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Complex Solutions in Magnetic Schrodinger Equations
with Critical Nonlinear Terms
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Abstract. Through the application of minimization techniques, we demonstrate the existence of
a complex solution to the magnetic Schrodinger equation

(−ℏi∇+B(y))2w +W (y)w = |w|2
∗−2w in RN ,

Here N ≥ 3, B : RN → RN represents the magnetic potential, and W : RN → R denotes the
bounded electric potential.
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1. Introduction

This article aims to examine the magnetic Schrodinger equation

(−ℏi∇+B(y))2w +W (y)w = |w|2∗−2w in RN , (1)

In this context w : RN → C, N ≥ 3, i is the imaginary unit, and B = (B1, ..., BN ) : RN →
RN represents the magnetic (or vector) potential. Here, it is important to mention that
the many complex models were studied with the different types of Schrodinger equations
[1, 9, 10, 16, 17, 18, 19], [4], [5], [11], [20], [2].

In this article, we adopt the following assumptions.

(B1) B ∈ L2
loc(RN ,RN ) and there exists a point y0 ∈ RN where B is continuous at y0;

(B2) B(yb ) = bB(y) for all b > 0;

(B3) B ∈ L2
loc(RN ,RN ).

A common example of a function that meets conditions (B1)-(B3) is B(y) = B
|y| , where B

is a constant vector.
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Theorem 1.1. Assuming N ≥ 3 and that conditions (B1)-(B3) are satisfied, problem (1)
admits a non-trivial complex solution.

In 1989, Esteban and Lions [19] discovered solutions to

(−i∇+A(x))2u+ λu = |u|4u in R3

with λ ∈ R by addressing constrained minimization problems through Concentration-
Compactness methods. In 2006, Barile, Cingolani, and Secchi [6] established existence
results using abstract perturbation techniques to

(i∇+ εA(x))2w + εαV (x)w = |u|2∗−2w in RN ,

where ε ∈ (0, ε0), α ∈ [1, 2], N > 4 and the potentials A and V are bounded continuous
and Lebesgue measurable. In 2011, Liang and Zhang [14] studied standing wave solutions

ψ(x, t) = e−
iEt
h u(x), (t, x) ∈ R× RN , N ≥ 3 to

iℏ
∂ψ

∂t
= − ℏ2

2m
(∇+ iA(x))2ψ +W (x)ψ − h(x, |ψ|2)ψ,

This establishes the presence of at least one solution, and for every m ∈ N, there are at
least m pairs of solutions under appropriate conditions. In 2014, Liang and Song [13]
examined

−ε2(∇+ iA(x))2u+ V (x)u = |u|2∗−2u+ h(x, |u|2)u in RN

Given that N ≥ 3 and V (y) is a nonnegative potential, we establish the existence of at
least one solution and m pairs of solutions for every m ∈ N by employing Lions’ second
Concentration-Compactness method along with the Concentration-Compactness principle
at infinity, provided that ℏ > 0 is sufficiently small, to achieve a (PS) condition of type c.

2. Notation and variational tools

To present the variational framework of the problem, we define

Hα
ℏ,B(RN ,C) = {w ∈ L2(RN ,C) : ∇ℏ,Bw ∈ L2(RN ,C)}

with ∇ℏ,Bw = (ℏ∇+ iB)w. The space Hα
ℏ,B(RN ,C) is a Hilbert space equipped with the

scalar product

(w, v)ℏ,B := Re

∫
RN

(∇ℏ,Bw.∇ℏ,Bv +W (y)wv̄)dy for any w, v ∈ Hα
ℏ,B(RN ,C)

where Re denotes the real part of a complex number and the bar represents complex
conjugation, respectively. The norm associated with this inner product is

∥w∥ℏ,B =

∫
(|∇ℏ,Bw|2 +W (y)|w|2dy)

1
2 for w ∈ Hα

ℏ,B(RN ,C).
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and C∞
0 (RN ,C) is dense in Hα

