1} & q_{2} & \ldots & q_{m} \\
\ldots & \ldots & \ldots & \ldots \\
S_{m-1} & q_{2}^{m-1} & \ldots & q_{m}^{m-1}
\end{array}\right|}{\prod_{1 \leq j<i \leq m}\left(q_{i}-q_{j}\right)}, \\
& p_{2}=\frac{\left|\begin{array}{cccc}
1 & S_{0} & \ldots & 1 \\
q_{1} & S_{1} & \ldots & q_{m} \\
\cdots & \ldots & \ldots & \ldots \\
q_{1}^{m-1} & S_{m-1} & \ldots & q_{m}^{m-1}
\end{array}\right|}{\prod_{1 \leq j<i \leq m}\left(q_{i}-q_{j}\right)}, \\
& p_{m}=\frac{\left|\begin{array}{cccc}
1 & 1 & \ldots & S_{0} \\
q_{1} & q_{2} & \ldots & S_{1} \\
\cdots & \ldots & \ldots & \ldots \\
q_{1}^{m-1} & q_{2}^{m-1} & \ldots & S_{m-1}
\end{array}\right|}{\prod_{1 \leq j<i \leq m}\left(q_{i}-q_{j}\right)}
\end{aligned}
$$

By choosing suitable initial conditions and coefficients we obtain the Binet-like formulas for the well-known sequences as follows:
If the terms of the sequence (1) take $m=2, S_{0}=0, S_{1}=1$ and $a_{0}=1, a_{1}=1$, the Binet-like formula for the Fibonacci numbers will be denoted by

$$
S_{n}=\frac{q_{2}^{n}-q_{1}^{n}}{q_{2}-q_{1}} .
$$

where q_{1} and q_{2} are the roots of the characteristic equation $x^{2}-x-1=0$ of the Fibonacci sequence $S_{n+2}=S_{n+1}+S_{n}$.
If the terms of the sequence (1) take $m=2, S_{0}=2, S_{1}=1$ and $a_{0}=1, a_{1}=1$, the Binet-like formula for the Lucas numbers will be denoted by

$$
S_{n}=q_{2}^{n}+q_{1}^{n}
$$

where q_{1} and q_{2} are the roots of the characteristic equation $x^{2}-x-1=0$ of the Lucas sequence $S_{n+2}=S_{n+1}+S_{n}$.
If the terms of the sequence (1) take $m=2, S_{0}=0, S_{1}=1$ and $a_{0}=1, a_{1}=2$, the Binet-like formula for the Pell numbers will be denoted by

$$
S_{n}=\frac{q_{2}^{n}-q_{1}^{n}}{q_{2}-q_{1}}
$$

where q_{1} and q_{2} are the roots of the characteristic equation $x^{2}-2 x-1=0$ of the Pell sequence $S_{n+2}=2 S_{n+1}+S_{n}$.
If the terms of the sequence (1) take $m=2, S_{0}=0, S_{1}=1$ and $a_{0}=2, a_{1}=1$, the Binet-like formula for the Jacobsthal numbers will be denoted by

$$
S_{n}=\frac{q_{2}^{n}-q_{1}^{n}}{q_{2}-q_{1}}
$$

where q_{1} and q_{2} are the roots of the characteristic equation $x^{2}-x-2=0$ of the Jacobsthal sequence $S_{n+2}=S_{n+1}+2 S_{n}$.
If the terms of the sequence (1) take $m=2, S_{0}=a, S_{1}=b$ and $a_{0}=-q, a_{1}=p$, the Binet-like formula for the Horadam numbers will be denoted by

$$
S_{n}=\frac{\left(a q_{1}-b\right) q_{2}^{n}-\left(a q_{2}-b\right) q_{1}^{n}}{q_{2}-q_{1}}
$$

where q_{1} and q_{2} are the roots of the characteristic equation $x^{2}-p x+q=0$ of the Horadam sequence $S_{n+2}=p S_{n+1}-q S_{n}$.
If the terms of the sequence (1) take $m=2, S_{0}=1, S_{1}=t$ and $a_{0}=-1, a_{1}=2 t$, the Binet-like formula for the Chebyshev polynomials will be denoted by

