Algebraic points of any degree on the affine curve
 $\mathcal{C}: y^{2}=x^{5}-243$
 Pape Modou SARR, El Hadji SOW and Moussa FALL

Abstract

We determine the set of algebraic points of any degree over \mathbb{Q} on the affine curve $\mathcal{C}: y^{2}=x^{5}-243$. This result generalize the previous respective results of Mulholland who described in [3] the set of \mathbb{Q}-rationals points and of Sow, Sarr and Sall who described in [4] the set of algebraic points of degree at most 5 over \mathbb{Q} on this curve.

Key Words and Phrases: Plane curves ; degree of algebraic points; rational points; algebraic extensions; Jacobian.
2010 Mathematics Subject Classifications: Primary 14H50, 14H40, 11D68, 12FO5

1. Introduction

Let \mathcal{C} be a smooth algebraic curve defined over \mathbb{Q}. Let K be a numbers field. We denote by $\mathcal{C}(K)$ the set of rational points of \mathcal{C} on K and $\bigcup_{[K: \mathbb{Q}] \leq d} \mathcal{C}(K)$ the set of points of \mathcal{C} defined over K of degree at most d.
In this note we determine the set of algebraic points of any degree at most d on the affine curve $\mathcal{C}: y^{2}=x^{5}-243$.
This curve had been studied by Mulholland [3] who had determined the algebraic points of degree 1 over \mathbb{Q}. Then, the result obtained by Mulholland was extended to algebraic points of degree at most 5 over \mathbb{Q} by Sow, Sarr and Sall [4].
The Mordell-Weil group $J_{\mathcal{C}}(\mathbb{Q})$ of rational points of the Jacobian is a finite set (refer to [3]). We denote by $P=(3,0)$ et $\infty=(0,1,0)$.
In [3] Mulholland gave a description of the rational points of \mathcal{C}.
In [4] Sow, Sarr and Sall gave a description of the algebraic points of degree at most 5 on \mathbb{Q} on this same curve. These descriptions are respectively stated as follows:

Proposition 1.1 (Refer to [3]).

The rational points of the curve \mathcal{C} are given by:

$$
\mathcal{C}(\mathbb{Q})=\{P, \infty\} .
$$

Proposition 1.2 (Refer to [4]).

1. The set of quadratic points on \mathcal{C} is given by

$$
\mathcal{A}_{0}=\left\{\left(\alpha, \pm \sqrt{\alpha^{5}-243}\right), \alpha \in \mathbb{Q}\right\} .
$$

2. The set of cubic points on \mathcal{C} is empty.
3. The set of quartic points on \mathcal{C} is given by $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ with

$$
\begin{aligned}
& \mathcal{A}_{1}=\left\{\left(x, \pm \sqrt{x^{5}-243}\right) \mid x \in \overline{\mathbb{Q}},[\mathbb{Q}(x): \mathbb{Q}]=2\right\}, \\
& \mathcal{A}_{2}=\left\{\begin{array}{l}
\left(x,(x-3)\left(\lambda_{1}+\lambda_{2}(x+3)\right)\right) \mid \lambda_{1}, \lambda_{2} \in \mathbb{Q} \text { and } x \text { root of } \\
\left.A(x)=x^{4}+3 x^{3}+9 x^{2}+27 x+81-(x-3)\left(\lambda_{1}+\lambda_{2}(x+1)\right)^{2}\right\} .
\end{array}\right.
\end{aligned}
$$

