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Generalized discrete Kneser’s Theorems

Yaşar Bolat

Abstract. As is known, qualitative analysis of the solutions of difference equations has a growing
interest in the last three decade. In thes qualitative analysis, Kneser’s Theorem has the large loca-
tion. In this work, we generalize discrete Kneser’s Theorem using generalized difference operators
∆a = E−aI and ∆a = Ea−I where E is forward shift operator and I is identity operator in order
to assist in qualitative analyzing of difference equations involving generalized difference operators
and give some new results. Also we give some examples to illustrate the results.
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1. Introduction

We know that just by observing, some precise and accurate results to produce for real-
life problems which depanding on time-variables or other parameters is not possible. The
only way it would be possible to use mathematics. By this way when modeling the real
life problems reveal difference equations or differential equations. The majority of these
equations are nonlinear equations. As is known there is no general method for obtaining
analytical solutions of nonlinear difference equations and differential equations. Therefore
trying to learn about the behavior (especially oscillation, stability, asymptotic behavior
etc.) of the solution is more important than to obtain its analytical solutions. Qualitative
analysis of the difference equations and differential equations has a growing interest in the
last thirty years. In particular, examination of the behavior of difference equations involv-
ing generalized difference operator has become one of the most attractive areas in the last
decade. For some examples see references [1, 2, 3, 4]. Kneser’s Theorem [11, 12] (discrete
or continuous) has great importance to obtain concerning results with the behavior of the
solutions of high order linear or nonlinear difference equations and differential equations
[4, 5, 6, 7, 8, 9, 10]. Therefore, we generalize the Discrete Kneser’s Theorem in order
to assist in qualitative analyzing of difference equations involving generalized difference
operators.

http://journalcam.com 55 © 2011 JCAM All rights reserved.



2. Main results

Lemma 2.1. Let a ∈ R, uk and vk any two function defined on Z and define generalized
difference operator ∆a as ∆ayk = yk+1 − ayk. Then we have

∆a(uk.vk) = vk+1∆auk + uk∆avk + (a− 1)ukvk+1

and

∆a(
uk
vk

) =
vk∆auk − uk∆avk − a(a− 1)ukvk

vkvk+1
, vk ̸= 0.

Proof. It is very easy to prove, therefore we omit it in here.

Lemma 2.2. Let a ∈ R+, un and vn any two function defined on Z and define generalized
difference operator ∆a as ∆ayn = yn+a − yn. Then we have

∆a(un.vn) = vn+a∆aun + un∆avn

and

∆a(
un
vn

) =
vn∆aun − un∆avn

vnvn+a
, vn ̸= 0.

Proof. The proof is easy. Therefore we omit it in here.

Lemma 2.3. Let a ∈ Z+ and define generalized difference operator ∆a as in Lemma 2.2.
Then

n−a∑
i=n1

∆ayi = (I + E−1 + · · ·+ E−a+1)yn − (I + E + · · ·+ Ea−1)yn1,

where the operators Es and E−s are forward and backward shift operators respectively and
defined as E±syn = yn±s, s ∈ N, and E1 = E.

Proof. It is very easy to prove, therefore we omit it in here.

Lemma 2.4. Let 1 ≤ a ∈ Z+, 1 ≤ m ≤ n − 1 and zk be defined on Nk0. Define
∆azk = zk+1 − azk and ∆m

a = ∆a(∆
m−1
a ). Then;

i. lim infk→∞∆m
a zk > 0 implies that limk→∞∆i

azk = ∞,

ii. lim supk→∞∆m
a zk < 0 implies that limk→∞∆i

azk = −∞.

Proof. (i) If lim infk→∞∆m
a zk > 0 then we can find a sufficiently large k1 ∈ Nk0 = {k0, k0+

