
Journal of Contemporary Applied Mathematics
V. 14, No 2, 2024, December
ISSN 2222-5498
https://doi.org/10.69624/2222-5498.2024.2.38

Dependence on the parameters of the solution of a mixed
problem for a nonlinear integro-differential equation of
the fifth order with a degenerate kernel

Tursun K. Yuldashev, Khanlar R. Mamedov, Mahkambek M. Babayev

Abstract. In this paper, it is considered a fifth order nonlinear partial integro-differential equa-
tions with mixed conditions and two real parameters. The Fourier spectral method of separation
of variables is applied. A countable system of nonlinear functional-integral equations is derived.
Theorem on a uniqueness and existence of the solution of mixed problem is proved for regular val-
ues of parameters. The method of compressing mapping in Banach space is applied. The solution
of the mixed problem is obtained in the form of Fourier series. Theorem on absolute and uniform
convergence of Fourier series is proved. Continuous dependence on parameters of the classical
solution of mixed problem is studied.
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dependence on the parameters.
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1. Formulation of the problem statement

Differential equations of parabolic and hyperbolic types are the base of the equations of
mathematical physics. Along with equations of parabolic and hyperbolic types, so-called
pseudoparabolic and pseudohyperbolic differential equations are often studied.

Let us consider differential equations of the form[
∂k

∂ tk
+ (−1)m

∂k+2m

∂ tk∂ x2m
+ (−1)mω

∂2m

∂ x2m

]
U(t, x) = f(t, x), k = 1, 2, 3, m = 1, 2, 3, ..., n.

This equation is sometimes called a Barenblatt–Zheltev–Kochina equation at k =
1. And when k = 2, it is often called a Boussinesq type differential equation. Many
works have been devoted to the study of this equation for k = 1, 2 (see, for example,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]).
However, we have not yet encountered a single work on the study of an equation in the
case of k = 3.

http://journalcam.com 38 © 2011 JCAM All rights reserved.



Integro-differential equations are studied in the works of many mathematicians (see,
for examples [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78]). To study integro-differential equations with degenerate kernel are
devoted only the few works [79, 80, 81, 82, 83, 84, 85, 86, 87, 88].

In this paper we consider the case k = 3. For simplicity, we take m = 1. So, we study
the solvability of the mixed problem for a fifth order integro-differential equation with
two real parameter and degenerate kernel. So, in the rectangular domain, Ω =

{
0 < t <

T, 0 < x < 1
}
we consider the following partial integro-differential equation[

∂3

∂ t3
− ∂5

∂ t3∂ x2
− ω

∂2

∂ x2

]
V (t, x) =

= ν

T∫
0

K(t, s)V (s, x)ds+ F

t, x, T∫
0

1∫
0

G(s, y)V (s, y)dyds

 , (1)

where K(t, s) =
p∑

i=1
αi(t) βi(s), 0 < αi(t), βi(s) ∈ C[0, T ], αi(t) and βi(s) are linear

independent, F (t, x, y) ∈ C0,2,0
t,x,u(Ω̄× R), 0 < G(t, x) ∈ C(Ω̄), T is given positive number,

ω is positive finite parameter, ν is nonzero real parameter, Ω̄ =
{
0 ≤ t ≤ T, 0 ≤ x ≤ 1

}
.

In solving partial integro-differential equation (1), we use the following spectral and
initial value conditions

V (t, 0) = V (t, 1) = 0, 0 ≤ t ≤ T, (2)

V (0, x) = φ1(x), Vt(0, x) = φ2(x), Vtt(0, x) = φ3(x), 0 ≤ x ≤ 1, (3)

where φk(x) are enough smooth functions on the segment [0, 1]. For these functions the
following conditions are fulfilled φk(0) = φk(1) = 0, k = 1, 2, 3.

Problem statement. To find a function

V (t, x) ∈ C(Ω) ∩ C3,2
t,x (Ω), (4)

which satisfies integro-differential equation (1) and conditions (2) and (3).

2. Countable system of nonlinear equations

The solution of the problem (1)–(3) we search in the form of Fourier series

V (t, x) =
∞∑
n=1

an(t) bn(x), (5)

where bn(x) =
√
2 sin

√
λnx are eigenfunctions of the spectral problem b′′(x) + λb(x) =

0, b(0) = b(1) = 0, corresponding to the eigenvalues λn = (nπ)2,

an(t) =

1∫
0

V (t, x) bn(x) dx.
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So, we assume that

F (t, x, y) =

∞∑
n=1

Fn(t, ·) bn(x), (6)

where

Fn(t, ·) =
1∫

0

F (t, y, ·) bn(y) dy.

Substituting the Fourier series (5) and (6) into the given integro-differential equation
(1), and taking into account that the functions

{
bn(x)

}∞
n=1

form a complete system of
orthonormal systems, we obtain a countable system of third order ordinary differential
equations

a′′′n (t) + µn(ω)an(t) = fn(t), µn(ω) =
λn

1 + λn
ω, λn = (nπ)2, (7)

where

fn(t) =
1

1 + λn

[
ν

p∑
i=1

αi(t)τn,i + Fn(t, ·)

]
, (8)

τn,i =

T∫
0

βi(s)an(s)ds. (9)

The characteristic equation σ3 + µn(ω) = 0 for the homogeneous equation a′′′n (t) +
µn(ω)an(t) = 0 has the roots

σ1 = − 3
√
µn(ω), σ2/3 =

(
1

2
±

√
3

2
i

)
3
√
µn(ω).