$$
S_{n}=\frac{\left(t-q_{1}\right) q_{2}^{n}-\left(t-q_{2}\right) q_{1}^{n}}{q_{2}-q_{1}}
$$

where q_{1} and q_{2} are the roots of the characteristic equation $x^{2}-2 t x+1=0$ of the Chebyshev polynomial sequence $S_{n+2}=2 t S_{n+1}-S_{n}$.
If the terms of the sequence (1) take $m=3, S_{0}=1, S_{1}=1, S_{2}=1$ and $a_{0}=1, a_{1}=$ $1, a_{2}=0$, the Binet-like formula for the Padovan numbers will be denoted by

$$
S_{n}=p_{1} q_{1}^{n}+p_{2} q_{2}^{n}+p_{3} q_{3}^{n}
$$

where $p_{1}=\frac{\left(q_{2}-1\right)\left(q_{3}-1\right)}{\left(q_{1}-q_{2}\right)\left(q_{1}-q_{3}\right)}, p_{2}=\frac{\left(q_{1}-1\right)\left(q_{3}-1\right)}{\left(q_{2}-q_{1}\right)\left(q_{2}-q_{3}\right)}, p_{3}=\frac{\left(q_{1}-1\right)\left(q_{2}-1\right)}{\left(q_{3}-q_{1}\right)\left(q_{3}-q_{2}\right)}$ and q_{1}, q_{2}, q_{3} are the roots of the characteristic equation $x^{3}-x-1=0$ of the Padovan sequence $S_{n+3}=S_{n+1}+S_{n}$.
If the terms of the sequence (1) take $m=3, S_{0}=3, S_{1}=0, S_{2}=2$ and $a_{0}=1, a_{1}=$ $1, a_{2}=0$, the Binet-like formula for the Perrin numbers will be denoted by

$$
S_{n}=q_{1}^{n}+q_{2}^{n}+q_{3}^{n}
$$

where q_{1}, q_{2}, q_{3} are the roots of the characteristic equation $x^{3}-x-1=0$ of the Perrin sequence $S_{n+3}=S_{n+1}+S_{n}$.
If the terms of the sequence (1) take $m=3, S_{0}=0, S_{1}=1, S_{2}=1$ and $a_{0}=1, a_{1}=$ $1, a_{2}=1$, the Binet-like formula for the Tribonacci numbers will be denoted by

$$
S_{n}=p_{1} q_{1}^{n}+p_{2} q_{2}^{n}+p_{3} q_{3}^{n}
$$

where $p_{1}=\frac{q_{1}^{n+2}}{\left(q_{1}-q_{2}\right)\left(q_{1}-q_{3}\right)}, p_{2}=\frac{q_{2}^{n+2}}{\left(q_{2}-q_{1}\right)\left(q_{2}-q_{3}\right)}, p_{3}=\frac{q_{3}^{n+2}}{\left(q_{3}-q_{1}\right)\left(q_{3}-q_{2}\right)}$ and q_{1}, q_{2}, q_{3} are the roots of the characteristic equation $x^{3}-x^{2}-x-1=0$ of the Tribonacci sequence $S_{n+3}=S_{n+2}+S_{n+1}+S_{n}$.
The Binet-like formulas and generating functions of some special sequences are available in the studies in $[25,27,7,20,10,15,12,23,38,17,14,31,11,9,13,33,18,8,16,30$, $32,6,34,36,35,39,26,19,37,21,22,28,29,24,40]$. Now we give generating function for the m-order linear recursive sequences.
In [43], the generating function of the m-order linear recursive sequences is

$$
\sum_{n=0}^{\infty} S_{n} x^{n}=\frac{\sum_{i=0}^{m-1} S_{i} x^{i}\left(1-\sum_{j=1}^{m-i-1} a_{m-j} x^{j}\right)}{1-\sum_{k=0}^{m-1} a_{k} x^{m-k}}
$$

