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Estimates for the abstract Boussinesq equations
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Abstract. This paper obtains the existence and uniqueness of the solution of the integral bound-
ary value problem for the abstract Boussinesq equations. The equations include a linear operator
A defined in a Banach space F, in which by choosing E and A we can obtain numerous classes of
nonlocal initial value problems for Boussinesq equations which occur in a wide variety of physical
systems.
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1. Introduction

The subject of this paper is to study the estimates for solutions of value problems for
the Boussinesq — operator equation

up — Auy + Au = Ag (z,t), x € R", t € (0,T), (1)
T
u(0,z) = p(x) +/0 a(o)u(o,x)do, (2)

T
ut (0,2) =9 (x) + /0 B (o) us (o,2) do,

where A is a linear operator in a Banach space E, a (s) and f3 (s) are measurable functions
on (0,7T), u(z,t) denotes the E — valued unknown function, ¢ (z) and ¢ (x) are the given
initial value functions, n is the dimension of space variable x and A denotes the Laplace
operator in R".

By choosing E and A , integral conditions, we can obtain numerous classis of nonlocal
boundary value problems for generalized Boussinesq type equations which occur in a wide
variety of physical systems, particularly in the propagation of longitudinal deformation
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waves in an elastic rod, hydro — a dynamical process in plasma, in materials science which
describe spinodal decomposition, in the absence of mechanical stresses. For example, if
we choose E = L1(2), 2 € R™, D(A) = Wg’q (2), Au = —Ayu, a =0 and B =0,
we obtain the Cauchy problem for Boussinesq type equation

uy — Auy — Ayu = Ag (z,t), z € R", t € (0,T), (3)
U(O,ZL‘,Z/) :C,D(x,y), Ug (Ovl‘ay) :1/)(51773/) (4)
where
Au-ZaQ,u u(t,z,y), y=(y1,Y2, - -, Ym) € 2.
The equation (3) arises in different situations. For example, equation (3) for n = 1

describes a limit of a one — one-dimensional nonlinear lattice, shallow-water waves and the
propagation of longitudinal deformation waves in an elastic rod.

Here, differential operator equations were studied e.g. in [2-6,8,9,11,12,15,17,18]. Cauchy
problems for abstract hyperbolic equations were treated e.g. in [4]. In this paper, the key
step is the derivation of the uniform estimate for the solutions of the nonlocal boundary
value problems for the linearized Boussinesq equation. Harmonic analysis, the method
of operator theory, interpolation of Banach spaces, and embedding theorems in abstract
Sobolev spaces are the main tools implemented to carry out the analysis.

In order to state our results precisely, we introduce some notations and some function
spaces.

2. Definitions and Background

Let E be a Banach space. LP (§2; E) denotes the space of strongly measurable E —
valued functions that are defined on the measurable subset {2 C R™ with the norm

£l = 1oy = (/ If (@ |Pdm) | <p< oo,

1fll oo = esssup || f ()] -
el

The Banach space E is called an UMD space if the Hilbert operator
f W) dy

le—y|>e T — Y

(Hf) (z) = lim

e—0

is bounded in L? (R, E), p € (1,00) (see e.g. [18]). UMD spaces include e.g. L?,l, spaces
and Lorentz spaces Ly, p,q € (1,00).
Here,

Sy ={AeC, |arg\| <w, 0 <w <7},

L ={A€ESu, |\ > >0}
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Let £ (Ae) denote the space D (Ae) with the graphical norm

gy = (Il + 4%} 1< p < o0, 00 < .

A closed linear operator A in a Banach space E belongs to o (Cp,w, E) (see [4], §11.2) if
D(A) is dense on E, the resolvent (A — )\21)71 exists for ReA > w and

|(a- )\2[)_1HB(E) < ColReA — w| ™!

Here,

Hlal
. o
a=(aj,a,...,ap), D _&U?laa}gz. , o) = Zak
Let Ey and E be two Banach spaces and Ej is continuously and densely embedded into F.
Let © be a domain in R™ and m is a positive integer. WP ({2; Ey, E') denotes the space
of all functions u € LP (£2; Ey) that have the generalized derivatives g:zﬁ‘ eLP(E), 1<
p < oo with the norm

< 0.
LP(E)

HUHWm,p(Q;EO,

8xk
For Ey = E the space W™P(;Ey, E) denotes by W™P(£;E). Here,
H*P (R™ E), —oo < s < oo denotes the E — valued Sobolev space of order s
which is defined as

H*P = H*P (R"E) = (I - A) 1P (R B),

with the norm

[ull s = H(I o A)%u‘ Lr(R™E)