So, the general solution of the homogeneous equation can be presented as

an(t) = A1,na1,n(t) +A2,na2,n(t) +A3,na3,n(t), (10)

where Ak,n (k = 1, 2, 3) are yet arbitrary coefficients, which will be determined later,
a1,n(t) = e−

3
√

µn(ω)t,

a2,n(t) = e
3
√

µn(ω)t

2 cos
√
3
2

3
√
µn(ω)t,

a3,n(t) = e
3
√

µn(ω)t

2 sin
√
3
2

3
√
µn(ω)t.

(11)

Taking (10) into account, we search a particular solution of the equation (7) as

ãn(t) = A1,n(t)a1,n(t) +A2,n(t)a2,n(t) +A3,n(t) a3,n(t). (12)
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In (12) we supposed that Ak,n(t) are unknown functions. To find these functions we
consider the following system of algebraic-differential equations

A′
1,n(t)a1,n(t) +A′

2,n(t)a2,n(t) +A′
3,n(t)a3,n(t) = 0,

A′
1,n(t)a

′
1,n(t) +A′

2,n(t)a
′
2,n(t) +A′

3,n(t)a
′
3,n(t) = 0,

A′
1,n(t)a

′′
1,n(t) +A′

2,n(t)a
′′
2,n(t) +A′

3,n(t)a
′′
3,n(t) = fn(t).

We solve the system as functional-algebraic equations by the Cramer rule and found:

A1,n(t) =
1

12c2n

t∫
0

1

a1,n(s)
fn(s)ds, (13)

A2,n(t) = − 1

12c2n

t∫
0

[
a1,n(s)a2,n +

√
3a1,n(s)a3,n(s)

]
fn(s)ds, (14)

A3,n(t) =
1

12c2n

t∫
0

[√
3a1,n(s)a2,n(s)− a1,n(s)a3,n(s)

]
fn (s) ds, (15)

where 2cn = 3
√
µn(ω). Substituting (13)–(15) into (12) and taking into account (11), we

obtain a particular solution of the equation (7) as

ãn(t, ω) =
1

3
√
µ2n(ω)

t∫
0

Q(t, s, ω)fn(s)ds, (16)

where

Q(t, s, ω) =
1

3

{
e−

3
√

µn(ω)(t−s) − 2e
3
√

µn(ω)

2
(t−s) sin

(√
3

2
3
√
µn(ω)(s− t) +

π

6

)}
.

From (16) we derive a particular solution of the equation (1) in the form of Fourier
series

Ṽ (t, x, ω) =
∞∑
n=1

bn(x)
3
√
µ2n(ω)

t∫
0

Q(t, s, ω)fn(s)ds. (17)

Taking into account (16) the general solution of the equation (7) can be presented as:

an(t) = B1,na1,n(t) +B2,na2,n(t) +B3,na3,n(t)+

+A1,n(t)a1,n(t) +A2,n(t)a2,n(t) +A3,n(t)a3,n(t) (18)

and we find the constants Bk,n (k = 1, 2, 3).
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We suppose that the functions φk(x) are expanding into a Fourier series and using the
Fourier coefficients, from initial value conditions (3) we obtain

an(0) =

1∫
0

V (0, y) bn(y) dy =

1∫
0

φ1(y) bn(y) dy = φ1,n, (19)

a′n(0) =

1∫
0

Vt(0, y) bn(y) dy =

1∫
0

φ2(y) bn(y) dy = φ2,n, (20)

a′′n(0) =

1∫
0

Vtt(0, y) bn(y) dy =

1∫
0

φ3(y) bn(y) dy = φ3,n. (21)

To find the unknown (arbitrary) coefficients Ak,n (k = 1, 2, 3), we use the boundary
conditions (19)–(21) in the presentation (18) and obtain

B1,na1,n = 1
3a1,nφ1,n − 1

6bn
a1,nφ2,n + 1

12b2n
a1,nφ3,n,

B2,na2,n = 2
3a2,nφ1,n + 1

6bn
a2,nφ2,n − 1

12b2n
a2,nφ3,n,

B3,na3,n = 1
2
√
3cn
a3,nφ2,n + 1

4
√
3c2n
a3,nφ3,n.

Hence, we obtain that

B1,na1,n +B2,na2,n +B3,na3,n =

=
a1,n + 2a2,n

3
φ1,n +

−a1,n + a2,n +
√
3a3,n

6cn
φ2,n +

a1,n − c2,n +
√
3c3,n

12c2n
φ3,n. (22)

Substituting (22) into (18) and taking into account (8), (11), (16), we obtain

an(t, ω) = Pn(t, ω)+

+
1

3

√(
λ2n + λ3n

)
ω

ν p∑
i=1

τn,i

t∫
0

Qn(t, s, ω)αi(s) ds+

t∫
0

Qn(t, s, ω)Fn(s, ·) ds

 , (23)

where

Pn(t, ω) = φ1,nψ1,n(t, ω) +
1

3
√
µn(ω)

φ2,nψ2,n(t, ω) +
1

3
√
µ2n(ω)

φ3,nψ3,n(t, ω), (24)

Qn(t, s, ω) =
1

3

[
e−

3
√

µn(ω)(t−s) + 2e
3
√

µn(ω)

