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Abstract. The Schrödinger equation with a linearly increasing potential is considered. Using
transformation operators, we obtain representations of solutions of this equation with conditions
at infinity. Estimates for the kernels of the transformation operators are obtained.
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1. Introduction and main result

In many aspects of the theory of inverse problems of spectral analysis, an important
role is played by so-called transformation operators (see [1]-[10] and the references therein).
These operators arose from the general ideas of the theory of generalized shift operators
created by Delsarte [1]. For arbitrary Sturm–Liouville equations, transformation operators
were constructed by Povzner [2]. Marchenko [3] used transformation operators for studying
inverse spectral problems and the asymptotic behavior of the spectral function of the
singular Sturm–Liouville operator. Levin [4] introduced transformation operators of a
new form that preserve the asymptotic expansions of solutions at infinity. Marchenko [3]
used them to solve the inverse problem of scattering theory. Similar problems for the
Schrodinger equation with unbounded potentials were considered in [5]-[9].

We consider the differential equation

−y′′ + θ (x)xy + q (x) y = λy, −∞ < x <∞, λ ∈ C, (1)

where θ (x) is Heaviside function, i.e.

θ (x) =

{
1, x ≥ 0,
0, x < 0

and the real potential q (x) satisfies the conditions

q (x) ∈ C (−∞,+∞) ,

∞∫
−∞

|xq (x)| dx <∞. (2)
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In the present paper, using transformation operators, we obtain representations of
solutions of this equation with conditions at infinity. The results obtained can be used
to solve inverse spectral problems for an equation (1). Note that for x ≥ 0, equation (1)
turns into the one-dimensional Stark equation. Some questions of the spectral theory of
the one-dimensional Stark equation were studied in [10]- [12].

2. The transformation operators

In what follows, we deal with special functions satisfying the Airy equation

−y′′ + zy = 0.

It is well known (e.g., see [13]) that this equation has two linearly independent solutions
Ai (z) and Bi (z) with the initial conditions

Ai (0) =
1

3
2
3Γ

(
2
3

) , Ai′ (0) = 1

3
1
3Γ

(
1
3

) ,
Bi (0) =

1

3
1
6Γ

(
2
3

) , Bi′ (0) = 3
1
6

Γ
(
1
3

) .
where Γ (·) is Euler’s Gamma function. The Wronskian {Ai (z) , Bi (z)} of these functions
satisfies

{Ai (z) , Bi (z)} = Ai (z)Bi′ (z)−Ai′ (z)Bi (z) = π−1.

Both functions are entire functions of order 3
2 and type 2

3 . We have (see [13]) asymptotic
equalities for |z| → ∞

Ai (z) ∼ π−
1
2 z−

1
4 e−ζ

[
1 +O

(
ζ−1

)]
, |arg z| < π

Ai (−z) ∼ π−
1
2 z−

1
4 sin

(
ζ +

π

4

) [
1 +O

(
ζ−1

)]
, |arg z| < 2π

3
,

Bi (z) ∼ π−
1
2 z−

1
4 eζ

[
1 +O

(
ζ−1

)]
, |arg z| < π

3
,

Bi (−z) ∼ π−
1
2 z−

1
4 cos

(
ζ +

π

4

) [
1 +O

(
ζ−1

)]
, |arg z| < 2π

3
.

where ζ = 2
3z

3
2 . In what follows we will need special solutions of the unperturbed equation

−y′′ + θ (x)xy = λy, −∞ < x <∞, λ ∈ C. (3)

Let us denote by G the complex λ- plane with a cut along the positive semi-axis. Let us
consider a function

√
λ in the plane G, choosing a regular branch of the radical such that√

λ+ i0 > 0 for λ > 0.

Theorem 2.1. For any λ from the complex plane, equation (3) has solutions ψ± (x, λ) in
the form
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ψ+ (x, λ) =


Ai (x− λ) , x ≥ 0,

1
2

[
Ai (−λ) + 1

i
√
λ
Ai′ (−λ)

]
ei
√
λx+

+1
2

[
Ai (−λ)− 1

i
√
λ
Ai′ (−λ)

]
e−i

√
λx, x < 0,

(4)

ψ− (x, λ) =


π
[
Bi′ (−λ)− i

√
λBi (−λ)

]
Ai (x− λ)+

+π
[
Bi′ (−λ) i

√
λAi (−λ)−Ai′ (−λ)

]
Bi (x− λ) , x ≥ 0,

e−i
√
λx, x < 0.

(5)

Proof. Obviously, when x ≥ 0 one of the solutions of equation (3) is function Ai (x− λ).
On the other hand, for x ≤ 0 any solution of equation (3) can be represented as

αei
√
λx + β e−i

√
λx.

If we glue these solutions at a pointx = 0 , we get{
α+ β = Ai (−λ) ,

i
√
λα− i

√
λβ = Ai′ (−λ) .

Solving the last system of equations for α, β we find that

α =
1

2

[
Ai (−λ) + 1

i
√
λ
Ai′ (−λ)

]
, β =

1

2

[
Ai (−λ)− 1

i
√
λ
Ai′ (−λ)

]
.