By choosing suitable initial conditions and coefficients we obtain the generating functions for the well-known sequences as follows:

m	$S_{0}, S_{1}, \ldots, S_{m-1}$	$a_{0}, a_{1}, \ldots, a_{m-1}$	Generating Functions	Names of sequence
2	$S_{0}=0, S_{1}=1$	$a_{0}=1, a_{1}=1$	$\frac{x}{1-x-x^{2}}$	Fibonacci
2	$S_{0}=2, S_{1}=1$	$a_{0}=1, a_{1}=1$	$\frac{2-x}{1-x-x^{2}}$	Lucas
2	$S_{0}=0, S_{1}=1$	$a_{0}=1, a_{1}=2$	$\frac{a_{0}=2, a_{1}=1}{1-2 x-x^{2}}$	Pell
2	$S_{0}=0, S_{1}=1$	a_{0}	Jacobsthal	
2	$S_{0}=a, S_{1}=b$	$a_{0}=q, a_{1}=p$	$\frac{a+\left(b-a x^{2}\right.}{1-p x-q x^{2}}$	Horadam
2	$S_{0}=1, S_{1}=t$	$a_{0}=-1, a_{1}=2 t$	$\frac{1-t x}{1-2 t x+x^{2}}$	Chebyshev polynomials
3	$S_{0}=1, S_{1}=1, S_{2}=1$	$a_{0}=1, a_{1}=1, a_{2}=0$	$\frac{x+1}{1-x^{2}-x^{3}}$	Padovan
3	$S_{0}=3, S_{1}=0, S_{2}=2$	$a_{0}=1, a_{1}=1, a_{2}=0$	$\frac{3-x^{2}}{1-x_{x}^{2}-x^{3}}$	Perrin
3	$S_{0}=0, S_{1}=1, S_{2}=1$	$a_{0}=1, a_{1}=1, a_{2}=1$	$\frac{\square}{1-x-x^{2}-x^{3}}$	Tribonacci

Now we give exponential generating function for the m-order linear recursive sequences.
The exponential generating function of the m-order linear recursive sequences is

$$
\sum_{n=0}^{\infty} S_{n} \frac{x^{n}}{n!}=\sum_{r=1}^{m} p_{r} e^{q_{r} x} .
$$

By choosing suitable initial conditions and coefficients we obtain the generating functions for the well-known sequences as follows:

m	$S_{0}, S_{1}, \ldots, S_{m-1}$	$a_{0}, a_{1}, \ldots, a_{m-1}$	Exponential Generating Functions	Names of sequence
			$e^{q_{2} x}-e^{q_{1} x}$	
2	$S_{0}=0, S_{1}=1$	$a_{0}=1, a_{1}=1$		Fibonacci
2	$S_{0}=2, S_{1}=1$	$a_{0}=1, a_{1}=1$	$e^{q_{2}{ }^{q_{2}}}+e^{q_{1} \chi_{1} x}$	Lucas
2	$S_{0}=0, S_{1}=1$	$a_{0}=1, a_{1}=2$	$e^{e^{q_{2} x}-e^{q_{1} x}}$	Pell
			$e^{q_{2}^{q_{2}}-q^{q_{1} x}}$	
2	$S_{0}=0, S_{1}=1$	$a_{0}=2, a_{1}=1$		Jacobsthal
2	$S_{0}=a, S_{1}=b$	$a_{0}=q, a_{1}=p$	$\underline{\left(a q_{1}-b\right) e^{q_{2}^{q_{2}}-q_{1}}-\left(a q_{2}-b\right) e^{q_{1} x}}$	Horadam
2	$S_{0}=1, S_{1}=t$	$a_{0}=-1, a_{1}=2 t$	$\underline{\left(t-q_{1}\right) e^{q_{2}^{q_{2}}-q_{1}}-\left(t-q_{2}\right) e^{q_{1} x}}$	Chebyshev polynomials
3	$S_{0}=1, S_{1}=1, S_{2}=1$	$a_{0}=1, a_{1}=1, a_{2}=0$	$p_{1} e^{q_{1} x}+p_{2} e^{-e^{q_{2}} q_{1}}+p_{3} e^{q_{3} x}$	Padovan
3	$S_{0}=3, S_{1}=0, S_{2}=2$	$a_{0}=1, a_{1}=1, a_{2}=0$	$e^{q_{1} x}+e^{q_{2} x}+e^{q_{3}{ }^{x}}$	Perrin
3	$S_{0}=0, S_{1}=1, S_{2}=1$	$a_{0}=1, a_{1}=1, a_{2}=1$	$p_{1} e^{q_{1} x}+p_{2} e^{q_{2} x}+p_{3} e^{q_{3} x}$	Tribonacci