2
(t−s) sin

(√
3

2
3
√
µn(ω)(t− s) +

π

6

)]
, (25)

ψ1,n(t, ω) =
1

3

[
e−

3
√

µn(ω)t + 2e
3
√

µn(ω)t

2 cos

√
3

2
3
√
µn(ω)t

]
, (26)
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ψ2,n(t, ω) =
1

3

[
e−

3
√

µn(ω)t − 2e
3
√

µn(ω)

2
t sin

(√
3

2
3
√
µn(ω)t+

π

6

)]
, (27)

ψ3,n(t, ω) =
1

3

[
e−

3
√

µn(ω)t − 2e
3
√

µn(ω)

2
t sin

(√
3

2
3
√
µn(ω)t−

π

6

)]
, (28)

Fn(t, ·) =
1∫

0

F

t, y, T∫
0

1∫
0

G(s, z)V (s, z)dzds

 bn(y) dy.

There is another unknown quantity in (23). To find it we substitute (23) into (9), and
obtain a countable system of algebraic system of equations (CSASE)

τn,i = ν

p∑
j=1

τn,jΦn,i,j(ω) + Ψn,i(ar, ω), i = 1, 2, · · ·, p, (29)

Φn,i,j(ω) =
1

3
√
(λ2n + λ3n)ω

T∫
0

βi(s)

s∫
0

Qn(s, θ, ω)αj(θ) dθds, (30)

Ψn,i(ar, ω) =

T∫
0

βi(s)Pn(s, ω)ds+
1

3
√
(λ2n + λ3n)ω

T∫
0

βi(s)

s∫
0

Qn(s, θ, ω)×

×
1∫

0

F

θ, y, T∫
0

1∫
0

G(ξ, z)
∞∑
r=1

ar(ξ)br(z)dzdξ

 bn(y) dydθds. (31)

To solve the CSASE we consider the following determinants

Zn(ν, ω) =

∣∣∣∣∣∣∣∣
1− ν Φ1 1 ν Φ1 2 . . . ν Φ 1p

ν Φ2 1 1− ν Φ2 2 . . . ν Φ 2p

. . . . . . . . . . . .
ν Φp1 ν Φp2 . . . 1− ν Φpp

∣∣∣∣∣∣∣∣ , (32)

Zin(ar, ν, ω) =

∣∣∣∣∣∣∣∣
1− ν Φ 1 1 . . . ν Φ 1 (i−1) Ψ1 ν Φ 1 (i+1) . . . ν Φ 1p

ν Φ 2 1 . . . ν Φ 2 (i−1) Ψ2 ν Φ 2 (i+1) . . . ν Φ 2p

. . . . . . . . . . . . . . . . . . . . .
ν Φp1 . . . ν Φp(i−1) Ψp ν Φp (i+1) . . . 1− ν Φpp

∣∣∣∣∣∣∣∣ , (33)

where Φij = Φnij(ω), Ψκ = Ψnκ(ar, ω), κ = 1, p.
CSASE (29) is uniquely solvable for any finite right-hand sides, if the following

non-degeneracy condition for the Fredholm determinant is satisfied Zn (ν, ω) ̸= 0. The
determinant (32) Zn(ν, ω) is a polynomial with respect to ν of degree not higher p.
The equation Zn (ν, ω) = 0 has at most p different real roots. We denote them by
θℓ (ℓ = 1 , pℓ, 1 ≤ pℓ ≤ p). Then ν = νn+ℓ = θℓ called the irregular values of the parameter
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ν. Other values of the parameter ν ̸= θℓ, for which |Zn(ν, ω) | > 0 and
∞∑
n=1

1
[Zn(ν,ω)]2

<∞,

are called regular.

For regular values of the parameter ν the solution of the CSASE (29) has the form

τnκ(ν, ω) =
Zκn(ar, ν, ω)

Zn(ν, ω)
, κ = 1, p, (34)

where Zκn(ν, ω) is defined from (33). Substituting for regular values of the parameter ν
the presentation of solution (34) of the CSASE (29) into representation (23) of the Fourier
coefficients an(t) of unknown function V (t, x, ν, ω), we derive a nonlinear countable system
of functional integral equations (NCSFIE)

an(t, ν, ω) = J(t; an) ≡ Pn(t, ν, ω)+

+
ν

3
√
(λ2n + λ3n)ω

p∑
κ=1

Zκn(ar, ν, ω)

Zn(ν, ω)

t∫
0

Qn(t, s, ω)αj(s) ds+
1

3
√
(λ2n + λ3n)ω

×

×
t∫

0

Qn(t, s, ω)

1∫
0

F

s, y, T∫
0

1∫
0

G(θ, z)
∞∑
r=1

ar(θ)br(z)dzdθ

 bn(y) dyds. (35)

As, in the case of Fourier series (17), from (35) we obtain a formal solution of the mixed
problem (1)–(3)

V (t, x, ν, ω) =
∞∑
n=1

bn(x)
[
Pn(t, ω)+

+
ν

3
√
(λ2n + λ3n)ω

p∑
κ=1

Zκn(ar, ν, ω)

Zn(ν, ω)

t∫
0

Qn(t, s, ω)αj(s) ds+
1

3
√
(λ2n + λ3n)ω

×

×
t∫

0

Qn(t, s, ω)

1∫
0

F

s, y, T∫
0

1∫
0

G(θ, z)
∞∑
r=1

ar(θ)br(z)dzdθ

 bn(y)dyds

]
. (36)