ℏ,B(RN ,C) with respect to the norm ∥.∥ℏ,B (see [19] , section

2) and [7, theorem 7.22]. It is important to note that for every w ∈ Hα
ℏ,B(RN ,C), it holds

that ∫
RN

|∇ℏ,Bw|2 = ℏ2
∫
RN

|∇w|2 +
∫
RN

|B(x)|2|w|2 − 2Re

∫
ℏ∇w.iB(y)w̄,

given that there is no connection between Hα
ℏ,B(RN ,C) and Hα(RN ,C); that is,

Hα
ℏ,B(RN ,C) ⊈ Hα(RN ,R) and Hα(RN ,R) ⊈ Hα

ℏ,B(RN ,C), we will often utilize the fol-
lowing diamagnetic inequality throughout this paper (refer to [15, theorem 7.21]).

ℏ|∇|w|(y)| ≤ |∇ℏ,Bw(y)| for almost every y ∈ RN .

This indicates that, if w ∈ Hα
ℏ,B(RN ,C) then |w| ∈ H1(RN ,R). So, w ∈ Lp(RN ,C) for all

p ∈ [2, 2∗].
Furthermore, we examine the space

D1,2
ℏ,B(R

N ,C) = {w ∈ L2∗(RN ,C),
∫
RN

|∇ℏ,Bw|2dy < +∞}

which represents the closure of C∞
0 (RN ,C) in terms of the norm

∥w∥
ϱ1,2ℏ,B

= (

∫
|∇ℏ,Bw|2dy)

1
2 for w ∈ D1,2

ℏ,B(R
N ,C),

associated with the inner product

(w, v)
D1,2

ℏ,B
= Re

∫
RN

∇ℏ,Bw.∇ℏ,Bvdy for w, v ∈ D1,2
ℏ,B(R

N ,C).

It is important to remember that D1,2
ℏ,B(R

N ,C) ↪→ L2∗(RN ,C). It is also advantageous to
define

D1,2(RN ,R) = (

∫
RN

|∇w|2dy)
1
2 for w ∈ D1,2(RN ,R),

related to the inner product

(w, v)D1,2 = Re

∫
RN

∇w∇vdy for w, v ∈ D1,2(RN ,R).

Keep in mind that D1,2(RN ,R) ↪→ L2∗(RN ,R) and we refer to as C℘ > 0 the best constant
of Sobolev embedding D1,2(RN ,R) ↪→ L2∗(RN ,R); that is

C℘(

∫
RN

|w|2∗dy)
2
2∗ ≤

∫
RN

|∇w|2dy for all w ∈ D1,2(RN ,R).

If C denotes the best constant of the embedding ϱ1,2ℏ,B(R
N ,C) → L2∗(RN ,C),, that is

C = inf
w∈ϱ1,2ℏ,B

∫
RN |∇ℏ,Bw|2dy

(
∫
RN |w|2∗dy)

2
2∗
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we have that C = C℘; for details see [3, theorem 1.1].
The energy functional can be expressed as Γℏ,B : Hα

ℏ,B(RN ,C) → R associated with
(1) is specified as

Γℏ,B(w) =
1

2

∫
RN

|∇ℏ,Bw|2dy +
1

2

∫
RN

(W (y)|w|2)dy − 1

2∗

∫
RN

|w|2∗dy

Γℏ,B(w) =
1

2
∥w∥2ℏ,B − 1

2∗
∥w∥2∗2∗ , for w ∈ Hα

ℏ,B(RN ,C).