4. The set of quintic points on \mathcal{C} is given by $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ with
$\mathcal{B}_{1}=\left\{\begin{array}{l}\left(x, \alpha_{1}+\alpha_{2} x+\alpha_{3} x^{2}\right) \mid \alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{Q}^{*} \text { and } x \text { root of } \\ B_{1}(x)=x^{5}-\alpha_{3}^{2} x^{4}-2 \alpha_{2} \alpha_{3} x^{3}-\left(\alpha_{2}^{2}+2 \alpha_{1} \alpha_{2}\right) x^{2}-2 \alpha_{1} \alpha_{2} x-\left(\alpha_{1}^{2}+243\right)\end{array}\right\}$,
$\mathcal{B}_{2}=\left\{\begin{array}{l}\left(x,(x-3)\left[n_{1}+n_{2}(x+3)+n_{3}\left(x^{2}+3 x+9\right)\right]\right) \mid n_{1}, n_{2}, n_{3} \in \mathbb{Q}^{*} \text { and } x \text { root of } \\ B_{2}(x)=(x-3)\left(n_{1}+n_{2}(x+3)+n_{3}\left(x^{2}+3 x+9\right)\right)^{2}-\left(x^{4}+3 x^{3}+9 x^{2}+27 x+81\right)\end{array}\right\}$.
Our main tools are the Mordell-Weil group $J_{\mathcal{C}}(\mathbb{Q})$ of rational points on the Jacobian $J_{\mathcal{C}}$ of \mathcal{C} (refer to [3]), the Abel-Jacobi theorem (refer to [2]), linear systems on the curve \mathcal{C}.
Our main result is as follows:
Theorem 1.3. The set of algebraic points of any degree at most d over \mathbb{Q} on the curve \mathcal{C} is given by :

$$
\left.\begin{array}{r}
\bigcup_{[K: \mathbb{Q}] \leq d} \mathcal{C}(K)=\mathcal{H}_{0} \cup \mathcal{H}_{1} \text { or } \\
\mathcal{H}_{0}=\left\{\left(\left.\begin{array}{l}
\sum_{r \leq \frac{k}{2}} a_{r} x^{r} \\
\sum_{s \leq \frac{k-5}{2}} b_{s} x^{s}
\end{array} \right\rvert\, a_{r}, b_{s} \in \mathbb{Q}\right.\right. \\
\text { and } x \text { the root of the equation }\left(\mathcal{E}_{0}\right)
\end{array}\right\},
$$

where $\left(\mathcal{E}_{l}\right)$ denote the following equation:

$$
\left(\mathcal{E}_{l}\right):\left(\sum_{r \leq \frac{k+l}{2}} a_{r} x^{r}\right)^{2}=\left(x^{5}-243\right)\left(\sum_{s \leq \frac{k-5+l}{2}} b_{s} x^{s}\right)^{2} .
$$

2. Auxiliary results

For a divisor D on \mathcal{C} we denote by $\mathcal{L}(D)$ the $\overline{\mathbb{Q}}$-vector space of rational functions defined by

$$
\mathcal{L}(D)=\left\{f \in \overline{\mathbb{Q}}(\mathcal{C})^{*} \mid \operatorname{div}(f) \geq-D\right\} \cup\{0\}
$$

where $l(D)$ denote the $\overline{\mathbb{Q}}$-dimension of $\mathcal{L}(D)$.
We denote by $j(P)$ the class $[P-\infty]$ of $P-\infty$ that is to say that j is the Jacobian diving $\mathcal{C} \rightarrow J_{\mathcal{C}}(\mathbb{Q})$.

Let x and y be two rational functions on \mathcal{C} given by :

$$
\left\{\begin{array}{l}
x(X, Y, Z)=\frac{X}{Z} \\
y(X, Y, Z)=\frac{Y}{Z}
\end{array}\right.
$$

The projective equation of the curve \mathcal{C} is:

$$
Y^{2} Z^{3}=X^{5}-243 Z^{5}
$$

We denote by $\eta_{1}=e^{i \frac{\Pi}{2}}$ and and let's put

$$
A_{k}=\left(0,9 \sqrt{3} \eta_{1}^{2 k+1}\right) \text { for } k \in\{0,1\}
$$

We denote by $\eta_{2}=e^{i \frac{2 \Pi}{5}}$ and let's put

$$
B_{k}=\left(3 \eta_{2}^{k}, 0\right) \text { for } k \in\{0,1,2,3,4\}
$$

We will denote by $\mathcal{M} \cdot \mathcal{C}$ the intersection cycle of an algebraic curve \mathcal{M} and \mathcal{C}.