We note that the functions in (25)–(28) become zero at some values of parameter ω.
We obtain the following transcendental equation

sin

(√
3

2
y +

π

6

)
= −1

2
e

−3
2
y, y = 3

√
µn(ω) (t− s) > 0,

for the case of function (25) and

cos

√
3

2
y = −1

2
e

−3
2
y, y = 3

√
µn(ω) t > 0,
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for the case of function (26), respectively, µn(ω) =
λn

1+λn
ω. Functions in the formulas (27)

and (28) become zero at some values of parameter ω. We replace these equations by the
following transcendental equations

sin

(√
3

2
y +

π

6

)
=

1

2
e

−3y
2 , y = 3

√
µn(ω) t > 0,

sin

(√
3

2
y − π

6

)
=

1

2
e

−3y
2 , y = 3

√
µn(ω) t > 0,

respectively.
The values of parameter ω, for which the functions (25)–(28) become zero, we denote

by Λj , j = 1, 2, 3, 4, respectively. However, from the fact Λ1∩Λ2∩Λ3∩Λ4 = ∅ we deduce
that the problem (1)–(3) is correct.

3. Solvability of the countable system

To prove the classical solvability of the mixed problem (1)–(3) we require in some
properties of the given functions, which we call as smoothness conditions.

Smoothness conditions. Let the functions φk(x) ∈ C4[0, 1] (k = 1, 2, 3), F (t, x, ·) ∈
C0,2
t,x (Ω × R) have continuous derivatives with respect to x up to the fourth and second

order, respectively. We integrate by parts

φk,n =

1∫
0

φk(y) bn(y)dy, Fn(t, ·) =
1∫

0

F

t, y, T∫
0

1∫
0

G(s, z)V (s, z)dzds

 bn(y) dy

four and second times, respectively. Then we obtain the estimates

φk,n ≤
(
1

π

)4

∣∣∣φ(IV )
k,n

∣∣∣
n4

, Fn ≤
(
1

π

)2 |F ′′
n (t, ·) |
n2

,

where

φ
(IV )
k,n =

1∫
0

∂4 φk(y)

∂y4
bn(y)dy, F

′′
n (t, ·) =

1∫
0

∂2

∂y2
F

t, y, T∫
0

1∫
0

G(s, z)V (s, z)dzds

 bn(y)dy.

In estimating approximations, we use also Bessel inequalities in the form:∥∥∥ φ⃗(IV )
k

∥∥∥
ℓ2

≤ 4

∥∥∥∥ ∂4φk(x)

∂ x4

∥∥∥∥
L2[0,1]

,
∥∥∥F⃗ ′′(t, ·)

∥∥∥
B2[0,T ]

≤ 2 max
0≤t≤T

∥∥∥∥∂4F (t, x, ·)∂ x4

∥∥∥∥
L2[0,1]

.

Theorem 3.1. Let the smoothness conditions be fulfilled and

1). α0
∑p

κ=1

∣∣Zκn(a
0
r , ν, ω)

∣∣ ≤ δ0 , α0 = max
0≤t≤T

t∫
0

αj(s)ds, 0 < δ0, α0 = const <∞;
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2). max
0≤t≤T

∥F (t, x, ·) ∥L2[0,1]
≤ δ1, 0 < δ1 = const <∞;

3). |F (t, x, u1)− F (t, x, u2) | ≤ l(x) |u1 − u2 |, 0 < l(x) ∈ L2[0, 1];

4). ρ =M3

T∫
0

∥G(t, x) ∥L2[0,1]
dt < 1, where M3 determines from (41) below.

Then for regular values of the parameter ν NCSFIE (35) has a unique solution in the
space B2[0, T ] with norm

∥ a⃗(t) ∥B2[0,T ] =

√√√√ ∞∑
n=1

(
max
t∈[0,T ]

| an(t) |
)2

<∞.

Proof. We define the successive approximations for NCSFIE (35) as:{
a0n(t, ν, ω) = Pn(t, ν, ω),
am+1
n (t, ν, ω) = J(t; amn ), m = 1, 2, 3, . . .

(37)

We estimate the zero approximation. By virtue of formulas (24), (26)–(28), and

µn =
λn

1 + λn
< 1, lim

λn→∞

1
3
√
µ2n(ω)

= lim
λn→∞

3

√(
1 + λn
λn

)2 1

ω2
= e

2
3ω− 2

3 , ω > 0,

we can put

max

{
max

t
|Qn(t, s, ω) | ; max

k=1,2,3
max

t
|ψk,n(t, ω) |

}
≤M0 <∞, 0 < M0 = const <∞.