It is clear that H'P (R"; E) = LP (R" E). It is known that if E is a UMD space, then
H™P (R™ E) = W™P (R"; E) for positive integer m. H%? (R™; Ey, E) denotes the Sobolev
— Lions type space, i.e.,

H*? (R", Eo, E) == {u € H? (R E)N LY (R E) , |[ull go(an.iy ) =

= 1[0l oy + 1l g n iy < 2}

S (R™; E) denotes the Schwartz class, i.e., the space of E — valued rapidly decreasing
smooth functions on R", equipped with its usual topology generated by seminorms.
Here,S* (R™; E) denotes the space of all continuous linear operators L : S(R™ E) —
E, equipped with the bounded convergence topology. Recall S (R"; E) is norm dense in
LP (R™ E) when 1 < p < oc.
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Here, s = (s1, 82,...,53), sk > 0 and F denotes the Fourier transform.
Let the operator A be a generator of a strongly continuous cosine operator function in a
Banach space E defined by the formula

Then, from the definition of sine operator — function S (¢)

S(t)u—/o C (o) udo

and it follows that ) )
St u= %A‘é <eitA2 _ e—itAQ) ‘
1

By virtue of [4], [11] we have
Lemma A;. The following estimates hold:

10 @lp <1, [4zs @), <1

In a similar way, as in [1] we obtain
Lemma 1.1. Let

]1+/0Ta<o>5<a>da >/OT<\a<o—>|+w<a>|>da.

Then the operator O defined by

0= [1+/0T/0Ta(0)6(7)d0d7]I—/OT(a(s)+ﬁ(s))C(s)ds

has an inverse O~! and the following estimate is satisfied

-1

T T
107 ey = |1+ [ a5 = [t +1s e as

The embedding theorems in vector-valued spaces play a key role in the theory of DOEs.
For estimating lower-order derivatives we use the following embedding theorem that is
obtained from [12, Theorem 1]:

Theorem A;. Suppose the following conditions are satisfied:

1. E is a UMD space and A is an R — positive operator in E;

2. a=(a1,a9,...,ay) is an — tuples of nonnegative integer number and s is a positive
number such that

1 1 1
w=—|laj+n[-—=)]| <1, 0< u<1—3, 1<p<qg<oo;0<h< hyg,
S p q
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where hg is a fixed positive number;
Then the embedding D*H*? (R"; E(A),E) C L% (R"; E(A'~*7#)) is continuous and for
u € H*P (R"; E(A), E) the following uniform estimate holds

[ D%u ”LQ(R”;E(AP%*H)) < ¥ u”HSm(R”;E(A),E) + h_(l_“)” u”LP(R";E)'

In a similar way , we obtain:
Proposition A;. Let 1 < p < ¢ < oo and E be a UMD space. Suppose ¥, €
C™ (R™\ {0}; B (F)) and there is a positive constant K such that

sup ({1617 G D29 c e o), e o)} ) <

he@

Then ¥, is a uniformly bounded collection of Fourier multiplier from LP (R™; E) to
L1 (R™; E).

Proof. First, in a similar way we show that ¥ is a uniformly bounded collection of

Fourier multiplier from LP (R"; E) to L (R"; FE). Moreover, by Theorem A; we get that,
for s > n (%%) the embedding H*? (R"; E) C L?(R"; E) is continuous. From this two
fact, we obtain the conclusion.
The paper is organized as follows: The first section contains an introduction. In section
2, some definitions and background are given. In section 3, we obtain the existence of a
unique solution and a priory estimate for the solution of the linearized problem (5) — (6).
Sometimes we use one and the same symbol C without distinction to denote positive
constants that may differ from each other even in a single context. When we want to
specify the dependence of such a constant on a parameter, say «, we write Cy.

3. Estimates for the linearized equation.

In this section, we make the necessary estimates for solutions of initial value problems
for the linearized abstract Boussinesq equation

uy — Auy + Au= Ag(x,t), x € R, t € (0,T), (5)
T
u(0,z) = p(x) —I—/O a(o)u(o,x)do, (6)

w00 = 6@+ [ 50)uloa) i
Let
X, =ILP(R%E), Y = H*" (R, F), Y’ = H*? (R"; E)n L' (R"; E),
YEP = H? (R";E) N L™ (R, E).
Condition 3.1. Assume:
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T T
L1+ f @ (0) (o) do| > [ (Ja(o)] + 18(0)]) dor
2. E is a UMD space and linear operator A belongs to o (Co,w, E);
3. p,p e Yl and g (.,t) € Yf for t € (0,T) and s > 5 for 1 <p < oo.

First we need the following lemmas.

Lemma 3.1. Suppose the Condition 3.1 hold. Then the problem (5) — (6) has a unique
generalized solution.

