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Abstract. This study focuses on investigating the existence and uniqueness of solutions for a
system of nonlinear first-order implicit ordinary differential equations with three-point boundary
conditions. Initially, the considered problem is reduced to an equivalent integral equation using
Green’s function. Subsequently, the Banach contraction mapping theorem is employed to establish
the main result for the given problem. Finally, a numerical example is presented to demonstrate
our main results.
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1. Introduction and Problem Statement

Differential equations are prevalent in real-life situations, particularly in modeling com-
plex systems where relationships are not necessarily linear. Some examples of their role
include chemical reactions, biological systems, economics, engineering systems, physics,
and neural networks [1, 2].

There has been significant interest in researching boundary value problems for non-
linear systems of ordinary differential equations with boundary conditions [3-29], as well
as nonlinear implicit differential equations, which have been intensively discussed by sev-
eral researchers and in the literature [ 30, 31, 32, 33]. However, as far as the author is
aware, almost nothing is known about the existence and uniqueness of the solutions for
first-order nonlinear implicit differential equations with three-point boundary conditions.
S. Heikkilä considered this problem using discontinuous boundary conditions [30]. In that
work, the author established discontinuous implicit differential equations. Viorel Barbu
and Abgelo Favini investigated the existence of an implicit nonlinear differential equation
for the Cauchy problem [31]. Inspired and motivated by the above works, we study the ex-
istence and uniqueness of solutions for first-order nonlinear implicit differential equations
with nonlocal conditions. The Banach contraction mapping principle is used to prove the
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existence and uniqueness of theorem. Additionally, a crucial aspect of this line of study
involves finding the Green function in a practical manner.

In this research, we set out to establish the existence and uniqueness of the system of
nonlinear implicit differential equations of the type

ẋ(t) = f (t, x(t), ẋ(t)) for t ∈ [0, T ], (1)

subject to three-point boundary conditions

Ax(0) +Bx(t1) + Cx(T ) = d, (2)

where A,B,C are constant square matrices of order n such that detN ̸= 0, N =
A + B + C; f : [0, T ] × Rn × Rn → Rn is a given function, d ∈ Rnis a given vector, and
t1 satisfies the condition 0 < t1 < T.

We denote by C ([0, T ];Rn) the Banach space of all continuous functions x(t)from [0, T ]
to Rn with the norm

∥x∥ = max {|x(t)| : t ∈ [0, T ]}

where |·| is the norm in the space Rn.
This paper is structured as follows. Section 2 addresses the definitions and lemmas,

which are the key tools for our main results. Section 3 describes the theorem on the
existence and uniqueness of the solution of problem (1)-(2) established under sufficient
conditions on the nonlinear terms. In Section 4, the given example is verified to show the
legitimacy and applicability of the proposed technique.

2. Preliminaries

We define the solution of problem (1)-(2) as follows:
Definition 2.1. A function x ∈ C ([0, T ], Rn) is said to be a solution to problem (1)-(2)

if ẋ(t) = f (t, x(t), ẋ(t)) for each t ∈ [0, T ], and boundary conditions (2) are satisfied.
For simplification, we can consider the following problem:

ẋ = y(t), t ∈ [0, T ], (3)

Ax(0) +Bx(t1) + Cx(T ) = d. (4)

Lemma 2.1. Let y ∈ C ([0, T ] × Rn × Rn, Rn). Then, the unique solution x ∈
C ([0, T ], Rn) of the boundary value problem for differential equation (3) with boundary
conditions (4) is given by

x(t) = D +

∫ T

0
G(t, τ)y(τ)dτ, (5)

for t ∈ [0, T ], where

G(t, τ) =

{
G1(t, τ), 0 ≤ t ≤ t1
G2(t, τ), t1 < t ≤ T

,
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D = N−1d,

with

G1(t, τ) =


N−1A, 0 ≤ τ ≤ t,
−N−1 (B + C) , t < τ ≤ t1,
−N−1C, t1 < τ ≤ T,

and

G2(t, τ) =


N−1A, 0 ≤ τ ≤ t1,
N−1 (A+B) , t1 < τ ≤ t,
−N−1C , t < τ ≤ T.

Proof. Assuming that x(t) is a solution of boundary-value problem (3)-(4), then for
t ∈ [0, T ]

x(t) = x(0) +

∫ t

0
y(τ)dτ. (6)

When formula (6) satisfies condition (4), we obtain

(A+B + C)x(0) = d−B

∫ t1

0
y(t)dt− C

∫ T

0
y(t)dt. (7)

Let us denote N = A+B + C, and from equality (7), we determine x(0) as follows:

x (0) = N−1d−N−1B

∫ t1

0
y(t)dt−N−1C

∫ T

0
y(t)dt. (8)

By substituting the value x(0) determined from equality (8) into (6), we obtain

x(t) = N−1d−N−1B

∫ t1

0
y(t)dt−N−1C

∫ T

0
y(t)dt+

∫ t

0
y(τ)dτ. (9)

Now, consider that t ∈ [0, t1]. Then, we can rewrite equality (9) as follows:

x(t) = N−1d−N−1B

∫ t

0
y(τ)dτ −N−1B

∫ t1

t
y(τ)dτ −N−1C

∫ t

0
y(τ)dτ

−N−1C

∫ t1

t
y(τ)dτ −N−1C

∫ T

t1

y(t)dt+

∫ t

0
y(τ)dτ.