1, ...}, k0 ∈ N, such that ∆m
a zk ≥ c > 0 for all k ∈ Nk1 . Summing up ∆m

a zk from k1 to
k − 1 we have

k−1∑
l=k1

∆m−1
a zl+1 = a

k−1∑
l=k1

∆m−1
a zl +

k−1∑
l=k1

∆m
a zl. (1)
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Since ∆m
a zk = ∆m−1

a zk+1 − a∆m−1
a zk > 0 and ∆m−1

a zk+1 > a∆m−1
a zk, from (1) we have

∆m−1
a zk

k−1∑
l=k1

(
1

a
)l >

k−1∑
l=k1

∆m−1
a zl+1

= a
k−1∑
l=k1

∆m−1
a zl +

k−1∑
l=k1

∆m
a zl

> a∆m−1
a zk1

k−1∑
l=k1

al + c(k − k1)

that is,
ak − 1

(a− 1)ak−1
∆m−1

a zk > a
ak − 1

a− 1
∆m−1

a zk1 + c(k − k1)

or

∆m−1
a zk > ak∆m−1

a zk1 + c(
a− 1

a
)(

1

1− 1
ak

)(k − k1) → ∞

as k → ∞. Hence it follows that limk→∞∆m−1
a zk = ∞. The rest of the proof can be made

by induction. The case (ii) can be made by the same way.

Lemma 2.5. Let 1 ≤ a ∈ Z+, 1 ≤ m ≤ n − 1 and zk be defined on Nk0. Define
∆azk = zk+a − zk and ∆m

a = ∆a(∆
m−1
a ) Then;

i. lim infk→∞∆m
a zk > 0 implies that limk→∞∆i

azk = ∞,
ii. lim supk→∞∆m

a zk < 0 implies that limk→∞∆i
azk = −∞.

Proof. (i) If lim infk→∞∆m
a zk > 0 then we can find a sufficiently large k1 ∈ Nk0 such that

∆m
a zk ≥ c > 0 for all k ∈ Nk1 . Summing up ∆m

a zk from k1 to k−a by Lemma 2.3 we have

k−a∑
k1

∆m
a zk =

k−a∑
k1

∆a(∆
m−1
a )zk (2)

=
k−a∑
k1

(Ea − I)(∆m−1
a )zk

=
(
∆m−1

a

)
(I + E−1 + · · ·+ E−a+1)zk

−
(
∆m−1

a

)
(I + E + · · ·+ Ea−1)zk1

≥ c(k − k1).

Threfore from (2) we can write(
∆m−1

a

)
(I + E−1 + · · ·+ E−a+1)zk ≥

(
∆m−1

a

)
(I + E + · · ·+ Ea−1)zk1 + c(k − k1) → ∞

as k → ∞. Hence it follows that limk→∞∆m−1
a zk = ∞. The rest of the proof can be made

by the mathematical induction way. The case (ii) can be made by the same way.
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Lemma 2.6. Let a ∈ R+, 1 ≤ m ≤ n− 1 and zk be defined on Ra = {0, a, 2a, ...}. Define
∆azk = zk+a − zk and ∆m

a = ∆a(∆
m−1
a ) Then;

i. lim infk→∞∆m
a zk > 0 implies that limk→∞∆i

azk = ∞,

ii. lim supk→∞∆m
a zk < 0 implies that limk→∞∆i

azk = −∞.

Proof. lim infk→∞∆m
a zk > 0 implies that there exists a large k1 ∈ Ra such that ∆m

a zk ≥
c > 0 for all k ∈ Rk1 . Summing up ∆m

a zk we have (from k1 to k − a)

k−a∑
j=k1

∆m
a zj =

k−a∑
j=k1

∆a(∆
m−1
a )zj = (∆m−1

a )zka − (∆m−1
a )zak1 ≥ c(k − k1). (3)

Threfore from (3) we can write

(∆m−1
a )zk ≥ (∆m−1

a )zk1 + c(k − k1) → ∞

as k → ∞. Hence it follows that limk→∞∆m−1
a zk = ∞. The rest of the proof can be made

by the mathematical induction way. The case (ii) can be made by the same way.

Firstly we give the following generalized discrete Kneser’s Theorem by defining gener-
alized forward difference operator ∆a as ∆azk = zk+1 − azk.

Theorem 2.7. (First Generalized Discrete Kneser’s Theorem). Let 1 ≤ a ∈ R+, zk be
defined on Nk0, and zk > 0 with ∆n

azk of not identically zero and constant sign on Nk0

.Hence, exists an integer m, 0 ≤ m ≤ n with n+m even for ∆n
azk ≥ 0 or odd for ∆n

azk ≤ 0
and such that

(i) m ≥ 1 implies that ∆i
azk > 0, k ∈ Nk0, 1 ≤ i ≤ m− 1,

(ii)m ≤ n− 1 implies that (−1)m+i∆i
azk > 0, k ∈ Nk0, m ≤ i ≤ n− 1.