By virtue of smoothness conditions, applying the Cauchy–Shwartz inequality and Bessel
inequality, from approximations (37) we have

∥∥ a⃗0(t, ν, ω)∥∥
B2[0,T ]

≤

√√√√ ∞∑
n=1

[
max
0≤t≤T

| a0n(t, ν, ω) |
]2

≤

≤
∞∑
n=1

max
0≤t≤T

|Pn(t, ω) | ≤M0

[ ∞∑
n=1

|φ1,n |+ 3

√
e

ω

∞∑
n=1

|φ2,n |+ 3

√( e
ω

)2 ∞∑
n=1

|φ3,n |

]
≤

≤ C0M0

(
1

π

)4
√√√√ ∞∑

n=1

1

n8

[ ∥∥∥ φ⃗(IV )
1

∥∥∥
ℓ2
+
∥∥∥ φ⃗(IV )

2

∥∥∥
ℓ2
+
∥∥∥ φ⃗(IV )

3

∥∥∥
ℓ2

]
≤

≤M1

[ ∥∥∥∥ ∂4 φ1(x)

∂ x4

∥∥∥∥
L2[0,1]

+

∥∥∥∥ ∂4 φ2(x)

∂ x4

∥∥∥∥
L2[0,1]

+

∥∥∥∥ ∂4 φ3(x)

∂ x4

∥∥∥∥
L2[0,1]

]
<∞, (38)

where

M1 = C0M0

(√
2

π

)4
√√√√ ∞∑

n=1

1

n8
, C0 = max

{
1; 3

√
e

ω
;

3

√( e
ω

)2}
.
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Due to the conditions of the Theorem 3.1, formulas (25), (30), (31), estimate (38) and
applying the Cauchy–Shwartz inequality and Bessel inequality, for the first difference
a1n(t)− a0n(t) we obtain ∥∥ a⃗1(t, ν, ω)− a⃗0(t, ν, ω)

∥∥
B2[0,T ]

≤

≤ | ν |
3
√
ω

∞∑
n=1

1

λn

p∑
κ=1

∣∣∣∣ Zκn(a
0
r , ν, ω)

Zn(ν, ω)

∣∣∣∣ max
0≤t≤T

t∫
0

|Qn(t, s, ω) | αj(s) ds+

+
1
3
√
ω

∞∑
n=1

1

λn
max
0≤t≤T

t∫
0

|Qn(t, s, ω)|

∣∣∣∣∣∣
1∫

0

F

s, y, T∫
0

1∫
0

G(θ, z)
∞∑
r=1

a0r(θ, ω)br(z)dzdθ

 bn(y)dy

∣∣∣∣∣∣ ds ≤

≤ M0
3
√
ω

(
1

π

)2
√√√√ ∞∑

n=1

1

n4

| ν | δ0
√√√√ ∞∑

n=1

1

|Zn(ν, ω) |2
+ T

∥∥∥∥∥∥
1∫

0

F (t, y, ·) bn(y) dy

∥∥∥∥∥∥
B2[0,T ]

 ≤

≤M2

| ν | δ0
√√√√ ∞∑

n=1

1

|Zn(ν, ω) |2
+ T max

0≤t≤T
∥F (t, x, ·)∥L2[0,1]

 <∞, (39)

where M2 =
M0
3√ω

(
1
π

)2√∑∞
n=1

1
n4 .

Now we consider the arbitrary consecutive difference am+1
n (t) − amn (t). We take into

account that the quantities

1∫
0

l(y)bn(y)dy,

1∫
0

|G(t, z) | br(z)dz

are Fourier coefficients. By the same way as the estimate (39) above, we obtain∥∥a⃗m+1(t, ν, ω)− a⃗m(t, ν, ω)
∥∥
B2[0,T ]

≤

≤ | ν |
3
√
ω

∞∑
n=1

M0

λn

p∑
i=1

∣∣∣∣ Zin(a
m
r , ν, ω)− Zin(a

m−1
r , ν, ω)

Zn(ν, ω)

∣∣∣∣ max
0≤t≤T

t∫
0

αj(s)ds+

+M0
1
3
√
ω

∞∑
n=1

1

λn
max
0≤t≤T

t∫
0

∣∣∣∣∣∣
1∫

0

l(y)

T∫
0

1∫
0

|G(t, z)|
∞∑
r=1

∣∣amr (t, ω)− am−1
r (t, ω)

∣∣ br(z)dzdt bn(y)dy
∣∣∣∣∣∣ ds ≤

≤ | ν |
3
√
ω2

∞∑
n=1

α0M
2
0

λ2nZn(ν, ω)

p∑
κ=1

δ̄0,κ

T∫
0

βκ(s)ds
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∣∣∣∣∣∣
1∫

0

l(y)bn(y)dy

T∫
0

1∫
0

|G(t, z) |
∞∑
r=1

∣∣ amr (t, ω)− am−1
r (t, ω)

∣∣ br(z)dzdt
∣∣∣∣∣∣+

+M0
T
3
√
ω

∣∣∣∣∣∣
∞∑
n=1

1

λn

1∫
0

l(y) bn(y) dy

T∫
0

1∫
0

|G(t, z) |
∞∑
r=1

∣∣ amr (t, ω)− am−1
r (t, ω)

∣∣ br(z)dzdt
∣∣∣∣∣∣ ≤

≤ | ν |
3
√
ω2

∞∑
n=1

α0β0M
2
0

λ2nZn(ν, ω)

∣∣∣∣∣∣
1∫

0

l(y)bn(y) dy

∣∣∣∣∣∣
∣∣∣∣∣∣

T∫
0

1∫
0

|G(t, z) |
∞∑
r=1

∣∣ amr (t, ω)− am−1
r (t, ω)

∣∣ br(z)dzdt
∣∣∣∣∣∣+

+M0
T
3
√
ω

∣∣∣∣∣∣
∞∑
n=1

1

λn

1∫
0

l(y) bn(y) dy

∣∣∣∣∣∣
∣∣∣∣∣∣

T∫
0

1∫
0

|G(t, z) |
∞∑
r=1

∣∣ amr (t, ω)− am−1
r (t, ω)