Proof. By using of the Fourier transform we get from (5) — (6)

g (t,€) + Agti (t,€) = |€74 (,€),
T
0(0,6) = 3(6) + / o (o) i (0,¢) do, (7)
0

T
G0.9=T©+ [ @)@ ceR te©.1),
where 4 (t,€) is a Fourier transform of u (z,t) with respect to x, where
—1
Ae = (1 n |§12) A, €€ R™

Consider the problem

@ (1,6) + Acin(1,6) = 162 (1 + 1) 9 (1,9), (5)

ﬂ(oag)ZUO(S)v {Zt(ovg)zul (5)7 éean te (07T)7

where ug (§) € D(A) and uy (§) € D(A%) for £ € R™. By virtue of [4, §11.2, 11.4] we obtain
that A¢ is a generator of a strongly continuous cosine operator function and problem (8)
has a unique solution for all £ € R™, moreover, the solution can be written as

a(t,f) = C(tvfaA) Uuo (g) + S(tvfaA) U1 (g) +

t -1
+ [ s -re e (1+1) atredn te©.1), 0

where C'(t,£, A) is a cosine and S (t,£, A) is a sine operator — function (see e.g. [4])
generated by parameter dependent operator A¢. Using formula (9) and nonlocal boundary
condition

T
uo<s>=@<5>+/0 0 (0)d(0,€) do
we get

T
uo (€) = 3(6) + /O 0 (0)[C (0,6, A)ug (€) + 8 (€, A) un (€) +
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+ [ 8- re MR (1416F) 9 ar] o, 7 0.1),
0

Then,

[I—/OTa(a)C(a,f,A)uo(g)da] up (§) — [/OTa(U)S(o,f,A)uo(é“)da uy (§) =

T ro -1
- [ a@s@-realer(1+67) arodrire 360 (o)

Differentiating both sides of formula (9) with respect to ¢ we obtain

g (t,§) = —AS (1, €, A)ug (§) + C (£,&, A) ur (§) g+

t _
+ [ Ctu=re el (1+1) arear te ©0.1).

Using this formula and integral condition

we obtain

C(0,&A) = / B(o)[—AS (0,, A)ug (&) + C (0,8, A)ug (&) +

+
h

Co—r1¢ A ( +|§12)1g(7,§)d7] do

Thus,

[} s asee a1 [T 5010061 @] 6) -

T ro -1 ~
= [ [ p@ce-rean(1+1e) g draor i,

Now, we have a system of equations (10) and (11) for ug (£) and uy (§). The determinant
of this system O(§) is
a11(§)  n2(§)

D(&) = az () a(f)

)

where



0421 / B AS (0 f A) da a22 =1- / ,3 U f A)
Then by using the properties
[C(0,A)C(1,A) + AS (0, A) S (1, A)] =

of sine and cosine operator functions [4, §11.2, 11.4] we obtain

T
D(E)=1- /0 [ (0) + ()] C (0)do+

/ / C (0,6, A)C (1.6, A) + AS (0, €, A) § (7, €, A)]dodr —

=1- /0[() da+// rydodr = O (€).

Solving the system (10) — (11), we get

w0 (€) {[ / B(0)C (0,6, A) da] f1+/Ta(a)S(a,§,A)daf2} (12)

and

w@ =0 |- | D () Cloe ) io] 1o~ [ " B(0) AcS (0,6, 4) iofi} (1

where
= [ [ @56 -ne i (1+167) s aras + 0.
p=[ [s000-reair(+e) smaii i@,

From (9), (12) and (13) we get that, the solution of the problem (8) can be expressed
as

a(t,&) =071 (¢ { (t,&, A) [( / B (o) C (0,¢,A) da) fl—i—/OTa(a)S(a,f,A)dafg}—i—

15 (1,6, A) [(I—/OTa<a>c<a,s,A>da> f2—/OTB(G)AgS(a,f,A)dafl]}+

¢ -1
+/0 S(t—7’,£,A)\§|2<1—|—|£\2) g(r,&)dr, t€(0,T). (15)
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Taking into account (14) we obtain from (15) that there is a generalized solution of the
problem (5) — (6) which given by

u(z,t) =51 (t,A) o (x) + S2(t, A) Y (z) + & (t,x), (16)

where S; (t, A) and Sy (¢, A) are linear operator functions in E defined by

st ae=n [ oo glocen (1- [ sceenis)-

—AcS (0,6, A)do] 0 (£) dE},

(1- [ s@cen-1soenis) s 17)
20 =+ [ o @ [ se-neae?(1+167) o re it

[ (£, A ( /5 a,§Ada)+St§A/[3’ A§S(05A)da}gl(g)+

+|C(t,&A) Ta(a)S(a,E,A) do+
0

s (- [ Toz(a)c(o@,mdo)} n (@)} de

= /T /Ua(o> S(o—m.& AP (1+ r&lQ)*lg (7,€) drdo, (18)
0 0

here

- /T /0/3(0)0(0 — 76 AP (1+ 15\2)_1g (7,€) drdo.
0 0

Lemma 3.2. Suppose the Condition 3.1 hold. Then the solution of the problem (5) — (6)
satisfies the following estimate