Proof. We need to consider two cases:

Case 1. ∆n
azk ≤ 0 on Nk0 . First of all, we will prove that ∆n−1

a zk > 0 on Nk0 . On
the contrary, suppose that we can find a k1 ≥ k0 in Nk0 such that ∆n−1

a zk1 ≤ 0. Since
∆n

azk = ∆n−1
a zk+1−a∆n−1

a zk ≤ 0 on Nk0 , we have ∆
n−1
a zk1+1 ≤ a∆n−1

a zk1 ≤ 0. Therefore
we can write

· · · ≤ ∆n−1
a zk1+s ≤ a∆n−1

a zk1+s−1 ≤ · · · ≤ as−1∆n−1
a zk1+1 ≤ as∆n−1

a zk1 ≤ 0, (4)

s ∈ N. Considering ∆n−1
a zk is not identically constant, from (4) by Lemma 2.4 we find

limk→∞∆i
azk = −∞ and thus we have limk→∞ zk = −∞ which is a contradiction to

zk > 0. Hence, ∆n−1
a zk > 0 on Nk0 and we can find a sufficiently small integer m such

that 0 ≤ m ≤ n− 1 with n+m odd and

(−1)m+i∆i
azk > 0 on Nk0 , m ≤ i ≤ n− 1. (5)

Now let m > 1 and

∆m−1
a zk < 0 on Nk0 , (6)
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then again from Lemma 2.4 it follows that

∆m−2
a zk > 0 on Nk0 . (7)

From inequalities (5)-(7), we have

(−1)(m−2)+i∆i
azk > 0 on Nk0 , m− 2 ≤ i ≤ n− 1

which is a contradiction to the defination of m. Therefore, (6) fails and ∆m−1
a zk ≥ 0 on

Nk0 . Considering (4) and (6), thus we have limk→∞∆m−1
a zk > 0. If m > 2, we obtain from

Lemma 2.4 that limk→∞∆i
azk = ∞, 1 ≤ i ≤ m − 1. Hence, ∆i

azk > 0 for all sufficiently
large k ∈ Nk0 , 1 ≤ i ≤ m− 1.

Case 2.∆n
azk ≥ 0 on Nk0 . Assume that there exists a k3 ∈ Nk2 such that ∆n−1

a zk3 ≥ 0,
then since ∆n−1

a zk+1 ≥ a∆n−1
a zk and not identically constant, there exists a k4 ∈ Nk3

such that ∆n−1
a zk > 0 for all k ∈ Nk4 . Hence, limk→∞∆n−1

a zk > 0 and from Lemma 2.4
limk→∞∆i

azk = ∞, 1 ≤ i ≤ n−2 and therefore ∆i
azk > 0 for all sufficiently large k in Nk0 ,

1 ≤ i ≤ n − 1. The proof of theorem is completed for m = n. In the case of ∆n−1
a zk < 0

for all k ∈ Nk0 , we obtain from Lemma 2.4 that ∆n−2
a zk > 0 for all k ∈ Nk0 . The rest of

the proof can be made by the same way in Case 1.

Theorem 2.8. Let zk > 0(< 0) be defined on Nk0, a ∈ R− and ∆n
azk is not identically

zero and with constant sign on Nk0. Then

∆i
azk > 0(< 0), 0 ≤ i ≤ n.

Proof. Assume that zk > 0 on Nk1 for k1 ≥ k0 , without loss of generality (When zk < 0
can be proved in similar manner). Now, we will prove that ∆i

azk > 0 on Nk0 , 1 ≤ i ≤ n
(one can prove by the similar way to the case of ∆i

azk < 0 on Nk0 , 1 ≤ i ≤ n).We assume
the contrary, then we can find a k1 ≥ k0 in Nk0 and any i, 1 ≤ i ≤ n, such that ∆i

azk > 0
but ∆i+1

a zk ≤ 0 on Nk1 . Then we have

∆i
azk∆

i+1
a zk ≤ −c < 0, c ∈ R+, (8)

on Nk1 . Summing up (8) from k1 to k − 1 we obtain

k−1∑
l=k1

∆i
azl∆

i+1
a zl ≤ −c(k − k1). (9)

Get ∆i
azl = ul > 0 and ∆i+1

a zl = ∆aul ≤ 0. By Lemma 2.1 we have

k−1∑
l=k1

ul∆aul =
k−1∑
l=k1

∆a(ul.ul)−
k−1∑
l=k1

ul+1∆aul −
k−1∑
l=k1

(a− 1)ulul+1 (10)

= uk−1uk−1 − auk1vk1 + (1− a)
k−1∑
l=k1

ul+1ul+1
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−
k−1∑
l=k1

ul+1∆aul −
k−1∑
l=k1

(a− 1)ulul+1

= u2k−1 − au2k1 +
k−1∑
l=k1

ul+1(ul − aul+1).

