
Journal of Contemporary Applied Mathematics
V. 14, No 2, 2024, December
ISSN 2222-5498
https://doi.org/10.69624/2222-5498.2024.2.17

On the statistical approximation of q-Bernstein-
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Abstract. This study defines the q-type of the Bernstein-Kantorovich operator on the symmetric
interval. It also calculates the statistical approximation of this new generalized operator and its
rate of approximation with the help of the modulus of continuity.
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1. Introduction

Bernstein operators are linear operators used to approximate continuous functions on
the interval [0, 1]. The n-th Bernstein polynomial of a function f is defined as:

Bn(f ;x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

These polynomials were first introduced by Bernstein in 1912 [1]. Kantorovich operators
are an integral modification of Bernstein operators where the function f is integrated over
small intervals (see [2]):

Ln(f ;x) = (n+ 1)

n∑
k=0

(
n

k

)
xk(1− x)n−k

∫ k+1
n+1

k
n+1

f(t)dt. (1)

for x ∈ [0, 1]. An estimate for the Korovkin-type approximation properties and the con-
vergence rate of these operators can be found in [3]. Additionally, numerous authors have
constructed and studied Kantorovich-type generalizations of various other operators [4],
[5], [6].

In recent years, interesting generalizations of Bernstein polynomials have been pro-
posed by Lupas [7] and Phillips [8]. Generalizations of Bernstein polynomials based on
q-integers have attracted much attention and have been widely studied by many authors
[9], [10], [11].
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First, let us give some basic definitions from q-calculus (see [12]).
For any fixed real number q > 0,the q-integer [r] is defined as

[r]q := [r] =

{
1−qr

1−q , q ̸= 1

r, q = 1

for all nonnegative integers. The q-factorial [r]! and q-binominal

[
n
k

]
, (n ⩾ r ⩾ 0) are also

defined by

[r]! =

{
[r][r − 1]...[1], r = 1, 2, ...
1, r = 0

and [
n
k

]
=

[n]!

[n− k]![k]!

respectively.
For an arbitrary function f(x), the q-differential is given by

dqf(x) = f(qx)− f(x).

In particular, dqx = (1− q)x.
Suppose 0 < a < b. The definite q-integral is defined as∫ b

0
f(t)dqt = (1− q)b

∞∑
j=0

f(qjb)qj 0 < q < 1

and ∫ b

a
f(t)dqt =

∫ b

0
f(t)dqt−

∫ a

0
f(t)dqt.

The q-Bernstein polynomials were first introduced by Lupas [7] and then Ostrovska [5]
studied the smooth approximation properties of these operators in a recent paper. In
1997, Philipps [8] introduced another modification of q-Bernstein polynomials as

Bn(f ; q;x) =
n∑

k=0

f

(
[k]

[n]

)[
n
k

]
xk

n−k−1∏
s=0

(1− qsx)

for each positive integer n, and f ∈ C[0, 1].
In this study, the Korovkin type approximation and statistical approximation of q-

Bernstein-Kantorovich operators are investigated.
Let us now recall the concept of statistical convergence, which has become an impor-

tant area of research in approximation theory, especially in the study of linear positive
operators.

The natural density, δ, of a set K ⊆ N is defined by

δ(K) = lim
n

1

n
{the number k ≤ n : k ∈ K}
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provided the limit exists (see [13]). A sequence x = (xk) is called statistically convergent
to a number L if, for every ε > 0

δ{k : |xk − L| ≥ ϵ} = 0

and it is denoted as st− limn→∞
1
[n] = 0.

Theorem 1.1. (see [14]) If the sequence of linear positive operators
An : C[a, b] → C[a, b] satisfies the conditions

st− lim
n

∥An(ei; .)− ei∥C[a,b] = 0; ei(t) = ti

for i = 0, 1, 2, then for any function f ∈ C[a, b],

st− lim
n

∥An(f, .)− f∥C[a,b] = 0

2. Construction of the Operators

Let us define the following generalization of the Bernstein-Kantorovich operator (1):

Kn(f ; q;x) =
[n+ 1]

2

n∑
k=0

(∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
f(t)dqt

)[
n
k

]
q−k(1− x)kq (1 + x)(n−k−1)

q , (2)

where Kn : C[−1, 1] → C[−1, 1].