1.1. m-Order Linear Recursive Quaternions

A quaternion is defined by

$$
q=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}
$$

where a_{0}, a_{1}, a_{2} and a_{3} are real numbers and $e_{0}=1, e_{1}=i, e_{2}=j$ and $e_{3}=k$ are the standart basis in \mathbb{R}^{4}.
The quaternion multiplication is defined using the rules:

$$
e_{0}^{2}=1, \quad e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1
$$

$$
e_{1} e_{2}=-e_{2} e_{1}=e_{3}, \quad e_{2} e_{3}=-e_{3} e_{2}=e_{1} \quad \text { and } \quad e_{3} e_{1}=-e_{1} e_{3}=e_{2}
$$

This algebra is associative and non-commutative.
Let $q=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$ and $p=b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}$ be any two quaternions. Then the addition and subtraction of them is

$$
q \mp p=\left(a_{0} \mp b_{0}\right) e_{0}+\left(a_{1} \mp b_{1}\right) e_{1}+\left(a_{2} \mp b_{2}\right) e_{2}+\left(a_{3} \mp b_{3}\right) e_{3}
$$

and for $k \in \mathbb{R}$, the multiplication by scalar is

$$
k q=k a_{0} e_{0}+k a_{1} e_{1}+k a_{2} e_{2}+k a_{3} e_{3}
$$

and the conjugate and norm of a quaterion are

$$
\bar{q}=a_{0} e_{0}-a_{1} e_{1}-a_{2} e_{2}-a_{3} e_{3}
$$

and

$$
N(q)=q \bar{q}=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}
$$

Addition, equality and multiplication by scalar of two quaternions can be found $[1,2,5]$.

Definition 1.1. The m-order linear recursive quaternion $\left\{\mathcal{Q} S_{n}\right\}_{n \geq 0}$ is defined by

$$
\begin{equation*}
\mathcal{Q} S_{n}=S_{n} e_{0}+S_{n+1} e_{1}+S_{n+2} e_{2}+S_{n+3} e_{3} \tag{3}
\end{equation*}
$$

where S_{n} is the m-order linear recursive numbers.
Theorem 1.2. The Binet-like formula for the m-order linear recursive quaternion $\left\{\mathcal{Q} S_{n}\right\}_{n \geq 0}$ is

$$
\begin{equation*}
\mathcal{Q} S_{n}=\sum_{r=1}^{m} p_{r} \hat{q_{r}} q_{r}^{n} \tag{4}
\end{equation*}
$$

where $\hat{q_{r}}=e_{0}+q_{r} e_{1}+q_{r}^{2} e_{2}+q_{r}^{3} e_{3}$.
Proof. From the definition of the m-order linear recursive quaternion $\mathcal{Q} S_{n}$ in (3) and Binet-like formula for the m-order linear recursive number S_{n}, we write

$$
\begin{aligned}
\mathcal{Q} S_{n} & =S_{n} e_{0}+S_{n+1} e_{1}+S_{n+2} e_{2}+S_{n+3} e_{3} \\
& =\sum_{r=1}^{m} p_{r} q_{r}^{n} e_{0}+\sum_{r=1}^{m} p_{r} q_{r}^{n+1} e_{1}+\sum_{r=1}^{m} p_{r} q_{r}^{n+2} e_{2}+\sum_{r=1}^{m} p_{r} q_{r}^{n+3} e_{3} \\
& =\sum_{r=1}^{m} p_{r}\left(e_{0}+q_{r}^{1} e_{1}+q_{r}^{2} e_{2}+q_{r}^{3} e_{3}\right) q_{r}^{n} \\
& =\sum_{r=1}^{m} p_{r} \hat{q_{r}} q_{r}^{n}
\end{aligned}
$$

