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A Short and Educational Proof of the Bolzano-

Weierstrass Theorem
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Abstract. A new proof of the Bolzano-Weierstrass theorem is presented. The Heine-Borel theo-
rem, Cantor’s intersection method, the preliminary theorem of monotone subsequences, the recur-
sive construction process and the axiom of choice are not used in this new proof. The presented
proof may educationally preferable for instructors.
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1. Introduction

It is appropriate to start with a theorem from Bernard Bolzano’s article ”Purely an-
alytic proof of the theorem, that between any two values, which give results of opposite
sign, there lies at least one real root of the equation” [2] in order to understand why this
theorem is called by two names; Bolzano and Weierstrass.

Theorem 1.1. Let M be a property that is true for all nonnegative variable x less than a
given number u, but not true for all nonnegative variable x. In this case there is such a
largest number U such that

{x : M(x)} = {x : x < U}

Proof. Since the property M is not satisfied for all non-negative values of x but is satisfied
for all values less than u, then for a positive number D, the property M is not satisfied
for x less than V = u+D. For each m = 0, 1, 2, 3 consider the set

Sm = {x : x < u+ D

2m
}

and consider the question that ”Is there a smallest number m for the set Sm such that the
property M is satisfied?”
If such a number m does not exist, we could take U = u because if we assume that
U = u + d for a number d, then for sufficiently large m the inequality u + D

2m
< u + d

holds, which contradicts the non-existence of the smallest number m.
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Now suppose that there exists such a number m0 such that the property M holds for every
element of the set Sm0

and not for some elements of Sm0−1.That is, it is satisfied for all
x smaller than u+ D

2m0
, but not for all x smaller than u+ D

2m0−1 . There is also no reason

why it should be U = u+ D

2m0
. Since the difference between u+ D

2m0
and u+ D

2m0−1 is D

2m0

For each m1 = 0, 1, 2, 3 consider the set

Sm1 = {x : x < u+ D

2m0
+ D

2m0+m1 }

Now let’s repeat our question that ”Is there a smallest number m1 for the set Sm1 such
that the property M is satisfied?”. If such a number m1 does not exist, we could take
U = u + D

2m0
. If there is such a number m1

0
, then for each m2 = 0, 1, 2, . . . consider the

set

Sm2 = {x : x < u+ D

2m0
+ D

2
m0+m1

0

+ D

2
m0+m1

0
+m2 }

The same question is asked for these sets over m2 ; ”Is there a smallest number m2 for
the set Sm2 such that the property M is satisfied?” As a result, this process will end in
two ways.

1. For a given number i ∈ N there does not exits a smallest number mi
0
for the set Smi ,

given below, such that the property M

Smi = {x : x < u+ D

2m0
+ D

2
m0+m1

0

+ D

2
m0+m1

0
+m2

0

}+ . . . D

2
m0+m1

0
+m2

0
+...+mi }

then

U = u+ D

2m0
+ D

2
m0+m1

0

+ D

2
m0+m1

0
+m2

0

}+ . . . D

2
m0+m1

0
+m2

0
+...+mi

0

ii. For each number j ∈ N there exits a smallest number mi
0
for the set Smi ,given below,

such that the property M

Smi = {x : x < u+ D

2m0
+ D

2
m0+m1

0

+ D

2
m0+m1

0
+m2

0

}+ . . . D

2
m0+m1

0
+m2

0
+...+mj }

then U is the limit point of the series below,

u+ D

2m0
+ D

2
m0+m1

0

+ D

2
m0+m1

0
+m2

0

}+ . . . D

2
m0+m1

0
+m2

0
+...+mj }

This theorem of Bolzano, known as the ”greatest lower bound property”, helped Weier-
strass to prove the ”every bounded infinite set of real numbers has a limit point” theorem
[1].

Proof. Let (xn) be a bounded real sequence and it has a monotone increasing subsequence.
Consider the set
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B = {y : y ≥ x, x = xn for some n ∈ N}

and the property M := ”Not belongs to B ”. Let us take any element b0 from set B and
any element a0 from set A. For the values of x, it can be said that the property M is not
true for all values less than b0, but it is true for values less than a0. Hence by the theorem
of Bolzano there exists an element U such that the sequnce xnk

converges to U . Similarly
the proof will be given in case the sequence has a monotone decreasing subsequence.