Lemma 2.1. Let x ∈ [−1, 1], ei = xi i = 0, 1, 2. Then the following statements are
true for the q-Bernstein-Kantorovich operators (2):

Kn(e0; q;x) = 1

Kn(e1; q;x) =
2

[n+ 1][2]
+

[n]

[n+ 1]
(1 + x)− 2

[2]

Kn(e2; q;x) =
[n]2

[n+ 12]
x2 +

(
2[n]2

[n+ 1]2
+

(2 + 4q)[n]

[3][n+ 1]2
− 3[2][n]

[n+ 1][3]

)
x

+
[n]2

[n+ 1]2
+

(2 + 4q)[n]

[3][n+ 1]2
− 3[2][n]

[n+ 1][3]

+
4

3[n+ 1]2
− 6

[n+ 1][3]
+

3

[3]
.

(3)

To prove a Korovkin-type theorem, the operator must be linear and positive. It is clear
that the operator Kn(f ; q;x) is linear. Let us give the following lemma for the positivity
of the operator Kn(f ; q;x).
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Lemma 2.2. Let 0 ≤ a < b, 0 < q < 1 and let f be a pozitive function defined on the
interval [0, b]. If f is monotone increasing on [0, b], then

∫ b
a f(t)dqt ≥ 0 in this interval.

Let q := (qn) be a sequence satisfying the following properties:

st− lim
n

qn = 1 and st− lim
n

qn = a : a < 1 (4)

Theorem 2.3. Let be a sequence satisfying for 0 < qn < 1 and Kn(f ; q;x) be a sequence of
operators defined by (2). Then for any monotone increasing positive function f ∈ C[−1, 1],

st− lim
n

∥Kn(f ; q; .)− f∥C[−1,1] = 0 (5)

is satisfied.

Due to the general definition of the q-integral, it is not easy to calculate the convergence
rate of the operator. Because the q-integral is the difference of two infinite sums, it does
not satisfy some integral inequalities. Therefore, the Riemann type q-integral will be used
here instead of the q-integral .

Definition 2.4. (See [15]). Let 0 < q < 1,0 < a < b. The Riemann type q-integral is
defined as ∫ b

a
f(x)dRq x = (1− q)(b− a)

∞∑
j=0

f(a+ (b− a)qj)qj

Now let us redefine the operator (2) using the Riemann type q-integral:

K∗
n(f ; q;x) =

[n+ 1]

2

n∑
k=0

(∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
f(t)dRq t

)[
n
k

]
q−k(1− x)kq (1 + x)(n−k−1)

q . (6)

It is clear that the Riemann type q-integral is linear and positive.

Lemma 2.5. For the operator (6), the following equations are true:

K∗
n(1; q;x) = 1 (7)

K∗
n(t; q;x) =

[n]

[n+ 1]

(
1 +

q − 1

[2]

)
x+

[n]

[n+ 1]

(
1 +

q − 1

[2]

)
+

2

[n+ 1][2]
− 1 (8)

K∗
n(t

2; q;x) =

(
q2[n][n− 1]

[n+ 1]2
+

2q2(q − 1)[n][n− 1]

[n+ 1]2[2]
+

q2(q − 1)2[n][n− 1]

[n+ 1]2[3]

)
x2

+

(
[2]q[n][n− 1]

[n+ 1]2
+

2[n]

[n+ 1]2
− 2[n]

[n+ 1]
+

4[n]

[n+ 1]2[2]
+

2q(q − 1)[n][n+ 1]

[n+ 1]2

−2(q − 1)[n]

[n+ 1][2]
+

4(q − 1)[n]

[n+ 1]2[3]
+

q(q − 1)2[n][n− 1][2]

[n+ 1]2[3]
+

2(q − 1)2[n]

[n+ 1]2[3]

)
x

+
q[n][n− 1]

[n+ 1]2
+

2[n]

[n+ 1]2
− 2[n]