∣∣ br(z)dzdt
∣∣∣∣∣∣ ≤

≤ α0β0δ2M
2
0

| ν |
3
√
ω2

∥∥∥∥∥ 1

λ⃗4Z⃗2(ν, ω)

∥∥∥∥∥
ℓ2

∣∣∣∣∣∣
T∫
0

1∫
0

|G(t, z) |
∞∑
r=1

∣∣ amr (t, ω)− am−1
r (t, ω)

∣∣ br(z)dzdt
∣∣∣∣∣∣+

+M0δ2
T
3
√
ω

∥∥∥∥ 1

λ⃗2

∥∥∥∥
ℓ2

∣∣∣∣∣∣
T∫
0

1∫
0

|G(t, z) |
∞∑
r=1

∣∣ amr (t, ω)− am−1
r (t, ω)

∣∣ br(z)dzdt
∣∣∣∣∣∣ ≤

≤M3

T∫
0

∞∑
r=1

∣∣∣∣∣∣
1∫

0

|G(t, z) | br(z)dz

∣∣∣∣∣∣ ∣∣ amr (t, ν, ω)− am−1
r (t, ν, ω)

∣∣ dt ≤
≤ ρ ·

∥∥ a⃗m(t, ν, ω)− a⃗m−1(t, ν, ω)
∥∥
B2[0,T ]

, (40)

where

ρ =M3

T∫
0

∥G(t, x) ∥L2[0,1]
dt, (41)

M3 = α0β0δ2M
2
0

| ν |
3
√
ω2

∥∥∥∥∥ 1

λ⃗4Z⃗2(ν, ω)

∥∥∥∥∥
ℓ2

+M0δ2
T
3
√
ω

∥∥∥∥ 1

λ⃗2

∥∥∥∥
ℓ2

,

β0 =

p∑
κ=1

δ̄0,κ

T∫
0

βκ(s)ds, δ̄0,κ =
∣∣ Z̄κn(ν, ω)

∣∣ ,

δ2 = ∥ l(x) ∥L2[0,1]
≥

√√√√√ ∞∑
n=1

∣∣∣∣∣∣
1∫

0

l(y)bn(y) dy

∣∣∣∣∣∣
2

,
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Z̄ in(ν, ω) =

∣∣∣∣∣∣∣∣
1− ν Φ 1 1 . . . ν Φ 1 (i−1) 1 ν Φ 1 (i+1) . . . ν Φ 1p

ν Φ 2 1 . . . ν Φ 2 (i−1) 1 ν Φ 2 (i+1) . . . ν Φ 2p

. . . . . . . . . . . . . . . . . . . . .
ν Φp1 . . . ν Φp(i−1) 1 ν Φp (i+1) . . . 1− ν Φpp

∣∣∣∣∣∣∣∣ .
From estimates (38)–(40) it follows that the operator J(t; an) on the right-hand side of
(35) is contracting and there is unique fixed point. So, the existence and uniqueness of
the solution a⃗(t) ∈ B2[0, T ] to NCSFIE (35) are proved. The theorem 3.1 is proved.

4. Continuously dependence of the solution to NCSFIE from parameter
ω

In this section we use the following obvious lemma.

Lemma 4.1. For two values ω1, ω2 of positive parameter ω there true the following esti-
mates ∣∣∣ e− 3

√
µn(ω1)(t−s) − e−

3
√

µn(ω2)(t−s)
∣∣∣ ≤ L01 |ω1 − ω2 | , 0 < L01 = const;∣∣∣∣∣ sin

(√
3

2
3
√
µn(ω1)(t− s) +

π

6

)
− sin

(√
3

2
3
√
µn(ω2)(t− s) +

π

6

)∣∣∣∣∣ ≤ L02 |ω1 − ω2 | ;∣∣∣ e 3
√

µn(ω1)
t−s
2 − e

3
√

µn(ω2)
t−s
2

∣∣∣ ≤ L03 |ω1 − ω2 | , 0 < L03 = const;∣∣∣∣∣ cos
√
3

2
3
√
µn(ω1)(t− s)− cos

√
3

2
3
√
µn(ω2)(t− s)

∣∣∣∣∣ ≤ L02 |ω1 − ω2 | , 0 < L02 = const;

∣∣∣∣ 1
3
√
ω1

− 1
3
√
ω2

∣∣∣∣ ≤ L04 |ω1 − ω2 | , L04 = const;∣∣∣∣∣ 1
3
√
ω2
1

− 1
3
√
ω2
2

∣∣∣∣∣ ≤ L05 |ω1 − ω2 | , L05 = const.

Theorem 4.2. Let be fulfilled the conditions of the Theorem 3.1. Then the following
estimate

∥ a⃗(t, ω1)− a⃗(t, ω2) ∥B2[0,T ] ≤ LM |ω1 − ω2 | , 0 < LM = const (42)

holds.