Lemma 2.1.

(i) $\operatorname{div}(x-3)=2 P-2 \infty$,
(ii) $\operatorname{div}(y)=B_{0}+B_{1}+B_{2}+B_{3}+B_{4}-5 \infty$,
(iii) $\operatorname{div}(x)=A_{0}+A_{1}-2 \infty$.

Proof.

This is a calculation of the type :

$$
\operatorname{div}(w-a)=(W-a Z=0) \cdot \mathcal{C}-(Z=0) \cdot \mathcal{C} \quad(*),
$$

where w is a variable (affine) which corresponds to W (projective) and a is a constant. It follows from (*) that :

$$
\text { (i) } \operatorname{div}(x-3)=(X-3 Z=0) \cdot \mathcal{C}-(Z=0) \cdot \mathcal{C} \text { for } w=x \text { and } a=3 \text { in }(*) \text {. }
$$

For $(X-3 Z=0) \cdot \mathcal{C}$ we have :

$$
\begin{aligned}
\begin{cases}X-3 Z=0 \\
Y^{2} Z^{3}=X^{5}-243 Z^{5}\end{cases} & \Rightarrow\left\{\begin{array}{l}
X=3 Z \\
Y^{2} Z^{3}=0
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
X=3 Z \\
Y^{2}=0 \text { or } Z^{3}=0
\end{array}\right.
\end{aligned}
$$

hence $Y=0$ with multiplicity 2 or $Z=0$ with multiplicity 3 . Thus the intersection points of the curve of equation $X-3 Z=0$ and \mathcal{C} are of the form $(3 Z, 0, Z)=Z(3,0,1)$ or $(0, Y, 0)=Y(0,1,0)$.
We thus find the points $P=(3,0,1)$ with multiplicity 2 for $Z=1$ and $\infty=(0,1,0)$ with multiplicity 3 for $Y=1$. Thus $(X-3 Z=0) \cdot \mathcal{C}=2 P+3 \infty$.
In the same way as for $(X-3 Z=0) \cdot \mathcal{C}$ we have $(Z=0) \cdot \mathcal{C}=5 \infty$.
We conclude that

$$
\operatorname{div}(x-3)=2 P-2 \infty
$$

Similarly as (i) we determine the following divisors :

$$
\text { (ii) } \operatorname{div}(y)=B_{0}+B_{1}+B_{2}+B_{3}+B_{4}-5 \infty \text {, }
$$

(iii) $\operatorname{div}(x)=A_{0}+A_{1}-2 \infty$.

Consequence of Lemma 2.1. : $2 j(P)=0$.

Lemma 2.2.

- $\mathcal{L}(\infty)=\langle 1\rangle$,
- $\mathcal{L}(2 \infty)=\langle 1, x\rangle=\mathcal{L}(3 \infty)$,
- $\mathcal{L}(4 \infty)=\left\langle 1, x, x^{2}\right\rangle$,
- $\mathcal{L}(5 \infty)=\left\langle 1, x, x^{2}, y\right\rangle$,
- $\mathcal{L}(6 \infty)=\left\langle 1, x, x^{2}, y, x^{3}\right\rangle$.

Proof. This is a consequence of the Lemma 2.1 and of the fact that according to the Riemann-Roch theorem we have $l(m \infty)=m-1$ as soon as $m \geq 3$.

Lemma 2.3.

$A \mathbb{Q}$-base of $\mathcal{L}(m \infty)$ is given by:

$$
\mathcal{B}_{m}=\left\{x^{r}: r \in \mathbb{N} \text { et } r \leq \frac{m}{2}\right\} \cup\left\{x^{s} y: s \in \mathbb{N} \text { et } s \leq \frac{m-5}{2}\right\}
$$

Proof. Refer to [1].