It will be convenient to list the outline of the proofs of the Bolzano-Weierstrass theorem

1. A proof is presented by using the lemma that ”there exists a monotone increasing or
monotone decreasing subsequence of a bounded sequence” and ”the theorem that a
bounded monotone decreasing or increasing sequence is convergences to its infumum
or supremum, respectively”. One can easliy find the proof in [3]

2. If (xn) is a bounded sequence, then it is in a closed interval [a, b]. the interval with
infinite elements of the sequence (xn) is selected from the closed intervals [a, c] and
[c, b] with the midpoint c of this closed [a, b]. When this process is repeated over
the inclusion of infinite elements, then it is obtained nested closed intervals with
infinite elements from the sequence (xn). Then it is obtained that there is a unique
element at the intersection of these nested closed intervals and a subsequence of (xn)
converges to this element by using the Cantor intersection theorem. One can easliy
find the proof in [5].

3. An open cover is constructed for the bounded and infinite set {xn}n set with the
assumption that there is no limit point then by using Heine-Borel theorem a finite
open cover is obtained for the set {xn}n but infinite elements of {xn}n does not
belong to the finite cover. the theorem based on this contradiction is easily found in
[4].

4. Firstly it is defined that the notions (xn). lim inf (xn) and lim sup (xn) and prove that
they exist and are unique. Then it is proved that (xn). lim inf (xn) and lim sup (xn)
are limit points for the set {(xn)}.

5. It is proved that the supremum and infumum of {xn} exits and they are the limit
point of the sequence By the using Stäckel-finite concept which is equivalent to the
Dedekind and Tarski finiteness in ZFC [6].

2. New Proof of Bolzano-Weierstrass Theorem

Let (xn) be a bounded real sequence. Without loss of generality it can be taken [0, 1]
as a domain of the sequence and also consider the function f : N → [0, 1] instead of (xn)
since a sequence is a function whose domain is the set of natural numbers.

A real sequence (xn) converges to a real number x if and only if for each ǫ > 0 there
exists an N0 ∈ N such that the implication ”n ≥ N0 =⇒ |xn − x| < ǫ” holds. For a
given (0, y0) where 0 ≤ y0 ≤ 1 and ǫ > 0 the set {(x, y) : 0 ≤ x, y0 − ǫ ≤ y ≤ y0 + ǫ} is
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called ǫ-band of (0, y0) and denoted by B(y0, ǫ). It is easily seen that if a sequence f(n)
converges to an element y if and only if for each ǫ > 0 there exists an N0 ∈ N such that
{(n, f(n)) : n ≥ N0} belongs to ǫ-band of (0, y).
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If a sequence f(n) has no convergent subsequence, for each y ∈ [0, 1] there exist at
least one ǫ > 0 such that ǫ-band of (0, y) contains finite elements of f(n).

Theorem 2.1 (Bolzano-Weierstrass theorem). Every bounded sequence of real numbers
has a convergent subsequence.

Proof. Let’s suppose that there is a sequence f(n) without a convergent subsequence.
Assume as well that our sequence doesn’t have any terms that continuously repeat. If not,
the convergent subsequence will arise. f(nk). Let we choose an arbitrary element y0 ∈
[0, 1]. By the assumption there exists an ǫ0 > 0 such that the set {f(n) : n ∈ N}∩B(y0, ǫ0)
is finite. Let consider the set X := {ǫ : {f(n) : n ∈ N} ∩ B(y0, ǫ) is finite}. The set X

is non-empty since there exists at least ǫ0 > 0 and it is bounded above because of the
inclusion of the {f(n) : n ∈ N} ⊂ B(y0, 1) . Therefore supX exists, say ǫ. The set

B(y0, ǫ) ∩ {f(n) : n ∈ N}

is finite because there exist ǫ1, ǫ2 > 0 such that the sets {f(n) : n ∈ N}∩B(y0 + ǫ, ǫ1) and
{f(n) : n ∈ N} ∩B(y0 − ǫ, ǫ2) are finite, moreover there are also finite for the real number
ǫ∗ := min{ǫ1, ǫ2}. The set B(y0, ǫ

∗) ∩ {f(n) : n ∈ N} is finite because ǫ is supremum.
Hence The set B(y0, ǫ) ∩ {f(n) : n ∈ N} is finite. On the other hand it is easily sen that
the set B(y0, ǫ+ ǫ∗)∩ {f(n) : n ∈ N} is also finite, it is a contradiction since it is assumed
that supX = ǫ.
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