Proof. By virtue of the Lemma for the function (25) we obtain

|Qn(t, s, ω1)−Qn(t, s, ω2) | ≤
1

3

∣∣∣ e− 3
√

µn(ω1)(t−s) − e−
3
√

µn(ω2)(t−s)
∣∣∣+

+
2

3

∣∣∣∣ e 3
√

µn(ω1)

2
(t−s) − e

3
√

µn(ω2)

2
(t−s)

∣∣∣∣ ·
∣∣∣∣∣ sin

(√
3

2
3
√
µn(ω1)(t− s) +

π

6

)∣∣∣∣∣+
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+
2

3
e

3
√

µn(ω2)

2
(t−s)

∣∣∣∣∣ sin
(√

3

2
3
√
µn(ω1)(t− s) +

π

6

)
− sin

(√
3

2
3
√
µn(ω2)(t− s) +

π

6

)∣∣∣∣∣ ≤
≤
[
L01 + L03 + e

3
√
ω2TL02

]
|ω1 − ω2 | = L1 |ω1 − ω2 | . (43)

By virtue of the Lemma, for the function (26) we obtain

|ψ1,n(t, ω1)− ψ1,n(t, ω2) | ≤

≤ 1

3

∣∣∣ e− 3
√

µn(ω1)t − e−
3
√

µn(ω2)t
∣∣∣+ 2

3

∣∣∣∣ e 3
√

µn(ω1)

2
t − e

3
√

µn(ω2)

2
t

∣∣∣∣ ·
∣∣∣∣∣ cos

√
3

2
3
√
µn(ω1)t

∣∣∣∣∣+
+
2

3
e

3
√

µn(ω2)

2
t

∣∣∣∣∣ cos
√
3

2
3
√
µn(ω1)t− cos

√
3

2
3
√
µn(ω2)t

∣∣∣∣∣ ≤
≤
[
L01 + L03 + e

3
√
ω2TL02

]
|ω1 − ω2 | = L1 |ω1 − ω2 | . (44)

By similarly way for the functions (27) and (28) we obtain

|ψj,n(t, ω1)− ψj,n(t, ω2) | ≤ L1 |ω1 − ω2 | , j = 2, 3. (45)

By the aid of the estimates (43)–(45), taking properties of the functions (24), (31) and
matrix (33), for the NCSFIE (35) we derive

∥ a⃗(t, ν, ω1)− a⃗(t, ν, ω2) ∥B2[0,T ] ≤
∞∑
n=1

max
0≤t≤T

|Pn(t, ω1)− Pn(t, ω2) |+

+ | ν |
∣∣∣∣ 1

3
√
ω1

− 1
3
√
ω2

∣∣∣∣ ∞∑
n=1

1

λn

p∑
κ=1

∣∣∣∣ Zκn(ar, ν, ω1)

Zn(ν, ω1)

∣∣∣∣ max
0≤t≤T

t∫
0

|Qn(t, s, ω1) | αj(s) ds+

+
| ν |
3
√
ω2

∞∑
n=1

1

λn

p∑
κ=1

∣∣∣∣ Zκn(ar, ν, ω1)

Zn(ν, ω1)

∣∣∣∣ max
0≤t≤T

t∫
0

|Qn(t, s, ω1)−Qn(t, s, ω2) | αj(s) ds+

+
| ν |
3
√
ω2

∞∑
n=1

α0M0

λn

p∑
κ=1

[
|Zκn(ar, ν, ω1)|

∣∣∣∣ 1

Zn(ν, ω1)
− 1

Zn(ν, ω2)

∣∣∣∣+
+

∣∣∣∣ 1

Zn(ν, ω2)

∣∣∣∣ |Zκn(ar, ν, ω1)− Zκn(ar, ν, ω2)|

]
+

+

∣∣∣∣ 1
3
√
ω1

− 1
3
√
ω2

∣∣∣∣ ∞∑
n=1

1

λn
max
0≤t≤T

t∫
0

Qn(t, s, ω1)

∣∣∣∣∣∣
1∫

0

F (s, y, ·) bn(y) dy

∣∣∣∣∣∣ ds+
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+
1

3
√
ω2

∞∑
n=1

1

λn
max
0≤t≤T

t∫
0

|Qn(t, s, ω1)−Qn(t, s, ω2) |

∣∣∣∣∣∣
1∫

0

F (s, y, ·) bn(y) dy

∣∣∣∣∣∣ ds+ M0

3
√
ω2

∞∑
n=1

1

λn
×

×
p∑

κ=1

∣∣∣∣∣∣
1∫

0

l(y)bn(y) dy

T∫
0

1∫
0

|G(t, z) |
∞∑
r=1

| ar(t, ω1)− ar(t, ω2) | br(z)dzdt

∣∣∣∣∣∣ . (46)

By the aid of Lemma, estimates (43)–(45) and conditions of the Theorem 3.1, from
(46) we obtain

∥ a⃗(t, ν, ω1)− a⃗(t, ν, ω2) ∥B2[0,T ] ≤ C0M0

(√
2

π

)4
√√√√ ∞∑

n=1

1

n8

[
L1

∥∥∥∥ ∂4 φ1(x)

∂ x4

∥∥∥∥
L2[0,1]

+

+(L1 + L04)

∥∥∥∥ ∂4 φ2(x)

∂ x4

∥∥∥∥
L2[0,1]

+ (L1 + L05)

∥∥∥∥ ∂4 φ3(x)

∂ x4

∥∥∥∥
L2[0,1]