[n+ 1]
+

4[n] + 2q(q − 1)[n][n− 1]

[n+ 1]2[2]

− 4 + 2(q − 1)[n]

[n+ 1][2]
+

4 + 4(q − 1)[n] + q(q − 1)2[n][n− 1] + 2(q − 1)2[n]

[n+ 1]2[3]
+ 1

(9)
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Lemma 2.6. The second moment of the operator K∗
n(f ; q;x) is given below:

K∗
n((t− x)2; q;x)

=

(
q2[n][n− 1]

[n+ 1]2

(
1 +

2(q − 1)

[2]
+

(q − 1)2

[3]

)
− 4[n]q

[n+ 1][2]
+ 1

)
x2

+

(
[n]

[n+ 1]2

(
[2]q[n− 1] + 2 +

4

[2]
+ 2q(q − 1)[n− 1]

+
4(q − 1) + q(q − 1)2[n− 1][2] + 2(q − 1)2

[3]

)
− 8[n]q

[n+ 1][2]
− 4

[n+ 1][2]
+ 2

)
x

+
q[n][n− 1]

[n+ 1]2

(
1 +

2(q − 1)

[2]
+

(q − 1)2

[3]

)
+

2[n]

[n+ 1]2

(
1 +

2

[2]
+

[2](q − 1)

[3]

)
− 4q[n]

[n+ 1][2]
+

4

[n+ 1]

(
1

[3][n+ 1]
− 1

[2]

)
+ 1.

(10)

3. Rates of statistical convergence

This section will calculate the order of approximation of the operator K∗
n(f ; q;x) with

the help of the modulus of continuity. First, we will recall the definition of the modulus
of continuity.

The modulus of continuity of a continuous function f is given by

ω(f ; δ) := sup
|x−y|≤δx,y∈[0,a]

|f(x)− f(y)| (11)

where we are implicitly assuming that

lim
δ→0+

ω(f ; δ) = 0, (12)

and for any δ > 0,

|f(x)− f(y)| ≤ ω(f ; δ)

(
|x− y|

δ
+ 1

)
. (13)

Theorem 3.1. If the sequence q := (qn) satisfies the condition given in (4), then

|K∗
n(f ; qn;x)− f(x)| ≤ 2ω(f ;

√
δn,x)

for all f ∈ C[−1, 1], where

δn,x = K∗
n((t− x)2; qn;x).
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Proof. Since the operator K∗
n(f ; q;x) is the linear and positiv, using inequality (13) gives

|K∗
n(f ; qn;x)− f(x)| ≤ K∗

n(|f(t)− f(x)|; q;x)

=
[n+ 1]

2

n∑
k=0

1

2n
q−k

[
n
k

]
(1− x)kq (1 + x)(n−k−1)

q

×
∫ 2[k+1]

[n+1]
−1

2[k]
[n+1]

−1

(
1 +

|t− x|
δ

)
ω(f, δ)dRq t.

Let us denote

Φn,k,q(x) =
[n+ 1]

2

n∑
k=0

1

2n
q−k

[
n
k

]
(1− x)kq (1 + x)(n−k−1)

q

and rewrite the above inequality:

|K∗
n(f ; qn;x)− f(x)| ≤ ω(f, δ)

n∑
k=0

Φn,k,q(x)

∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
dRq t

+
1

δ
ω(f, δ)

n∑
k=0

Φn,k,q(x)

∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
|t− x|dRq t

Using equality K∗
n(1; qn;x) = 1 and the H/”older’s inequality, we get

|K∗
n(f ; qn;x)− f(x)|

≤ ω(f, δ)

1 +
1

δ

n∑
k=0

Φn,k,q(x)

(∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
(t− x)2dRq t

) 1
2
(∫ 2[k+1]

[n+1]
−1

2[k]
[n+1]

−1
dRq t

) 1
2


= ω(f, δ)

1 +
1

δ

n∑
k=0

(
Φn,k,q(x)

∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
(t− x)2dRq t

) 1
2
(
Φn,k,q(x)

n∑
k=0

∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
dRq t

) 1
2


Now, using Hölder’s inequality for sums again, we get

|K∗
n(f ; qn;x)− f(x)|

≤ ω(f, δ)