As a special case of the equality (4), the Binet-like formula of Fibonacci quaternions can be given as follows:
For $m=2$, the Binet-like formula for the Fibonacci quaternions will be denoted by

$$
\mathcal{Q} S_{n}=\frac{\hat{q_{2}} q_{2}^{n}-\hat{q_{1}} q_{1}^{n}}{q_{2}-q_{1}}
$$

where q_{1} and q_{2} are the roots of the characteristic equation $x^{2}-x-1=0$ of the Fibonacci sequence $S_{n+2}=S_{n+1}+S_{n}$, and $\hat{q_{1}}=e_{0}+q_{1}^{1} e_{1}+q_{1}^{2} e_{2}+q_{1}^{3} e_{3}, \hat{q_{2}}=e_{0}+q_{2}^{1} e_{1}+q_{2}^{2} e_{2}+q_{2}^{3} e_{3}$. Binet-like formulas of other special quaternion sequences can be obtained in a similar way using (4).

Theorem 1.3. The generating function for m-order linear recursive quaternion $\left\{\mathcal{Q} S_{n}\right\}_{n \geq 0}$ is
$G_{\mathcal{Q} S}(x)=\frac{\left(e_{0} x^{3}+e_{1} x^{2}+e_{2} x+e_{3}\right) G_{S}(x)-\left(S_{0}\left(e_{1} x^{2}+e_{2} x+e_{3}\right)+S_{1}\left(e_{2} x^{2}+e_{3} x\right)+S_{2}\left(e_{3} x^{2}\right)\right)}{x^{3}}$ where $G_{S}(x)$ is the generating function of the m-order linear recursive sequences

Proof. Let

$$
\begin{equation*}
G_{\mathcal{Q} S}(x)=\sum_{n=0}^{\infty} \mathcal{Q} S_{n} x^{n} \tag{5}
\end{equation*}
$$

be generating function of the m-order linear recursive quaternion. We have

$$
\begin{aligned}
G_{\mathcal{Q} S}(x) & =\sum_{n=0}^{\infty}\left(S_{n} e_{0}+S_{n+1} e_{1}+S_{n+2} e_{2}+S_{n+3} e_{3}\right) x^{n} \\
& =e_{0} \sum_{n=0}^{\infty} S_{n} x^{n}+e_{1} \sum_{n=0}^{\infty} S_{n+1} x^{n}+e_{2} \sum_{n=0}^{\infty} S_{n+2} x^{n}+e_{3} \sum_{n=0}^{\infty} S_{n+3} x^{n} \\
& =e_{0} G_{S}(x)+e_{1}\left(G_{S}(x) \frac{1}{x}-\frac{S_{0}}{x}\right)+e_{2}\left(G_{S}(x) \frac{1}{x^{2}}-\frac{S_{0}}{x^{2}}-\frac{S_{1}}{x}\right) \\
& +e_{3}\left(G_{S}(x) \frac{1}{x^{3}}-\frac{S_{0}}{x^{3}}-\frac{S_{1}}{x^{2}}-\frac{S_{2}}{x}\right) \\
& =\frac{\left(e_{0} x^{3}+e_{1} x^{2}+e_{2} x+e_{3}\right) G_{S}(x)-\left(S_{0}\left(e_{1} x^{2}+e_{2} x+e_{3}\right)+S_{1}\left(e_{2} x^{2}+e_{3} x\right)+S_{2}\left(e_{3} x^{2}\right)\right)}{x^{3}}
\end{aligned}
$$

As a special case of the equality (5), the Binet-like formula of Fibonacci quaternions can be given as follows:
For $m=2$, the generating function for the Fibonacci quaternions will be denoted by

$$
G_{\mathcal{Q} S}(x)=\frac{x+e_{1}+e_{2}(x+1)+e_{3}(x+2)}{1-x-x^{2}}
$$

Generating functions of other special quaternion sequences can be obtained in a similar way using (5).