]
|ω1 − ω2 |+

+M0δ0

(
1

π

)2
√√√√ ∞∑

n=1

1

n4

(
| ν |L04

√√√√ ∞∑
n=1

1

|Zn(ν, ω1) |2
+

| ν |
3
√
ω2
L1

√√√√ ∞∑
n=1

1

|Zn(ν, ω1) |2

)
|ω1 − ω2 |+

+δ0M
2
0

| ν |
3
√
ω2

(
1

π

)2
√√√√ ∞∑

n=1

1

n4

√√√√√ ∞∑
n=1

1∣∣∣ ¯̄Zn(ν)
∣∣∣2
[
L04 + L1

1
3
√
ω2

]
|ω1 − ω2 |+

+α0β0δ2M
2
0

| ν |
3
√
ω2
2

∥∥∥∥∥ 1

λ⃗2Z⃗2(ν, ω2)

∥∥∥∥∥
ℓ2

∣∣∣∣∣∣
T∫
0

1∫
0

|G(t, z) |
∞∑
r=1

∣∣ aτr (t, ω1)− aτ−1
r (t, ω2)

∣∣ br(z)dzdt
∣∣∣∣∣∣+

+M0T

∥∥∥∥ 1

λ⃗2

∥∥∥∥
ℓ2

√√√√√ ∞∑
n=1

 max
0≤t≤T

∣∣∣∣∣∣
1∫

0

F (t, y, ·) bn(y)dy

∣∣∣∣∣∣
2(

L04 + L1
1

3
√
ω2

)
|ω1 − ω2|+

+
M0

3
√
ω2

∥∥∥∥ 1

λ⃗2

∥∥∥∥
ℓ2

√√√√√ ∞∑
n=1

∣∣∣∣∣∣
1∫

0

l(y)bn(y) dy

∣∣∣∣∣∣
2

×

×
T∫
0

1∫
0

|G(t, z) |
∞∑
r=1

| ar(t, ω1)− ar(t, ω2) | br(z)dzdt, (47)

where

¯̄Zn(ν) =
1

λn

∣∣∣∣∣∣∣∣
1− ν∆1 1 ν∆1 2 . . . ν∆ 1p

ν∆2 1 1− ν∆2 2 . . . ν∆ 2p

. . . . . . . . . . . .
ν∆p1 ν∆p2 . . . 1− ν∆pp

∣∣∣∣∣∣∣∣ , ∆ij =

T∫
0

βi(s)

s∫
0

αj(θ) dθds.
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It is not difficult to check that from (47) we obtain

∥ a⃗(t, ν, ω1)− a⃗(t, ν, ω2) ∥B2[0,T ] ≤M4 |ω1 − ω2 |+ρ·∥ a⃗(t, ν, ω1)− a⃗(t, ν, ω2) ∥B 2[0,T ] , (48)

where

M4 = C0M0

(√
2

π

)4
√√√√ ∞∑

n=1

1

n8

[
L1

∥∥∥∥ ∂4 φ1(x)

∂ x4

∥∥∥∥
L2[0,1]

+

+(L1 + L04)

∥∥∥∥ ∂4 φ2(x)

∂ x4

∥∥∥∥
L2[0,1]

+ (L1 + L05)

∥∥∥∥ ∂4 φ3(x)

∂ x4

∥∥∥∥
L2[0,1]

]
+

+ | ν |M0δ0

(
1

π

)2
√√√√ ∞∑

n=1

1

n4


√√√√ ∞∑

n=1

1

|Zn(ν, ω1) |2
+M0

1
3
√
ω2

√√√√√ ∞∑
n=1

1∣∣∣ ¯̄Zn(ν)
∣∣∣2
[L04 +

1
3
√
ω2
L1

]
+

+T

[
M0L04 +

L1

3
√
ω2

] ∥∥∥∥ 1

λ⃗2

∥∥∥∥
ℓ2

max
0≤t≤T

∥F (t, x, ·) ∥L2[0,1]
.

From the estimate (48) we obtain (42). Theorem 4.2 is proved.

5. Convergence of the Fourier series

Theorem 5.1. Let the conditions of the Theorem 3.1 be fulfilled. Then for regular values
of the parameters ν the series (36) converges absolute and uniform in the domain Ω.
Moreover, the solution of the mixed problem (1)–(3) belongs to the class of functions (4).

The proof of the theorem 5.1 is based on obtaining the estimates for the Fourier series
(36) and for its derivatives. The method for obtaining an estimate is the same as in the
case of obtaining estimates (38)–(40), (47) and (48). The Theorem 5.1 is proved.

Corollary 5.2. Let be fulfilled the conditions of the Theorem 3.1. Then the following
estimate

|V ( t, ν, ω1)− V (t, ν, ω2) | ≤ LC |ω1 − ω2 | , 0 < LC = const. (49)

holds.

6. Conclusion

It is considered a fifth order nonlinear partial integro-differential equations (1) with
mixed conditions (2) and (3) and with two real parameters ν, ω. The Fourier spec-
tral method of separation of variables (5) is applied. A countable system of nonlinear
functional-integral equations (35) is derived. Theorem on a uniqueness and existence of
the solution of mixed problem (1)–(3) is proved for regular values of parameters. The
method of compressing mapping is applied for countable system (35) in Banach space
B2[0, T ]. The solution of the mixed problem (1)–(3) is obtained in the form of Fourier
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series (36). Theorem on absolute and uniform convergence of Fourier series is proved. Con-
tinuous dependence on parameter ω of the classical solution of mixed problem is studied
( see, estimates (42) and (49)).

We hope that this work can serve as a basis for further development of the theory of
partial differential and integro-differential equations of the third and higher orders.
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