Lemma 2.4.

$$
J_{\mathcal{C}}(\mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})=\langle j(P)\rangle
$$

Proof. Refer to [3].

3. Proof of the Theorem

Let R be a point of $\mathcal{C}(\overline{\mathbb{Q}})$ with $[\mathbb{Q}(R): \mathbb{Q}]=k$.
The works of Mulholland in [3] allows us to assume $k \geq 2$. Let's note $R_{1}, R_{2}, \ldots, R_{k}$ the Galois conjugate points of R and let's work with

$$
t=\left[R_{1}+R_{2}+\cdots+R_{k}-k \infty\right] .
$$

We have $t \in J_{\mathcal{C}}(\mathbb{Q})$ and the Lemma 2.4 gives $t=m j(P)$ with $0 \leq m \leq 1$.
Thus we obtain:

$$
\begin{equation*}
\left[R_{1}+R_{2}+\cdots+R_{k}-k \infty\right]=m j(P) \text { with } 0 \leq m \leq 1 \tag{1}
\end{equation*}
$$

Our proof is divided into the following two cases :

$$
\text { Case : } m=0 \text {. }
$$

The formula (1) becomes $\left[R_{1}+R_{2}+\cdots+R_{k}-k \infty\right]=0$.
The Abel-Jacobi theorem implies the existence of a rational function f defined over \mathbb{Q} such that $\operatorname{div}(\mathrm{f})=R_{1}+R_{2}+\cdots+R_{k}-k \infty$.
Therefore $\mathrm{f} \in \mathcal{L}(k \infty)$ and according to the Lemma 2.3 we have

$$
\mathrm{f}(x, y)=\left(\sum_{r \leq \frac{k}{2}} a_{r} x^{r}\right)+y\left(\sum_{s \leq \frac{k-5}{2}} b_{s} x^{s}\right)
$$

At the points R_{i} we have

$$
\begin{gathered}
\left(\sum_{r \leq \frac{k}{2}} a_{r} x^{r}\right)+y\left(\sum_{s \leq \frac{k-5}{2}} b_{s} x^{s}\right)=0 \text { so } \\
y=-\frac{\left(\sum_{r \leq \frac{k}{2}} a_{r} x^{r}\right)}{\left(\sum_{s \leq \frac{k-5}{2}} b_{s} x^{s}\right)} \text { and then }
\end{gathered}
$$

the relation $y^{2}=x^{5}-243$ gives the following equation

$$
\left(\mathcal{E}_{0}\right):\left(\sum_{r \leq \frac{k}{2}} a_{r} x^{r}\right)^{2}=\left(x^{5}-243\right)\left(\sum_{s \leq \frac{k-5}{2}} b_{s} x^{s}\right)^{2}
$$

We thus find a family of points given by :

$$
\mathcal{H}_{0}=\left\{\left.\left(x,-\frac{\sum_{r \leq \frac{k}{2}} a_{r} x^{r}}{\sum_{s \leq \frac{k-5}{2}} b_{s} x^{s}}\right) \right\rvert\, a_{r}, b_{s} \in \mathbb{Q} \text { and } x \text { the root of the equation }\left(\mathcal{E}_{0}\right)\right\} .
$$

Cas: $m=1$.

