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Algebraic points of any degree on the affine curve
C : y2 = x5 − 243

Pape Modou SARR, El Hadji SOW and Moussa FALL

Abstract. We determine the set of algebraic points of any degree over Q on the affine curve
C : y2 = x5−243. This result generalize the previous respective results of Mulholland who described
in [3] the set of Q-rationals points and of Sow, Sarr and Sall who described in [4] the set of algebraic
points of degree at most 5 over Q on this curve.
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1. Introduction

Let C be a smooth algebraic curve defined over Q. Let K be a numbers field. We

denote by C(K) the set of rational points of C on K and
⋃

[K:Q]≤d

C(K) the set of points of

C defined over K of degree at most d.
In this note we determine the set of algebraic points of any degree at most d on the affine
curve C : y2 = x5 − 243.
This curve had been studied by Mulholland [3] who had determined the algebraic points
of degree 1 over Q. Then, the result obtained by Mulholland was extended to algebraic
points of degree at most 5 over Q by Sow, Sarr and Sall [4].
The Mordell-Weil group JC(Q) of rational points of the Jacobian is a finite set (refer to
[3]). We denote by P = (3, 0) et ∞ = (0, 1, 0).
In [3] Mulholland gave a description of the rational points of C.
In [4] Sow, Sarr and Sall gave a description of the algebraic points of degree at most 5 on
Q on this same curve. These descriptions are respectively stated as follows:

Proposition 1.1 (Refer to [3]).

The rational points of the curve C are given by :

C(Q) = {P , ∞}.
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Proposition 1.2 (Refer to [4]).

1. The set of quadratic points on C is given by

A0 =
{(

α,±
√

α5 − 243
)
, α ∈ Q

}
.

2. The set of cubic points on C is empty.

3. The set of quartic points on C is given by A1 ∪ A2 with

A1 =
{(

x,±
√
x5 − 243

)
| x ∈ Q, [Q(x) : Q] = 2

}
,

A2 =


(x, (x− 3) (λ1 + λ2(x+ 3))) | λ1, λ2 ∈ Q and x root of

A(x) = x4 + 3x3 + 9x2 + 27x+ 81− (x− 3) (λ1 + λ2(x+ 1))2

 .

4. The set of quintic points on C is given by B1 ∪ B2 with

B1 =


(
x, α1 + α2x+ α3x

2
)
| α1, α2, α3 ∈ Q∗ and x root of

B1(x) = x5 − α2
3x

4 − 2α2α3x
3 − (α2

2 + 2α1α2)x
2 − 2α1α2x− (α2

1 + 243)

 ,

B2 =


(
x, (x− 3)

[
n1 + n2(x+ 3) + n3(x

2 + 3x+ 9)
])

| n1, n2, n3 ∈ Q∗ and x root of

B2(x) = (x− 3)
(
n1 + n2(x+ 3) + n3(x

2 + 3x+ 9)
)2 − (x4 + 3x3 + 9x2 + 27x+ 81)

 .

Our main tools are the Mordell-Weil group JC(Q) of rational points on the Jacobian JC
of C (refer to [3]), the Abel-Jacobi theorem (refer to [2]), linear systems on the curve C.
Our main result is as follows:

Theorem 1.3. The set of algebraic points of any degree at most d over Q on the curve C
is given by : ⋃

[K:Q]≤d

C(K) = H0 ∪H1 or

H0 =



x,−

∑
r≤ k

2

arx
r

∑
s≤ k−5

2

bsx
s

 | ar, bs ∈ Q

and x the root of the equation (E0)


,

47



H1 =



x,−

∑
r≤ k+1

2

arx
r

∑
s≤ k−4

2

bsx
s

 | ar, bs ∈ Q satisfying
∑

r≤ k+1
2

ar(3)
r = 0

and x the root of the equation (E1)


.

where (El) denote the following equation:

(El) :

 ∑
r≤ k+l

2

arx
r


2

=
(
x5 − 243

) ∑
s≤ k−5+l

2

bsx
s


2

.

2. Auxiliary results

For a divisor D on C we denote by L(D) the Q-vector space of rational functions
defined by

L(D) =
{
f ∈ Q(C)∗ | div (f) ≥ −D

}
∪ {0}

where l(D) denote the Q-dimension of L(D).
We denote by j(P ) the class [P −∞] of P −∞ that is to say that j is the Jacobian

diving C → JC(Q).
Let x and y be two rational functions on C given by :

x(X,Y, Z) = X
Z

y(X,Y, Z) = Y
Z .

The projective equation of the curve C is :

Y 2Z3 = X5 − 243Z5.

We denote by η1 = ei
Π
2 and and let’s put

Ak =
(
0, 9

√
3 η2k+1

1

)
for k ∈ {0, 1} .

We denote by η2 = ei
2Π
5 and let’s put

Bk =
(
3ηk2 , 0

)
for k ∈ {0, 1, 2, 3, 4} .

We will denote by M · C the intersection cycle of an algebraic curve M and C.

Lemma 2.1.

(i) div(x− 3) = 2P − 2∞,
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(ii) div(y) = B0 +B1 +B2 +B3 +B4 − 5∞,

(iii) div(x) = A0 +A1 − 2∞.

Proof.
This is a calculation of the type :

div(w − a) = (W − aZ = 0) · C − (Z = 0) · C (∗) ,

where w is a variable (affine) which corresponds to W (projective) and a is a constant. It
follows from (∗) that :

(i) div(x− 3) = (X − 3Z = 0) · C − (Z = 0) · C for w = x and a = 3 in (∗).

