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On Operator Pencil with a Parameter and Applications

Aydan T. Gazilova

Abstract. Spectral properties of a class of operator pencils with a parameter are studied in this
work. The obtained results are used to derive the exact estimates for the norms of intermediate
derivative operators in Sobolev type spaces.
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Let be a separable Hilbert space and be a self-adjoint positive definite operator with
the domain of definition D(A). The linear set D(Aγ) becomes a Hilbert space with respect
to the norm (x, y)γ = (Dγx,Aγy), γ ≥ 0. For γ = 0 we assume (x, y)0 = (x, y), H0 = H.

Let
P0(λ,A) = (λE −A)2(λE +A). (1)

For β ∈ R = (−∞,∞), consider a polynomial operator pencil

Pj(λ, β,A) = P0(λ,A)P0(−λ,A)− β(iλ)2jA6−2j , j = 1, 2, . (2)

The following theorem is true:

Theorem 1. For β ∈
(
0,
(
27
4

)1/2)
, the operator pencil Pj(λ, β,A) (j = 1, 2) has no

spectrum on the imaginary axis, and it can be represented as follows:

Pj(λ, β,A) = Fj(λ, β,A) · Fj(−λ, β,A) (j = 1, 2), (3)

where

Fj(λ, β,A) =

3∏
k=1

(λE − ωk,j(β)A) = λ3E + a2(β)λ
2A+ a1(β)λA

2 +A3, (4)

with Reωk,j (β) < 0, a1,j(β) > 0, a2,j(β) > 0, j = 1, 2, for every β ∈
(
0,
(
27
4

)1/2)
, and

a21,1(β)− 2 a2,1(β) = 3− β, a22,1(β)− 2 a1,1(β) = 3, for j = 1, (5)

a21,2(β)− 2 a2,2(β) = 3, a22,2(β)− 2 a1,2(β) = 3− β, for j = 2. (6)
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Proof. Let β ∈ σ(). Then

Pj(λ, β, µ) = P0(λ, σ)P0(−λ, σ)− β(iλ)2jσ6−2j , j = 1, 2.

For λ = iξ, ξ ∈ R = (−∞,∞) we have

Pj(λ, β, µ) = (iξ − σ)2(iξ + σ)(−iξ − σ)3(−iξ + σ)− βξ2jσ6−2j =
= (iξ − σ)2(iξ + σ)3 − βξ2jµ6−2j = (ξ2 + σ2)3 − βξ2jσ6−2j =

= (ξ2 + σ2)3
(
1− β ξ2jσ6−2j

(ξ2+σ6−2j

)
> (ξ2 + σ2)3

(
1− βsup

s≥0

sj

(1+s)3

)
≥

≥ (ξ2 + σ2)3
(
1− β 27

2

)
> 0 .

So, the polynomials Pj(λ, β, σ), j = 1, 2 have no roots on the imaginary axis. On the
other hand, if Pj(λ0, β, σ) = 0, then Pj(−λ0, β, σ) = 0. Since Pj(λ, β, σ) is a polynomial
with real coefficients, λ̄0 is also a root of the polynomial Pj(λ, β, σ). Therefore, for β ∈(
0,
(
27
4

)1/2)
the polynomial Pj(λ, β, σ) can be represented as follows:

Pj(λ, β, σ) = Fj(λ, β, σ) · Fj(−λ, β, σ), j = 1, 2; , (7)

where

Fj(λ, β, σ) =
3∏

k=1

(λ− ωk,j(β)σ) = a3,j(β)λ
3E + a2,j(β)λ

2σ+

+a1,j(β)λ
2σ + a0,j(β)σ

3. (8)

On the other hand, it is clear that a3,j(β) > 0, and, by Vieta theorem, a1,j(β) >
0, a2,j(β) > 0, a0,j(β) > 1. But a20,j(β) = 1, so a0,j(β) = 1.

From (7),(8), using the spectral decomposition of the operator , we get the validity of
the equalities (4) and (8). Comparing the coefficients of λ in (7), we get the validity of
the equalities (5) and (7).

The theorem is proved.

Let L2(R+;H) be a Hilbert space of vector functions f(t) defined for almost every
R+ = (0,∞) with the norm

∥f∥L2(R+;H) =

∫ ∞

0
∥f(t)∥2 dt < ∞.

Following [3], define the Hilbert space

W 3
2 (R+;H) = {u;u(3) ∈ L2(R+;H), A3u ∈ L2(R+;H)}

equipped with the norm

∥u∥W 3
2 (R+;H) =

(∥∥∥u(3)∥∥∥2
L2(R+;H)

+
∥∥A3u

∥∥2
L2(R+;H)

) 1
2

,
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and denote it by

0
W 2(R+;H) = {u : u ∈ W 3

2 (R+;H), u(v)(0) = 0, v = 0, 2}.