Thus, formula (4) is established. Formula (5) is derived similarly.

The theorem is proved.
Obviously, for any λ ∈ G the function ψ+ (x, λ) belongs to L2 (0,+∞) and the function

ψ− (x, λ) belongs toL2 (−∞, 0).
We shall use the following notation

σ± (x) = ±
∫ ±∞

x

∣∣∣∣θ (t) t− 1± 1

2
t+ q (t)

∣∣∣∣ dt.
In the following theorem the representation of solution from the equation (1) is found by
means of transformation operator.

Theorem 2.2. If the potential q (x)satisfies conditions (2), then for any λ from the plane
G equation (1) has a solution f+ (x, λ) that can be represented in the form

f+ (x, λ) = ψ+ (x, λ) +

∫ ∞

x
K+ (x, t) ψ+ (t, λ) dt, (6)

where kernel K+ (x, t) is continuous function and satisfies relations

K+ (x, t) = O

(
σ+

(
x+ t

2

))
, x+ t→ ∞, (7)

K+ (x, x) =
1

2

∫ ∞

x
[θ (t) t− t+ q (t)] dt. (8)
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Proof. We rewrite the perturbed equation (1) in the form

−y′′ + xy +Q (x) y = λy, −∞ < x <∞. (9)

where Q (x) = [θ (x)− 1]x + q (x). Obviously, the Q (x) function for all x > a, a > −∞
satisfies the condition ∫ ∞

a
|xQ (x)| dx <∞. (10)

Let f+ (x, λ) be solution of equation (9) with the asymptotic behaviorf+ (x, λ) =
f0 (x, λ) (1 + o (1)) , x → ∞, where f0 (x, λ) = Ai (x− λ). Subject to the conditions (10),
such solution exist, is determined uniquely by its asymptotic behavior (see [9]). With the
aid of operator transformations, we have the representation

f+ (x, λ) = f0 (x, λ) +

∫ ∞

x
K (x, t) f0 (t, λ) dt, (11)

Moreover, the kernel K (x, t) is a continuous function and satisfies the following relations

K (x, t) = O

(
σ+

(
x+ t

2

))
, x+ t→ ∞, (12)

K (x, x) =
1

2

∫ ∞

x
Q (t) dt. (13)

In addition, rewriting the unperturbed equation (3) in the form

−y′′ + xy +Q0 (x) y = λy, −∞ < x <∞.

where Q0 (x) = [θ (x)− 1]x, we obtain

ψ+ (x, λ) = f0 (x, λ) +

∫ ∞

x
K0 (x, t) f0 (t, λ) dt.

Moreover, in this case, K0 (x, t) satisfies the identityK0 (x, t) ≡, x ≥ 0. From the well-
known properties of the transformation operators it follows that (see [3]) the function
f0 (x, λ) also admits the representation

f0 (x, λ) = ψ+ (x, λ) +

∫ ∞

x
K̃0 (x, t) ψ+ (t, λ) dt , (14)

where the kernels K0 (x, t) , K̃0 (x, t) are connected by the equality

K0 (x, t) + K̃0 (x, t) +

∫ t

x
K̃0 (x, u) K0 (u, t) du = 0. (15)

Substituting the expression (14) from the f0 (x, λ) in (11), we get

f+ (x, λ) = ψ+ (x, λ) +

∫ ∞

x
K (x, t)

[
ψ+ (t, λ) +

∫ ∞

t
K̃0 (t, u)ψ+ (u, λ) du

]
dt =
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= ψ+ (x, λ) +

∫ ∞

x
K (x, t)ψ+ (t, λ) dt+

∫ ∞

x
K (x, t)

∫ ∞

t
K̃0 (t, u)ψ+ (u, λ) dudt =

= ψ+ (x, λ) +

∫ ∞

x
K (x, t)ψ+ (t, λ) dt+

∫ ∞

x

(∫ t

x
K (x, u) K̃0 (u, t) du

)
ψ+ (t, λ) dt.

Setting

K+ (x, t) = K (x, t) +

∫ t

x
K (x, u) K̃0 (u, t) du, (16)

one can recast the last relation in the form

f+ (x, λ) = ψ+ (x, λ) +

∫ ∞

x
K+ (x, t) ψ+ (t, λ) dt.

Formula (15) is a straightforward consequence of (12), (15), (16). Taking t = x in the
equality (16), we find that K+ (x, t) = K (x, t). Whence, by virtue of (13), formula (8)
follows.

The theorem is proved.

The following theorem is proved in a similar way.

Theorem 2.3. If the potential (x) satisfies condition (2), then, for all values of λ of the
plane G, equation (1) has a solution f− (x, λ) representable as

f− (x, λ) = ψ− (x, λ) +

∫ x

−∞
K− (x, t) ψ− (t, λ) dt.

where the kernel K− (x, t) is continuous function and satisfy the following conditions

K− (x, t) = O

(
σ−

(
x+ t

2

))
, x+ t→ −∞,K− (x, x) =

1

2

∫ x

−∞
[θ (t) t+ q (t)] dt.
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