We achieve Γℏ,B ∈ C1(Hα
ℏ,B(RN ,C),R) with Gâteaux differential

Γ′
ℏ,B(w)v = Re

∫
RN

(∇ℏ,Bw.∇ℏ,Bv+W (y)wv̄)dy−
∫

|w|2∗−2wvdy for all w, v ∈ Hα
ℏ,B(RN ,C),

and its critical points are the weak solutions to (1). Let us consider

ϱℏ,B = inf{1
2

∫
RN

|∇ℏ,Bw|2dy : w ∈ ϑℏ,B}

where
ϑℏ,B = {w ∈ Hα

ℏ,B(RN ,C) \ {0} : J(w) = 1} with N ≥ 3,

with

J(w) =
1

2∗

∫
RN

|w|2∗dy − 1

2

∫
RN

(W (y)|w|2)dy for w ∈ Hα
ℏ,B(RN ,C).

From this point forward, we can denote by

ϱℏ,B = inf
w∈ϑℏ,B

τℏ,B(w),

where, to simplify notation,

τℏ,B(w) =
1

2

∫
RN

|∇ℏ,Bw|2dy for w ∈ Hα
ℏ,B(RN ,C).

Additionally, we define

J(w) =
1

2∗

∫
RN

|w|2∗dy − 1

2

∫
RN

(W (y)|w|2)dy for w ∈ Hα
ℏ,B(RN ,C)

J ′(w)v = Re

∫
RN

(|w|2∗−1 −W (y)|w|)v̄dy for w, v ∈ Hα
ℏ,B(RN ,C)

3. Preliminary results

Here, we present some preliminary results that will be utilized in the proof of Theorem
1.1 in section 4.

Lemma 3.1. Under the assumption that (B1), the following statements are valid:
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(i) ϑℏ,B is not empty;

(ii) ϑℏ,B is a C1-manifold.

Proof. (i) for w ̸= 0 one has J(w) < 0 if t > 0 is small, and J(tu) → +∞ if t → +∞.
Hence, J(t0) = 1, for some t0 > 0. since

J(tw) =
1

2∗

∫
|tw|2∗ − 1

2

∫
W (y)|tw|2

=
t2

∗

2∗

∫
|w|2∗ − t2

2

∫
W (y)|w|2.

(ii) According to the definition of J and J ′ provided in Section 2, for all w ∈ ϑℏ,B we
obtain

J ′(w)(v) =

∫
RN

(|w|2∗ −W (y)|w|2)dy

since w ∈ ϑℏ,B, therefore J(w) = 1, it can be concluded that

J(w) =
1

2∗

∫
RN

|w|2∗ − 1

2

∫
(W (y)|w|2)dy = 1,

therefore

2∗
∫
RN

|w|2∗dy − 2∗
∫
RN

(W (y)|w|2)dy > 2

∫
RN

|w|2∗dy − 2∗
∫
RN

(W (y)|w|2)dy = 22∗,

therefore ∫
RN

|w|2∗dy −
∫
RN

(W (y)|w|2)dy > 2 > 0 for all w ∈ ϑℏ,B.

Then J ′(w)v ̸= 0 for all w ∈ ϑℏ,B.

Lemma 3.2. Any minimizing sequence {wn} for ϱℏ,B is bounded in Hα
ℏ,B(RN ,C).

Proof. Given {wn} a minimizing sequence for ϱℏ,B in Hα
ℏ,B(RN ,C). We need to demon-

strate ∥wn∥ℏ,B ≤ c for all n ∈ N and for some constant c > 0. It is known that

∥wn∥ℏ,B =

∫
(|∇ℏ,Bwn|2 +W (y)|wn|2dy)

1
2 , wn ∈ Hα

ℏ,B(RN ,C).

First, we derive
1

2

∫
|∇ℏ,Bwn|2dy → ϱℏ,B as n→ +∞

and J(wn) = 1, that is 1
2∗

∫
RN |wn|2

∗
dy − 1

2

∫
RN (W (y)|wn|2)dy = 1. As a result,∫

RN

|∇ℏ,Bwn|2dy ≤ c
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for all n ∈ N and for some c > 0 and∫
RN

(W (y)|wn|2)dy =
2

2∗

∫
RN

|wn|2
∗
dy − 2

≤ 2

2∗

∫
RN

|wn|2
∗
dy

≤ 2

2∗C
2∗
2

(

∫
RN

|∇ℏ,Bwn|2dy)
2∗
2 ≤ c̄.