From (9) and (10) we obtain

k−1∑
l=k1

ul∆aul = u2k−1 − au2k1 +
k−1∑
l=k1

ul+1(ul − aul+1) ≤ −c(k − k1)

which contradicts with the fact that u2k−1 − au2k1 +
∑k−1

l=k1
(ulul+1 − au2l+1) > 0. So, our

assumption ∆i+1
a zk ≤ 0 fails and ∆i+1

a zk > 0 on Nk1 . Hence we reach ∆i
azk > 0 on Nk1 ,

0 ≤ i ≤ n. Proof is complete.
Also the proof can be made by mathematical induction method. Since a < 0, ∆azk =

zk+1 − azk > 0 on Nk1 for i = 1, ∆2
azk = ∆a(∆azk) = ∆azk+1 − a∆azk > 0 on Nk1 for

i = 2, and so continued we obtain ∆i
azk > 0 on Nk1 for i = n.

Secondly we give generalized the following discrete Kneser’s Theorems by defining
generalized forward difference operator ∆a as ∆azk = zk+a − zk.

Theorem 2.9. (Second Generalized Discrete Kneser’s Theorem). Let a ∈ Z+, zk > 0 be
defined on Nk0, and ∆n

azk is not identically zero and with constant sign on Nk0 . Then,
exists an integer m, 0 ≤ m ≤ n with n+m odd for ∆n

azk ≤ 0 or n+m even for ∆n
azk ≥ 0

and such that
(i) m ≥ 1 implies that ∆i

azk > 0, k ∈ Nk0, 1 ≤ i ≤ m− 1,
(ii)m ≤ n− 1 implies that (−1)m+i∆i

azk > 0, k ∈ Nk0, m ≤ i ≤ n− 1.

Proof. We need to consider two cases:
Case 1. ∆n

azk ≤ 0 on Nk0 . First of all, we will prove that ∆n−1
a zk > 0 on Nk0 .

On the contrary, suppose that we can find a k1 ≥ k0 in Nk0 such that ∆n−1
a zk1 ≤ 0.

Since ∆n
azk = ∆n−1

a zk+a ≤ ∆n−1
a zk ≤ 0, that is, ∆n−1

a zk is decreasing and not identically
constant on Nk0 , wecan find a k2 ∈ Nk1 such that ∆n−1

a zk ≤ ∆n−1
a zk2 < ∆n−1

a zk1 for
all k ∈ Nk2 . But by the Lemma 2.5 we see that limk→∞∆i

azk = −∞ and thus we have
limk→∞ zk = −∞ which is a contradiction to zk > 0. Hence, ∆n−1

a zk > 0 on Nk0 and there
exists a smallest integer m such that 0 ≤ m ≤ n− 1 with n+m odd and

(−1)m+i∆i
azk > 0 on Nk0 , m ≤ i ≤ n− 1. (11)

Now let m > 1 and
∆m−1

a zk < 0 on Nk0 , (12)

then again from Lemma 2.5 it follows that

∆m−2
a zk > 0 on Nk0 . (13)
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From inequalities (11)-(13), we have

(−1)(m−2)+i∆i
azk > 0 on Nk0 , m− 2 ≤ i ≤ n− 1

which is a contradiction to the defination of m. Therefore, (12) fails and ∆m−1
a zk ≥ 0 on

Nk0 . From (12), ∆m−1
a zk is increasing and limk→∞∆m−1

a zk > 0. If m > 2, we obtain from
Lemma 2.5 that limk→∞∆i

azk = ∞, 1 ≤ i ≤ m − 1. Hence, ∆i
azk > 0 for all sufficiently

large k ∈ Nk0 , 1 ≤ i ≤ m− 1.
Case 2.∆n

azk ≥ 0 on Nk0 . Assume that there exists a k3 ∈ Nk2 such that ∆n−1
a zk3 ≥ 0,

then since ∆n−1
a zk+1 ≥ a∆n−1

a zk and not identically constant, there exists some k4 ∈ Nk3

such that ∆n−1
a zk > 0 for all k ∈ Nk4 . Thus, limk→∞∆n−1

a zk > 0 and from Lemma 5
limk→∞∆i

azk = ∞, 1 ≤ i ≤ n−2 and hence ∆i
azk > 0 for all large k in Nk0 , 1 ≤ i ≤ n−1.