(lullx, + lluell ) < C (lellyer +llelx, + 1llyer + ¥, +
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+ [ (gl + HAg<.,T>|rX1)dT) 19)

uniformly in 0 € [0, 7.
Proof. Let N € N and

[1,={c:cerjg <Ny, [[, ={e:ce R el > N}

It is clear to see that

||U( )HLOO R™;E) HF u 57 HLoo R™:E) HF IC 3 5 A HX

HETs e AP, <IF00EDSON oy, eyt

+HF—15(t,§,A)$(§)H +FC (e, A) G +

LOO(H E HLOOHN )

+HF*15 <t7§’A)TZ(§)HL°°(H/N;E)’

[Frewe e HL"" (I'wiE) © HF1S(t’€’A)$(£)HLW(H’N;E) -

_l’_

_ HF_1<1+‘§|2)‘§C(t,§,A) (1+|£\2)%s3(§) L= (IT wiE)

+HF1<1 FIeP) Fs e ) (14 167) 0

Lo (HIN;E).

Using Holder inequality we have

|E71C (4.6 ) B o ryim +||F 5 60D C [llell, +l19lx,] -

(21)
By using the resolvent properties of operator A, representation of C' (t,&, A), S (t,&, A)

we get
D [(1 + |£2)_20(t,f,A>]

D~ [(1 + \£|2)7%S (t,g,A)]

for s > % and all @ = (aj,00,...,0p), ap € {0,1}, £ € R", £ # 0, t €
[0,7]. By Proposition A; from (22) we get that, the operator — valued functions

LTIy E)

€[l < (1,

B(E)

€|l

< Oy, (22)
B(E)
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(1 + ]§\2>_§C (t,&,A), (1 + \§|2>_§S (t,€, A) are LP (R"; E) — L (R™; E) Fourier mul-
tipliers uniformly in ¢ € [0,7]. Then by Minkowski’s inequality for integrals, the semi-
groups estimates and (20) we obtain

|F1C (46 ) B ()| oy my | F S (16, D ) Cllellyen + 1¥llyes).

(23)

L~(IT'n E)

By reasoning as the above we get

e [[s-memaen

<c / 1AG (o )llyer + 149 (7)1 ) dr. (24)

By differentiating, in view of (10) we obtain from (9) the estimate of type
(21), (23), (24) for us. Then by using the estimates (20), (21), (23) we get the esti-
mate (19).

Lemma 3.3. Assume the Condition 3.1 hold. Then the solution of the problem (5) —
— (6) satisfies the following uniform estimate

t
(lullyse + lutllysp) < C (Ilwllys,p + 9lly e +/0 IIAg(-,T)Hys,pdT) - (25)

<
XP

Proof. From (8) we have the following estimate

(H (1+1eP)al + HF1(1 +ie?)

<C {HF—1(1 + \§|2>%C(t,£,A) sl + HF—l(l + |§12)%s (1,6, A

+/0t . dr}. (26)

By properties of operator — valued functions C (¢,§,A4), S(¢t,§,A) and in view of
Proposition A; we get C (t,£,A), S(t,&, A) are LP (R™; E) uniform Fourier multipliers.
So, the estimate (26) by using the Minkowski’s inequality for integrals implies (25).
From Lemmas 3.1 - 3.3 we obtain
Theorem 3.1. Let the Condition 3.1 hold. Then the problem (5) — (6) has a unique
solution u € C® ([0, T7];Y;>") and the following estimates holds

Xp

Xp

foa (1 + |§12)§S (t—7,6A)§(.\T)

(lullx, + lluellx.) <

t
<C <||90Hys,p + llellx, + 19llysr + 191, +/0 Ag ()llyaw + 1A (5 7)llx,) dT) ,
(27)
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t
(lullyse +llutllysr) < C (lelw,p + 19l sr +/0 1Ag (.,T)Hw,pd7> (28)

uniformly in ¢ € [0, 7.

Proof. From Lemma 3.1 we obtain that, problem (5) — (6) has a unique gener-
alized solution. From the representation of solution (9) and Lemma 3.2, 3.3 we have
ue C? ([0,T];Y;"?) and estimates (27), (28) hold.
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