As a consequence,

∥wn∥2ℏ,B =

∫
(|∇ℏ,Bwn|2 +W (y)|wn|2)dy ≤ c+ c̄.

So
∥wn∥2ℏ,B ≤ c∗.

Therefore, {wn} is bounded in Hα
ℏ,B(RN ,C)

Remark 3.3. The weak limit w of any minimizing sequence {wn} associated with Dℏ,B
is nontrivial. Since, if |w| = 0 then J(w) = 0 that is absurd given J(w) = 1 and w ∈ ϑℏ,B.

4. Proof of Theorem

We demonstrate that ϱℏ,B is achieved by w is the nontrivial weak limit of the mini-
mizing sequence {wn} to ϱℏ,B.

Indeed, since {wn} is bounded, we have wn ⇀ w in Hα
ℏ,B(RN ,C) and being the weak

limit w is not trivial, we deduce that

τℏ,B(w) =
1

2

∫
RN

|∇ℏ,Bwn|2dy ≤ lim inf
n→∞

1

2

∫
RN

|∇ℏ,Bw|2dy = ϱℏ,B.

Now, it is necessary to demonstrate that w ∈ ϑℏ,B. Since

J(w) =
1

2∗

∫
RN

|w|2∗dy − 1

2

∫
RN

W (y)|w|2dy

and wn ⇀ w in Hα
ℏ,B(RN ,C) and {wn} is bounded.

Therefore
J(w) ≤ lim inf J(wn), as n→ ∞.

Now, since J(wn) = 1 then J(w) ≤ 1. If we can also establish that

J(w) ≥ 1, (2)

then we obtain the result that w ∈ ϑℏ,B and τℏ,B(w) = ϱℏ,B, or equivalently

τℏ,B(u) = ϱℏ,B = min{1
2

∫
RN

|∇ℏ,Bw|2dy : w ∈ Hα
ℏ,B(RN ,C)\{0}, J(w) = 1}.
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To show (2), we abtain

1 = J(wn) =
1

2∗

∫
RN

|wn|2
∗
dy − 1

2

∫
RN

(W (y)|wn|2)dy

=
1

2∗

∫
BR

|wn|2
∗
dy − 1

2

∫
BR

(W (y)|wn|2)dy

+
1

2∗

∫
Bc

R

|wn|2
∗
dy − 1

2

∫
Bc

R

(W (y)|wn|2)dy (3)

Now, since

1

2∗

∫
BR

|wn|2
∗
dy = 1 +

1

2

∫
BR

(W (y)|wn|2)dy

− 1

2∗

∫
Bc

R

|wn|2
∗
dy +

1

2

∫
Bc

R

(W (y)|wn|2)dy

(4)

Therefore, we have

1

2∗

∫
BR

|wn|2
∗
dy − 1

2

∫
BR

(W (y)|wn|2)dy

= 1 +

∫
Bc

R

(
1

2
W (y)|wn|2 −

1

2∗
|wn|2

∗
)dy (5)

Now, by limit inferior with respect to the sum of sequences, we obtain

J(w) ≥ 1. (6)

so, τℏ,B(w) = Dℏ,B and w ∈ µℏ,B; that is

ϱℏ,B =
1

2

∫
RN

|∇ℏ,Bw|2dy, J(w) =
1

2∗

∫
RN

|w|2∗dy − 1

2

∫
RN

(W (y)|w|2)dy = 1.