In the above formula, by grouping similar terms and then simplifying, we obtain

x(t) = N−1d+

∫ t

0

(
E −N−1B −N−1C

)
y(τ)dτ

+

∫ t1

t

(
−N−1B −N−1C

)
y(τ)dτ +

∫ T

t1

(
−N−1C

)
y(t)dt
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= N−1d+

∫ t

0
N−1Ay(τ)dτ −

∫ t1

t
N−1 (B + C) y(τ)dτ

−
∫ T

t1

N−1Cy(t)dt. (10)

Let us define the new function as follows:

G1(t, τ) =


N−1A, 0 ≤ τ ≤ t,
−N−1(B + C), t < τ ≤ t1,
−N−1C, t1 < τ ≤ T.

Using the above equality as in (10), we obtain the following result:

x(t) = D +

∫ T

0
G1(t, τ)y(τ)dτ.

For this case, t ∈ (t1, T ] we can write equality (9) as follows:

x(t) = N−1d−N−1B

∫ t1

0
y(t)dt−N−1C

∫ t1

0
y(t)dt−

−N−1C

(∫ t

t1

y(τ)dτ +

∫ T

t
y(τ)dτ

)
+

∫ t1

0
y(t)dt+

∫ t

t1

y(τ)dτ

= N−1d+
(
E −N−1B −N−1C

) ∫ t1

0
y(t)dt+

(
E −N−1C

) ∫ t

t1

y(τ)dτ−

−N−1C

∫ T

t
y(τ)dτ = N−1d+N−1A

∫ t1

0
y(t)dt

N−1(A+B)

∫ t

t1

y(τ)dτ −N−1C

∫ T

t
y(τ)dτ.

Hence, we introduce the new function

G2(t, τ) =


N−1A, 0 ≤ τ ≤ t1,
N−1(A+B), t1 < τ ≤ t,
−N−1C, t < τ ≤ T.

Thus, for each t ∈ (t1, T ], we have

x(t) = D +

∫ T

0
G2(t, τ)y(τ)dτ.

We deduce that the solution of boundary-value problem (3)-(4) is in the form

x(t) = D +

∫ T

0
G(t, τ)y(τ)dτ. (11)

57



Consequently, we have successfully completed the proof.
Lemma 2.2. Assume that f ∈ C[0, T ]×Rn×Rn. Then, the function x(t) is a solution

of the boundary-value problem (1)-(2) if and only if x(t)is a solution of the integral equation

x(t) = D +

∫ T

0
G(t, τ)f(τ, x(τ), ẋ(τ))dτ. (12)

Proof. Let x(t) be a solution of the boundary-value problem (1)-(2). Then, in the
same way as in Lemma 2.1, we can prove that it is also a solution of the integral equation
(12). Obviously, the solution of the integral equation (12) satisfies the boundary-value
problem (1)-(2).

This completes the proof of Lemma 2.2.

3. Main results

Let P be an operator such that P : C ([0, T ]Rn) → C ([0, T ]Rn) as

(Px)(t) = D +

∫ T

0
G(t, τ)f (τ, x(τ), ẋ(τ)) dτ.

Problem (1)-(2) equivalent to fixed-point problem. Hence, problem (1)-(2) has a solu-
tion if and only if the operator P has a fixed point.

We now present the existence and uniqueness results for nonlinear problem (1)-(2) by
applying the Banach fixed-point theorem.

Theorem. We assume that the following assumptions hold:
(H1) There exist constants M1 > 0, M2 ∈ (0, 1) such that

|f(t, x1, x2)− f(t, y1, y2)| ≤ M1 |x1 − y1|+M2 |x2 − y2|

for each t ∈ [0, T ] and all x1, x2, y1, y2 ∈ Rn.
(H2)

L =
STM1

1−M2
< 1, (13)

where
S = max[0,T ]×[0,T ] ∥G(t, τ)∥ .

Then, boundary-value problem (1)-(2) has a unique solution on[0, T ].

Proof. We denote max[0,T ] |f(t, 0, 0)| = Mf and choose r ≥
∥D∥+MfTS· 2−M2

1−M2
1−L . We show

that PBr ⊂ Br, where

Br = {x ∈ C([0, T ];Rn) : ∥x∥ ≤ r} .

It is clear that∣∣f (
t, x(t), x′(t)

)∣∣ = ∣∣f (
t, x(t), x′(t)

)
− f(t, 0, 0) + f(t, 0, 0)

∣∣ ≤
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≤
∣∣f (

t, x(t), x′(t)
)
− f(t, 0, 0)

∣∣+ |f(t, 0, 0)| ≤

≤ M1 |x(t)|+M2

∣∣x′(t)∣∣+Mf = M1 |x(t)|+M2

∣∣f (
t, x(t), x′(t)

)∣∣+Mf .