Theorem 1.4. The exponential generating function of the m-order linear recursive quaternions is

$$
\begin{equation*}
E_{S}(x)=\sum_{r=1}^{m} p_{r} \hat{q_{r}} e^{q_{r} x} \tag{6}
\end{equation*}
$$

Proof. Let

$$
E_{S}(x)=\sum_{n=0}^{\infty} \mathcal{Q} S_{n} \frac{x^{n}}{n!}
$$

Using the identity (2), we get

$$
E_{S}(x)=\sum_{n=0}^{\infty} \mathcal{Q} S_{n} \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{r=1}^{m} p_{r} \hat{q_{r}} q_{r}^{n} \frac{x^{n}}{n!}=\sum_{r=1}^{m} p_{r} \hat{q_{r}} \sum_{n=0}^{\infty} \frac{\left(q_{r} x\right)^{n}}{n!}=\sum_{r=1}^{m} p_{r} \hat{q_{r}} e^{q_{r} x}
$$

For $m=2$, the exponential generating function for the Fibonacci quaternions will be denoted by

$$
E_{S}(x)=\frac{\hat{q_{2}} e^{q_{2} x}-\hat{q_{1}} e^{q_{1} x}}{q_{2}-q_{1}}
$$

Exponential generating functions of other special quaternion sequences can be obtained in a similar way using (6).