The proof of theorem is completed for m = n. In the case ∆n−1
a zk < 0 for all k ∈ Nk0 , we

find from Lemma 2.5 that ∆n−2
a zk > 0 for all k ∈ Nk0 . The rest of the proof can be made

by the same way in Case 1.

Theorem 2.10. Let a ∈ R+, zk > 0 be defined on Rk0, and ∆n
azk is not identically zero

and with constant sign on Rk0 . Then, exists an integer m, 0 ≤ m ≤ n with n + m
odd for ∆n

azk ≤ 0 or n + m even for ∆n
azk ≥ 0 and such that m ≤ n − 1 implies that

(−1)m+i∆i
azk > 0, k ∈ Rk0, m ≤ i ≤ n − 1, m ≥ 1 implies that ∆i

azk > 0, k ∈ Rk0,
1 ≤ i ≤ m− 1.

Proof. We need to consider two cases:
Case 1. ∆n

azk ≤ 0 on Rk0 . First of all, we will prove that ∆n−1
a zk > 0 on Rk0 . On

the contrary, suppose that we can find a k1 ≥ k0 in Rk0 such that ∆n−1
a zk1 ≤ 0 on Rk1 .

Since ∆n
azk = ∆n−1

a zk+a ≤ ∆n−1
a zk ≤ 0, that is, ∆n−1

a zk is decreasing and not identically
constant on Rk1 , there exists k2 ∈ Rk1 such that ∆n−1

a zk ≤ ∆n−1
a zk2 < ∆n−1

a zk1 for
all k ∈ Rk2 . But by the Lemma 2.6 we obtain limk→∞∆i

azk = −∞ and thus we have
limk→∞ zk = −∞ which is a contradiction to zk > 0. Hence, ∆n−1

a zk > 0 on Rk0 and there
exists a smallest integer m, 0 ≤ m ≤ n− 1 with n+m odd and

(−1)m+i∆i
azk > 0 on Rk0 , m ≤ i ≤ n− 1. (14)

Next let m > 1 and
∆m−1

a zk < 0 on Rk0 , (15)

then again from Lemma 2.6 it follows that

∆m−2
a zk > 0 on Rk0 . (16)

From inequalities (14)-(16), we have

(−1)(m−2)+i∆i
azk > 0 on Rk0 , m− 2 ≤ i ≤ n− 1

which is a contradiction to the defination of m. Therefore, (15) fails and ∆m−1
a zk ≥ 0 on

Rk0 . From (15), ∆m−1
a zk is increasing and limk→∞∆m−1

a zk > 0. If m > 2, we obtain from
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Lemma 2.6 that limk→∞∆i
azk = ∞ 1 ≤ i ≤ m − 1. Hence, ∆i

azk > 0 for all sufficiently
large k ∈ Rk0 , 1 ≤ i ≤ m− 1.

Case 2.∆n
azk ≥ 0 on Rk0 . Let k3 ∈ Rk2 be such that ∆n−1

a zk ≥ 0, then since
∆n−1

a zk+1 ≥ a∆n−1
a zk and not identically constant, there exists some k4 ∈ Rk3 such

that ∆n−1
a zk > 0 for all k ∈ Rk4 . Thus, limk→∞∆n−1

a zk > 0 and from Lemma 2.6
limk→∞∆i

azk = ∞, 1 ≤ i ≤ n − 2 and so ∆i
azk > 0 for all large k in Rk0 , 1 ≤ i ≤ n − 1.

The proof of theorem is completed for m = n. In the case of ∆n−1
a zk < 0 for all k ∈ Rk0 ,

we obtain from Lemma 2.6 that ∆n−2
a zk > 0 for all k ∈ Rk0 . The rest of the proof can be

made by the same way in Case 1.