According to the Lagrange multipliers theorem, there exists a multiplier κ ∈ R such that

τ
′
ℏ,B(w) = κJ ′(w);

specifically, for all v ∈ Hα
ℏ,B(RN ,C) we derive τ

′
ℏ,B(w)v = κJ ′(w)v

Re

∫
∇ℏ,Bw∇ℏ,Bvdy = κRe

∫
(|w|2∗−1 −W (y)|w|)v̄dy. (7)

By modifying the arguments presented by Berestycki and Lions [7] , we can establish
κ > 0. Indeed, the first remark is that κ ̸= 0; if not, namely if κ = 0 are would have
T ′
ℏ,B(w) = 0 and in particular

∫
RN |∇ℏ,Bw|2dy = 0. Therefore, w = 0 which is impossible.
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Specifically, it follows that κ > 0. Indeed, Assume for the sake of contradiction that
κ < 0.

Additionally, note that J ′(w) ̸= 0; otherwise,

J ′(w)v = Re

∫
RN

(|w|2∗−1 −W (y)|w|)v̄dy = 0,

then 1
2∗ |w|

2∗ − 1
2W (y)|w|2 = 0 which results in a contradiction with J(w) = 1.

Now, if κ < 0 since J ′(w) ̸= 0 so there exists a test function w such that J ′(w)w ̸= 0
since J(w + ℏw) ∼= J(w) + ℏJ ′(w)w and τℏ,B(w + ℏw) ∼= τℏ,B(w) + ℏκJ ′(w)w for ℏ → 0
and κ < 0, it is possible to choose ℏ > 0 small enough so that v = w + ℏv satisfies
J(v) > J(w) = 1 and τℏ,B(v) < τℏ,B(w) = ϱℏ,B which is absurd.

Then, κ > 0. Then w in Hα
ℏ,B(RN ,C) satisfies (in the weak senses)

−∇ℏ,Bw = κ(|w|2∗−1 −W (y)|w|).

Now, we intend to demonstrate that by utilizing an appropriate change of variables, the
mentioned w, say wκ, satisfies

Re

∫
RN

∇ℏ,Bwκ∇ℏ,Bvdy = Re

∫
RN

(|wκ|2
∗−1 −W (y)|wκ|)v̄dy

specifically, wκ satisfies (in the sense)

−∇ℏ,Bwκ +W (y)wκ = |wκ|2
∗−2wκ,

so that wκ is a solution to (1). Indeed, since

Re

∫
RN

∇ℏ,Bw∇ℏ,Bvdy = Re

∫
RN

∇ℏw.∇ℏvdy +Re

∫
RN

∇ℏw.iB(y)vdy

+

∫
RN

iB(y)w.∇ℏvdy +Re

∫
RN

iB(y)w.iB(y)vdy, (8)

by replacing w(y) = wκ(
√
κy) (that is, wκ(y) = w( y√

κ
)) in (7) and by applying the change

of variable y =
√
κy, we obtain

Re

∫
RN

∇ℏw(
y√
κ
).∇v( y√

κ
)

1

(
√
κ)N

dy

+Re

∫
RN

∇ℏw(
y√
κ
).iB(

y√
κ
)v(

y√
κ
)

1

(
√
κ)N

dy

+Re

∫
RN

iB(
y√
κ
)w(

y√
κ
).∇ℏv(

y√
κ
)

1

(
√
κ)N

dy

+Re

∫
RN

iB(
y√
κ
)w(

y√
κ
).iB(

y√
κ
)v(

y√
κ
)

1

(
√
κ)N

dy (9)
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So

Re

∫
RN

√
κ∇ℏwκ.

√
κ∇ℏv(

y√
κ
)

1

(
√
κ)N

dy

+Re

∫
RN

√
κ∇ℏwκ.iB(

y√
κ
)v(

y√
κ
)

1

(
√
κ)N

dy

+
√
κRe

∫
RN

iB(
y√
κ
)wκ(y).