From here, we obtain

(1−M2)
∣∣f (

t, x(t), x′(t)
)∣∣ ≤ M1 |x(t)|+Mf .

Therefore, ∣∣f (
t, x(t), x′(t)

)∣∣ ≤ M1

1−M2
|x(t)|+

Mf

1−M2
. (14)

However, for x ∈ Br, we have

|Px(t)| ≤ |D|+
∫ T

0
|G(t, τ)|

(∣∣f (
τ, x(τ), x′(τ)

)
− f(τ, 0, 0)

∣∣+ |f(τ, 0, 0)|
)
dτ

≤ |D|+ S

∫ T

0

(
M1 |x(t)|+M2

∣∣x′(t)∣∣+Mf

)
dt.

We can rewrite the above inequality by using (14) as (15):

|Px(t)| ≤ |D|+ S

∫ T

0

(
M1 |x(t)|+M2

(
M1

1−M2
|x(t)|+

Mf

1−M2

)
+Mf

)
dt =

= |D|+ SMfT +
TSMf

1−M2
+ S

∫ T

0

(
M1 +

M1M2

1−M2

)
|x(t)| dt ≤

≤ ∥D∥+ SMfT

(
1 +

1

1−M2

)
+ ST

(
M1 +

M1M2

1−M2

)
∥x∥ ≤

≤ ∥D∥+ SMfT · 2−M2

1−M2
+ ST

M1

1−M2
r ≤ r. (15)

Thus, we obtain P : Br → Br.
Since

|ẋ(t)− ẏ(t)| =
∣∣f (

t, x(t), x′(t)
)
− f (t, y(t), ẏ(t))

∣∣ ≤
≤ M1 |x(t)− y(t)|+M2 |ẋ(t)− ẏ(t)| .

We obtain

|ẋ(t)− ẏ(t)| ≤ M1

1−M2
|x(t)− y(t)| . (16)

For any x, y ∈ Br, it is true that

|Px− Py| ≤
∫ T

0

∣∣G(t, s)(f(s, x(s), x′(s))− f(s, y(s), y′(s))
∣∣ ds ≤

≤ S

∫ T

0

(
M1 |x(t)− y(t)|+M2

∣∣x′(t)− y′(t)
∣∣) dt. (17)
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When we substitute (16) in (17), we have a true statement such that

|Px− Py| ≤ S

∫ T

0

(
M1 |x(t)− y(t)|+ M1M2

1−M2
|x(t)− y(t)|

)
dt ≤

≤ TS

(
M1 ∥x− y∥+ M1M2

1−M2
∥x− y∥

)
=

= TS
M1

1−M2
∥x− y∥

or
∥Px− Py∥ ≤ L ∥x− y∥ . (18)

It is clearly shown that inequality (18) holds under condition (13). Consequently,
boundary-value problem (1)-(2) has a unique solution.

4. Example

In this section, we provide an example to illustrate the main results obtained in this paper.
Example. Let us consider the system of implicit differential equations given by the

three-point boundary conditions as follows:{
ẋ1 = αx1 + 0.1 sinx2
ẋ2 = β sinx1

, t ∈ [0, 2], (19)

x1(0) +
1

2
x2(1)−

1

2
x2(2) = 1. (20)

We can rewrite problem (19)-(20) in the equivalent form:(
1 0
0 0

)(
x1(0)
x2(0)

)
+

(
0 1

2
0 0

) (
x1(1)
x2(1)

)
+

(
0 −1

2
0 1

) (
x1(2)
x2(2)

)
=

(
1
1

)
.

Obviously,

N =

(
1 0
0 0

)
+

(
0 1

2
0 0

)
+

(
0 −1

2
0 1

)
=

(
1 0
0 1

)
,

matrix N is invertible, and N−1 =

(
1 0
0 1

)
.

Condition (H1) holds with Gmax ≤ 1.5 and M2 = 0.1, and condition (13) is satisfied.
Hence,

L =
GmaxTM1

1−M2
=

1.5 · 2 ·max(α, β)

1− 0.1
< 1 (21)

Inequality (21) implies that max(α, β) < 0.3; by Theorem, we can guarantee the existence
of the unique solution of the boundary-value problem (19)-(20) on [0,2].

Conclusion. The boundary conditions considered in this paper are sufficiently general
and can be used extensively for a wide class of problems. In this work, the existence and
uniqueness of the solutions for first order nonlinear implicit differential equations with
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three-point boundary conditions are generated under sufficient conditions. Note that,
given here, methods can be used in similar multipoint problems for ordinary differential
equations as follows:

ẋ(t) = f(t, x(t), x′(t)) for t ∈ [0, T ],

m∑
j=0

Ljx(tj) = α.

Here, 0 = t0 < t1... < tm−1 < tm = T ; Lj ∈ Rn×n are given matrices; α ∈ Rn is a
given vector,

detN ̸= 0, N =
m∑
j=0

Lj .
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