Following examples (1 − 4) are for the operator ∆a = E − aI where a ∈ N, examples
(5 − 7) are for the operator ∆a = Ea − I where a ∈ N and examples (8, 9) are for the
operator ∆a = Ea − I where a ∈ R:

Example 2.11. Let a = 3. Consider the function zk = k(k−1)ak

2a2
− k2 > 0. zk be defined

on N2, and ∆n
azk is not identically zero and with constant sign on N2. Hence all the

conditions of theorem 2.7 are satisfied. Really for m = 3, ∆azk > 0, ∆2
azk > 0, and

(−1)i+3∆i
azk > 0, m = 3 ≤ i ≤ n− 1.

Example 2.12. Let a = 2. Consider the functions zk = k > 0 or zk = 1
k > 0, k ∈ N.

Then (−1)i∆i
azk > 0 for large k ∈ N, 0 ≤ i ≤ n− 1. Hence all the conditions of Theorem

2.7 are satisfied.

Example 2.13. Let 1 < a < e. Consider the function zk = ek. ∆i
azk > 0 for all k ∈ N,

0 ≤ i ≤ n. Really ∆azk = ∆ae
k = ek+1 − aek = ek(e− a) > 0, ∆2

ae
k = (e− a)2ek > 0, ...,

∆i
ae

k = (e− a)iek > 0.

Example 2.14. Let a < 0. Consider the function zk = k2k ∈ N. Then ∆azk = ∆ak
2 =

(k + 1)2 − (−3)k2 = 4k2 + 2k + 1 > 0, ∆2
ak

2 = ∆a(4k
2 + 2k + 1) = 16k2 + 16k + 6 > 0,

..., ∆i
ak

2 > 0, 1 ≤ i ≤ n. Hence all the conditions of Theorem 2.8 are satisfied.

Example 2.15. Let a = 2. Consider the function zk = k3 − 1
k > 0, k ∈ Z+. ∆n

azk is not
identically zero and with constant sign on Z+ . Then, exists an integer m, 0 ≤ m ≤ n
with n + m odd for ∆n

azk ≤ 0 and such that m ≤ n − 1 implies that (−1)m+i∆i
azk > 0,

k ∈ Z+, m ≤ i ≤ n− 1, m ≥ 1 implies that ∆i
azk > 0, k ∈ Z+, 1 ≤ i ≤ m− 1. Really for

m = 3, ∆azk > 0, ∆2
azk > 0, ∆3

azk > 0, and (−1)i+3∆i
azk > 0, m = 3 ≤ i ≤ n− 1. Hence

all the conditions of Theorem 2.9 are satisfied.

Example 2.16. Let a = 3. Consider the function zk = k3 + 1
k > 0, k ∈ Z+. ∆n

azk is not
identically zero and with constant sign on Z+ . Then, exists an integer m, 0 ≤ m ≤ n with
n+m even for ∆n

azk ≥ 0 and such that m ≤ n−1 implies that (−1)m+i∆i
azk > 0, k ∈ Z+,

m ≤ i ≤ n− 1, m ≥ 1 implies that ∆i
azk > 0, k ∈ Z+, 1 ≤ i ≤ m− 1. Really for m = 4,

∆azk > 0, ∆2
azk > 0, ∆3

azk > 0, ∆4
azk > 0 and (−1)i+4∆i

azk > 0, m = 4 ≤ i ≤ n − 1.
Hence all the conditions of Theorem 2.9 are satisfied.
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Example 2.17. Let a = 4. Consider the function zk = 2k, k ∈ Z+. m ≥ 1 implies
∆i

azk > 0 for all large k ∈ Z+, 1 = m ≤ i ≤ n. Hence all the conditions of theorem 2.9
are satisfied.

Example 2.18. Let a = 2
√
2. Consider the function zk = k4 + 1

k , k ∈ R+. zk > 0 is
not identically zero and with ∆n

azk of constant sign on R+ . Hence all the conditions of
theorem 2.10 are satisfied. Really for m = 5, ∆azk > 0, ∆2

azk > 0, ∆3
azk > 0, ∆4

azk > 0,
∆5

azk > 0 and (−1)i+5∆i
azk > 0, m = 5 ≤ i ≤ n− 1.

Example 2.19. Let a = 3
4 . Consider the function zk = 3k, k ∈ R+. m ≥ 1 implies

∆i
azk > 0 for all large k ∈ R+, 1 = m ≤ i ≤ n. Hence all the conditions of theorem 2.10

are satisfied.
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