Obviously, by the trace theorem stated in [3],
0
W 2(R+;H) is a complete subspace of

the space W 3
2 (R+;H).

The spaces L2(R;H) and W 3
2 (R;H) for R = (−∞,∞) are introduced similarly (see

[3]).
It was proved in [ ] that

Nj(R) = sup
0̸=u∈W 3

2 (R;H)

∥∥A3−ju
∥∥
L2(R;H)

∥P0(d/dt)u∥L2(R;H)

=

(
4

27

) 1
2

, j = 1, 2. (9)

Now let’s find the following norms in the space
0
W 2(R+;H):

0
N j(R+) = sup

0̸=8∈
0
W 2(R+;H)

∥∥Au(j)∥∥
L2(R+;H)

∥P0(d/dt)u∥L2(R+;H)

, j = 1, 2. (10)

First, let’s prove the theorem below:

Theorem 2. Let 8 ∈
0
W 2(R+;H). Then, for every β ∈

(
0,
(
27
4

)1/2)
we have

∥P0(d/dt)u∥2L2(R+;H) − β
∥∥∥A3−ju(j)

∥∥∥
L2(R+;H)

= ∥Fj(d/dt;β;A)u∥2L2(R+;H) . (11)

Proof. In fact, the simple calculations for 8 ∈
0
W 2(R+;H) (8(ν) = 0, ν = 1, 2, 3) show

that

∥Fj(d/dt;β;A)∥2L2(R+;H) =
∥∥∥u(3) + a22,j(β)Au

′′ + a1,j(β)A
2u′ +A3u

∥∥∥2
L2(R+;H)

=

=
∥∥u(3)∥∥2

L2(R+;H)
+ a22,j(β) ∥Au′′∥

2
L2(R+;H) + a1,j(β)

∥∥A2u′
∥∥2
L2(R+;H)

+
∥∥A3u

∥∥2
L2(R+;H)

=

=
∥∥u(3)∥∥2

L2(R+;H)
+
∥∥A3u

∥∥2
L2(R+;H)

+ (a22,j(β)− 2a1,j(β)) ∥Au′′∥2L2(R+;H)+

+(a21,j(β)− 2a1,j(β))
∥∥A2u′

∥∥2
L2(R+;H)

. (12)

On the other hand,

∥P0(d/dt)u∥2L2(R+;H) =
∥∥∥u(3)∥∥∥2 + 3

∥∥Au′′∥∥2
L2(R+;H)

+ 3
∥∥A2u′

∥∥2
L2(R+;H)

. (13)

Thus, considering (13) in (12), we obtain

∥Fj(d/dt;β;A)8∥2 = ∥P0(d/dt)u∥2L2(R+;H) + (a21,j(β)− 2a1,j(β)− 3) ∥Au′′∥2L2(R+;H)+

+(a21,j(β)− 2a2,j(β)− 3) ∥Au′∥2L2(R+;H) .
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By (5) and (7), we get the validity of the theorem.

Theorem 3. The following relations are true:

0
N j(R+) =

(
4

27

) 1
2

, j = 1, 2.

Proof. From (11) it follows that for every 8 ∈
0

W 3
2 (R+;H) the inequality

∥P0(d/dt)u∥2L2(R+;H) > β
∥∥∥A3−ju(j)

∥∥∥2
L2(R+;H)

, j = 1, 2,

holds. Passing to the limit as β →
(
27
4

) 1
2 , we obtain

0
N j(R) ≤

(
4

27

) 1
2

. (14)

Let’s show that this inequality is in fact an equality.

By the definition of Nj(R) (j = 1, 2), for every ε > 0 there exists a function v0(t) ∈
W 2

2 (R,H) such that∥∥A3−jv0(t)
∥∥
L2(R;H)

> (Nj(R)− ε) ∥P0(d/dt)v0(t)∥2L2(R;H) .

Now let’s find the function vk(t) ∈ W 3
2 (R,H) with support in [−k, k] such that vk(t) →

v0(t) with respect to the norm of W 3
2 (R,H). Then, for large ?,∥∥An−jvk(t)

∥∥
L2(R;H)

> (Nj(R)− ε) ∥P0(d/dt)vk(t)∥L2(R;H) , k ≥ n0.

Now let’s consider the function

8n0(t) = vn0(t− k) ∈
0

W 3
2 (R+;H).

Obviously, ∥8n0(t)∥L2(R+;H) = ∥vn0(t)∥L2(R+;H), ∥P (d/dt)un0∥L2(R+;H) = =
∥P (d/dt)vn0(t)∥L2(R;H). Therefore we have

∥∥An−jun0

∥∥
L2(R+;H)

≥

((
4

27

) 1
2

− ε

)
∥P (d/dt)un0(t)∥L2(R+;H) .

Taking into account the inequality (14), we obtain

0
N j(R+) =

(
4

27

) 1
2

, j = 1, 2.

The theorem is proved.
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