The formula (1) becomes $\left[R_{1}+R_{2}+\cdots+R_{k}-k \infty\right]=j(P)=-j(P)$; hence $\left[R_{1}+R_{2}+\right.$ $\left.\cdots+R_{k}+P-(k+1) \infty\right]=0$.
The Abel-Jacobi theorem implies the existence of rational function f defined over \mathbb{Q} such that $\operatorname{div}(\mathrm{f})=R_{1}+R_{2}+\cdots+R_{k}+P-(k+1) \infty$.
Therefore $\mathrm{f} \in \mathcal{L}((k+1) \infty)$ and according to the Lemma 2.3 we have

$$
\mathrm{f}(x, y)=\left(\sum_{r \leq \frac{k+1}{2}} a_{r} x^{r}\right)+y\left(\sum_{s \leq \frac{k-4}{2}} b_{s} x^{s}\right)
$$

The function f is of order 1 at the point P so we must have $\sum_{r \leq \frac{k+1}{2}} a_{r}(3)^{r}=0$.
At the points R_{i} we have

$$
\left(\sum_{r \leq \frac{k+1}{2}} a_{r} x^{r}\right)+y\left(\sum_{s \leq \frac{k-4}{2}} b_{s} x^{s}\right)=0 \text { hence }
$$

$$
y=-\frac{\left(\sum_{r \leq \frac{k+1}{2}} a_{r} x^{r}\right)}{\left(\sum_{s \leq \frac{k-4}{2}} b_{s} x^{s}\right)} \text { and then }
$$

the relation $y^{2}=x^{5}-243$ gives the following equation

$$
\left(\mathcal{E}_{1}\right):\left(\sum_{r \leq \frac{k+1}{2}} a_{r} x^{r}\right)^{2}=\left(x^{5}-243\right)\left(\sum_{s \leq \frac{k-4}{2}} b_{s} x^{s}\right)^{2} .
$$

We thus find a family of points given by :

$$
\mathcal{H}_{1}=\left\{\left(\begin{array}{l}
\left.x,-\frac{\sum_{r \leq \frac{k+1}{2}} a_{r} x^{r}}{\sum_{s \leq \frac{k-4}{2}} b_{s} x^{s}}\right) \mid a_{r}, b_{s} \in \mathbb{Q} \text { satisfying } \sum_{r \leq \frac{k+1}{2}} a_{r}(3)^{r}=0 \\
\text { and } x \text { the root of the equation }\left(\mathcal{E}_{1}\right)
\end{array}\right\} .\right.
$$

In conclusion the set of algebraic points of any degree at most d over \mathbb{Q} on the curve \mathcal{C} is given by :

$$
\bigcup_{[K: \mathbb{Q}] \leq d} \mathcal{C}(K)=\mathcal{H}_{0} \cup \mathcal{H}_{1} .
$$

References

[1] Fall, M., Sall, O., Points algébriques de petits degrés sur la courbe d'équation affine $y^{2}=x^{5}+1$, Afrika Matematika (2018) 29: 1151-1157.
[2] Griffiths, P. A., Introduction to Algebraic Curves, In: Translations of Mathematical monographs, vol. 76. American Mathematical Society, Providence, RI (1989).
[3] Mulholland, J. TH., Elliptic curves with rational 2-torsion and related ternary Diophantine equations. ProQuest LLC. Ann Arbor, MI (2006).
[4] Sow, EL. H., Sarr, P. M., Sall, O., Algebraic points of degree at most 5 on the affine curve $y^{2}=x^{5}-243$, Asian Research Journal of Mathematics, Volume 17, Issue 10, (2021).

Pape Modou SARR
Laboratory of Mathematics and Applications (L.M.A.)
U.F.R. of Sciences and Technologies

Assane SECK University of Ziguinchor, SENEGAL
E-mail: p.sarr597@zig.univ.sn
El Hadji SOW
Laboratory of Mathematics and Applications (L.M.A.) U.F.R. of Sciences and Technologies

Assane SECK University of Ziguinchor, SENEGAL
E-mail: e.sow4727@zig.univ.sn

Moussa FALL

Laboratory of Mathematics and Applications (L.M.A.)
U.F.R. of Sciences and Technologies

Assane SECK University of Ziguinchor, SENEGAL
E-mail: m.fall@univ-zig.sn
Received 10 November 2023
Accepted 23 January 2024