For (X − 3Z = 0) · C we have :
X − 3Z = 0

Y 2Z3 = X5 − 243Z5
⇒


X = 3Z

Y 2Z3 = 0

⇒


X = 3Z

Y 2 = 0 or Z3 = 0

hence Y = 0 with multiplicity 2 or Z = 0 with multiplicity 3. Thus the intersection points
of the curve of equation X − 3Z = 0 and C are of the form (3Z, 0, Z) = Z(3, 0, 1) or
(0, Y, 0) = Y (0, 1, 0).
We thus find the points P = (3, 0, 1) with multiplicity 2 for Z = 1 and ∞ = (0, 1, 0) with
multiplicity 3 for Y = 1. Thus (X − 3Z = 0) · C = 2P + 3∞.
In the same way as for (X − 3Z = 0) · C we have (Z = 0) · C = 5∞.
We conclude that

div(x− 3) = 2P − 2∞.

Similarly as (i) we determine the following divisors :

(ii) div(y) = B0 +B1 +B2 +B3 +B4 − 5∞,

(iii) div(x) = A0 +A1 − 2∞.

□

Consequence of Lemma 2.1. : 2j (P ) = 0.

Lemma 2.2.

• L(∞) = ⟨ 1 ⟩,
• L(2∞) = ⟨ 1, x ⟩ = L(3∞),

• L(4∞) =
〈
1, x, x2

〉
,

• L(5∞) =
〈
1, x, x2, y

〉
,
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• L(6∞) =
〈
1, x, x2, y, x3

〉
.

Proof. This is a consequence of the Lemma 2.1 and of the fact that according to the
Riemann-Roch theorem we have l(m∞) = m− 1 as soon as m ≥ 3.

□

Lemma 2.3.

A Q-base of L(m∞) is given by :

Bm =
{
xr : r ∈ N et r ≤ m

2

}
∪
{
xsy : s ∈ N et s ≤ m− 5

2

}
.

Proof. Refer to [1].

□

Lemma 2.4.
JC(Q) ∼= (Z / 2Z) = ⟨ j(P ) ⟩ .

Proof. Refer to [3].

□

3. Proof of the Theorem

Let R be a point of C
(
Q
)
with [Q(R) : Q] = k.

The works of Mulholland in [3] allows us to assume k ≥ 2. Let’s note R1, R2, ...., Rk the
Galois conjugate points of R and let’s work with

t = [R1 +R2 + · · ·+Rk − k∞].

We have t ∈ JC(Q) and the Lemma 2.4 gives t = mj(P ) with 0 ≤ m ≤ 1.
Thus we obtain:

[R1 +R2 + · · ·+Rk − k∞] = mj(P ) with 0 ≤ m ≤ 1. (1)

Our proof is divided into the following two cases :

Case : m = 0.

The formula (1) becomes [R1 +R2 + · · ·+Rk − k∞] = 0.
The Abel-Jacobi theorem implies the existence of a rational function f defined over Q such
that div(f) = R1 +R2 + · · ·+Rk − k∞.
Therefore f ∈ L(k∞) and according to the Lemma 2.3 we have

f(x, y) =

∑
r≤ k

2

arx
r

+ y

 ∑
s≤ k−5

2

bsx
s

 .
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At the points Ri we have∑
r≤ k

2

arx
r

+ y

 ∑
s≤ k−5

2

bsx
s

 = 0 so

y = −

∑
r≤ k

2

arx
r


 ∑

s≤ k−5
2

bsx
s


and then

the relation y2 = x5 − 243 gives the following equation

(E0) :

∑
r≤ k

2

arx
r


2

=
(
x5 − 243

) ∑
s≤ k−5

2

bsx
s


2

.

We thus find a family of points given by :

H0 =


x,−

∑
r≤ k

2

arx
r

∑
s≤ k−5

2

bsx
s

 | ar, bs ∈ Q and x the root of the equation (E0)

 .

Cas: m = 1.

The formula (1) becomes [R1 +R2 + · · ·+Rk − k∞] = j(P ) = −j(P ); hence [R1 +R2 +
· · ·+Rk + P − (k + 1)∞] = 0.
The Abel-Jacobi theorem implies the existence of rational function f defined over Q such
that div(f) = R1 +R2 + · · ·+Rk + P − (k + 1)∞.
Therefore f ∈ L((k + 1)∞) and according to the Lemma 2.3 we have

f(x, y) =

 ∑
r≤ k+1

2

arx
r

+ y

 ∑
s≤ k−4

2

bsx
s

 .

The function f is of order 1 at the point P so we must have
∑

r≤ k+1
2

ar(3)
r = 0.

At the points Ri we have ∑
r≤ k+1

2

arx
r

+ y

 ∑
s≤ k−4

2

bsx
s

 = 0 hence

51



y = −

 ∑
r≤ k+1

2

arx
r


 ∑

s≤ k−4
2

bsx
s


and then

the relation y2 = x5 − 243 gives the following equation

(E1) :

 ∑
r≤ k+1

2

arx
r


2

=
(
x5 − 243

) ∑
s≤ k−4

2

bsx
s


2

.

We thus find a family of points given by :

H1 =



x,−

∑
r≤ k+1

2

arx
r

∑
s≤ k−4

2

bsx
s

 | ar, bs ∈ Q satisfying
∑

r≤ k+1
2

ar(3)
r = 0

and x the root of the equation (E1)


.

In conclusion the set of algebraic points of any degree at most d over Q on the curve C is
given by : ⋃

[K:Q]≤d

C(K) = H0 ∪H1.
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