1 +
1

δ

(
n∑

k=0

Φn,k,q(x)

∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
(t− x)2dRq t

) 1
2

×

(
n∑

k=0

Φn,k,q(x)

∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
dRq t

) 1
2


= ω(f, δ)

1 +
1

δ

(
n∑

k=0

Φn,k,q(x)

∫ 2[k+1]
[n+1]

−1

2[k]
[n+1]

−1
(t− x)2dRq t

) 1
2

 ,

22



so,

|K∗
n(f ; qn;x)− f(x)| ≤ ω(f, δ)

{
1 +

1

δ
(K∗

n(t− x)2; q;x)
1
2

}
. (14)

If q := (qn) is a sequence satisfying condition (4), and

δ :=
√

δn,x = (K∗
n((t− x)2; q;x)

1
2 , the proof is complete.

From the conditions (4) we obtain st − limnK
∗
n((t − x)2; qn;x) = 0, so that st −

limn δ(f, δn) = 0 from (12). This shows the pointwise statistical convergence rate of the
operator K∗

n(f ; q;x) to the function f .

Now we examine the second moment of the operator K∗
n(f ; q;x) given by Eq. (10).

Let’s denote the coefficient of x2 as

A :=
q2[n][n− 1]

[n+ 1]2

(
1 +

2(q − 1)

[2]
+

(q − 1)2

[3]

)
− 4[n]q

[n+ 1][2]
+ 1. (15)

In the expression (15),

1 +
2(q − 1)

[2]
+

(q − 1)2

[3]
≤ 3q2

[3]

and since [n− 1] < [n],

A =
q2[n][n− 1]

[n+ 1]2
3q2

[3]
− 4[n]q

[n+ 1][2]
+ 1 ≤

(
2[n]q

[2][n+ 1]
− 1

)2

(16)

is obtained. Again, let’s denote the coefficient of x as

B :=
[n]

[n+ 1]2

(
[2]q[n− 1] + 2 +

4

[2]
+ 2q(q − 1)[n− 1]

+
4(q − 1) + q(q − 1)2[n− 1][2] + 2(q − 1)2

[3]

)
− 8[n]q

[n+ 1][2]
− 4

[n+ 1][2]
+ 2.

(17)

In the expression (17),(
[2]q + 2q(q − 1) +

q(q − 1)2[2]

[3]

)
[n− 1] ≤ q2(q + 1)[n− 1],

and since [n] < [n+ 1],

B <
12

[2][n+ 1]
(18)

is obtained.
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Finally, let’s denote the constant term in equation (10) as

C : =
q[n][n− 1]

[n+ 1]2

(
1 +

2(q − 1)

[2]
+

(q − 1)2

[3]

)
+

2[n]

[n+ 1]2

(
1 +

2

[2]
+

[2](q − 1)

[3]

)
− 4q[n]

[n+ 1][2]
+

4

[n+ 1]

(
1

[3][n+ 1]
− 1

[2]

)
+ 1.

(19)

When the necessary evaluations are made on the right side of the last equation, we get

C <
28

[2][3][n+ 1]
. (20)

Substituting inequalities (16), (18), and (20) into (10) gives

∥K∗
n(f ; q;x)− f(x)∥ ≤ ω(f, δn)

[
1 +

1

δ
(A+B + C)

1
2

]
where

δ := δn =

√(
2[n]qnqn

[2]qn [n+ 1]qn
− 1

)2

+
12

[2]qn [n+ 1]qn
+

28

[2]qn [3]qn [n+ 1]qn
.

In this way, the following theorem is proved.

Theorem 3.2. Let q := (qn) be a sequence satisfying (4) and 0 < qn < 1. If f ∈ C[−1, 1],
then

∥K∗
n(f ; q;x)− f(x)∥ ≤ 2ω(f, δn)

where

δ := δn =

√(
2[n]qnqn

[2]qn [n+ 1]qn
− 1

)2

+
12

[2]qn [n+ 1]qn
+

28

[2]qn [3]qn [n+ 1]qn
.
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