References

[1] F. Matyas, Sequence transformations and linear recurrences of higher order. Acta Mathematica et Informatica Universitatis Ostraviensis, 2001, v. 9, no 1, 45-51.
[2] F. Gatta, A. D'amico, Sequences H_{n} for which H_{n+1} / H_{n} Approaches the Golden Ratio, 2008.
[3] T. Komatsu, Sequences H_{n} for which H_{n+1} / H_{n} approaches an irrational number, Fibonacci Quaterly, 2010, v. 48, no 3, 265-275.
[4] T. Szakács, K-order Linear Recursive Sequences and the Golden Ratio, Fibonacci Quarterly, 2017, v. 55, 186-191.
[5] F. Matyas, Linear recurrences and rootfinding methods. Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, 2001, v. 28, 27-34.
[6] G. Lee, M. Asci, Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials, Journal of applied mathematics, 2012.
[7] A. Suvarnamani, M. Tatong, Some properties of (p, q)-Fibonacci numbers. Progress in Applied Science and Technology, 2015, v. 5, no 2, 17-21.
[8] A. Ipek, On (p, q)-Fibonacci quaternions and their Binet formulas, generating functions and certain binomial sums. Advances in Applied Clifford Algebras, 2015, v. 27, no 2, 1343-1351.
[9] S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons \& Fractals, 2007, v. 33, no 1, 38-49.
[10] C. Bolat, H. Köse, On the properties of k-Fibonacci numbers, Int. J. Contemp. Math. Sciences, 2010, v. 5, no 22, 1097-1105.
[11] M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers. Applied Mathematics and Computation, 2010, v. 215, no 12, 4456-4461.
[12] P. Catarino, On some identities for k-Fibonacci sequence. Int. J. Contemp. Math. Sci, 2014, v. 9, no 1, 37-42.
[13] A. D. Godase, M. B. Dhakne, On the properties of $k-$ Fibonacci and $k-L u c a s ~ n u m-~$ bers. International Journal of Advances in Applied Mathematics and Mechanics, 2014, v. 2 , no $1,100-106$.
[14] O. Deveci, E. Karaduman, The Pell sequences in finite groups. Util. Math, 2015, v. 96, 263-276.
[15] J. J. Bravo, J. L. Herrera, F. Luca, On a generalization of the Pell sequence. Mathematica Bohemica, 2021, v. 146, no 2, 199-213.
[16] S. H. Jafari-Petroudia, B. Pirouzb, On some properties of $(k, h)-$ Pell sequence and (k, h)-Pell-Lucas sequence. Int. J. Adv. Appl. Math. and Mech, 2015, v. 3, no 1, 98-101.
[17] A. Dasdemir, On the Pell, Pell-Lucas and modified Pell numbers by matrix method. Applied Mathematical Sciences, 2011, v. 5, no 64, 3173-3181.
[18] A. F. Horadam, Jacobsthal representation numbers. significance, 1996, v. 2, 2-8.
[19] M. Tastan, E. Özkan, Catalan transform of the k-jacobsthal sequence. Electronic Journal of Mathematical Analysis and Applications, 2020, v. 8, no 2, 70-74.
[20] F. T. Aydin, On generalizations of the Jacobsthal sequence. Notes on number theory and discrete mathematics, 2018, v. 24, no 1, 120-135.
[21] S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences. Applied Mathematical Sciences, 2015, v. 70, no 9, 3467-3476.
[22] S. Uygun, H. Eldogan, Properties of k-Jacobsthal and k-Jacobsthal Lucas sequences. General Mathematics Notes, 2016, v. 36, no 1, 34pp.
[23] S. Celik, İ. Durukan, E. Özkan, New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers. Chaos, Solitons \& Fractals, 2021, 150, 111173pp.
[24] N. Yilmaz, N. Taskara, Matrix sequences in terms of Padovan and Perrin numbers. Journal of Applied Mathematics, 2013.
[25] A. Faisant, A. On the Padovan sequence. 2013, arXiv preprint arXiv:1905.07702.
[26] D. Tasci, Gaussian padovan and gaussian pell-padovan sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 2018, v. 67 , no $2,82-88$.
[27] R. Sivaraman, Properties of Padovan Sequence. Turkish Journal of Computer and Mathematics Education, 2021, v. 12, no 2, 3098-3101.
[28] R. P. M. Vieira, F. R. V. Alves, P. M. M. C. Catarino, A Historical Analysis of The Padovan Sequence. International Journal of Trends in Mathematics Education Research, 2020, v. 3, no 1, 8-12.
[29] E. W. Weisstein, Perrin sequence. 2021, https://mathworld. wolfram. com/.
[30] K. Khompungson, B. Rodjanadid, S. Sompong, Some matrices in term of Perrin and Padovan sequences. Thai Journal of Mathematics, 2019, v. 17, no 3, 767-774.
[31] O. Diskaya, H. Menken, On the Split $(s, t)-$ Padovan and (s, t)-Perrin Quaternions. International Journal of Applied Mathematics and Informatics, 2019, v. 13, 25-28.
[32] P. J. Larcombe, O. D. Bagdasar, E. J. Fennessey, Horadam sequences: a survey. Bulletin of the Institute of Combinatorics and its, 2017.
[33] P. Haukkanen, A note on Horadam's sequence. Fibonacci Quarterly, 2002, v. 40, no 4, 358-361.
[34] J. C. Mason, D. C. Handscomb, Chebyshev polynomials. Chapman and Hall/CRC, 2002.
[35] T. J. Rivlin, Chebyshev polynomials. Courier Dover Publications, 2020.
[36] H. Merzouk, A. Boussayoud, M. Chelgham, Generating Functions of Generalized Tribonacci and Tricobsthal Polynomials. Montes Taurus Journal of Pure and Applied Mathematics, 2020, v. 2, no 2, 7-37.
[37] Y. Taşyurdu, Tribonacci and Tribonacci-Lucas hybrid numbers. International Journal of Contemporary Mathematical Sciences, 2019, v. 14, no 4, 245-254.
[38] J. L. Cereceda, Binet's formula for generalized tribonacci numbers. International journal of mathematical education in science and technology, 2015, v. 46, no 8, 1235-1243.
[39] Y. Soykan, Tribonacci and tribonacci-Lucas sedenions. Mathematics, 2019, v. 7, no 1, 74 .
[40] N. Yilmaz, N. Taskara, Incomplete Tribonacci-Lucas Numbers and Polynomials. Advances in Applied Clifford Algebras, 2015, v. 25, no 3, 741-753.
[41] L. M. Milne-Thomson, The calculus of finite differences. American Mathematical Soc., 2000.
[42] T. N. Shorey, R. Tijdeman, Exponential diophantine equations, 1986.
[43] E. Kiliç, P. Stanica, A matrix approach for general higher order linear recurrences. Bull. Malays. Math. Sci. Soc., 2011, v. 34, no 1, 51-67.

Orhan Dişkaya
Mersin University, Mersin, Turkey
E-mail: orhandiskaya@mersin.edu.tr
Hamza Menken
Mersin University, Mersin, Turkey
E-mail: orhandiskaya@mersin.edu.tr

Received 12 April 2023
Accepted 25 September 2023