√
κ∇ℏv(

y√
κ
)

1

(
√
κ)N

dy

+Re

∫
RN

iB(
y√
κ
)wκ(y).iB(

y√
κ
)v(

y√
κ
)

1

(
√
κ)N

dy

=κ(Re

∫
RN

(|wκ(y)|2
∗−1 −W (

y√
κ
)|wκ(y))|v(

y√
κ
))

1

(
√
κ)N

dy. (10)

If we simplify 1
(
√
κ)N

and in evidence κ, it follows that

Re

∫
RN

(∇ℏ + i
1√
κ
B(

y√
κ
))wκ(y).(∇ℏ + i

1√
κ
B(

y√
κ
))v(

y√
κ
)dy

=Re

∫
RN

(|wκ(y)|2
∗−1 −W (

y√
κ
)|wκ(y)|)v(

y√
κ
)dy.

By the given assumption (B2), and since 1√
κ
B( y√

κ
) = B(y) for all y ∈ RN , we have

Re

∫
RN

∇ℏ,Bwκ(y).∇ℏ,Bv(
y√
κ
)dy = Re

∫
RN

(|wκ(y)|2
∗−1 −W (

y√
κ
)|wκ(y)|)v(

y√
κ
)dy;

therefore we can conclude wκ satisfies (9).
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[9] A.R. Hadhoud, P. Agarwal, A.A.M. Rageh; Numerical treatments of the nonlinear
coupled time-fractional Schrödinger equations,Mathematical Methods in the Applied
Sciences, 45 (1) (2022), 7119-7143.

[10] H. Hassani, Z. Avazzadeh, P. Agarwal, et al.; Generalized Bernoulli-Laguerre Polyno-
mials: Applications in Coupled Nonlinear System of Variable-Order Fractional PDEs.
J Optim Theory Appl, 2200 (2024), 371-1¤73. https://doi.org/10.1007/s10957-023-
02346-6

[11] C. Ji, V.D. Radulescu; Concentration phenomena for nonlinear magnetic
Schrödinger equations with critical growth. Isr. J. Math. 241 (2021), 465-1¤70.
https://doi.org/10.1007/s11856-021-2105-5

[12] H. Khalil, M. Khalil, I. Hashim, P. Agarwal, Extension of Operational Matrix Tech-
nique for the Solution of Nonlinear System of Caputo Fractional Differential Equa-
tions Subjected to Integral Type Boundary Constrains. Entropy, 2021 23, 1154.
https://doi.org/10.3390/e23091154

[13] S. Liang, Y. Song; Multiplicity of solutions of perturbed Schrödinger equation with
electromagnetic fields and critical nonlinearity in RN , Bound. Value Probl. 240
(2014), 1-14.

[14] S. Liang, J. Zhang; Solutions of perturbed Schrödinger equations with electromagnetic
fields and critical nonlinearity, Proc. Edinb. Math. Soc., 54 (1) (2011), 131-147.

[15] E. H. Lieb, M. Loss; Analysis, Graduate Studies in Mathematics, Vol. 14, Amer.
Math. Soc., 1997.

[16] M.M. Mousa, P. Agarwal, F. Alsharari, S. Momani; Capturing of solitons collisions
and reflections in nonlinear Schrödinger type equations by a conservative scheme
based on MOL, Adv Differ Equ, 2021 346 (2021). https://doi.org/10.1186/s13662-
021-03505-7

70



[17] A.Rahmoune, D. Ouchenane, S. Boulaaras, P. Agarwal; Growth of solutions for a
coupled nonlinear Klein-Gordon system with strong damping, source, and distributed
delay terms. Adv Differ Equ, 2020, 335 (2020). https://doi.org/10.1186/s13662-020-
02801-y

[18] N.A. Shah, P. Agarwal, J.D. Chung, E.R. El-Zahar, Y.S. Hamed; Analysis of Optical
Solitons for Nonlinear Schrödinger Equation with Detuning Term by Iterative Trans-
form Method, Symmetry, 12 (2020), 1850. https://doi.org/10.3390/sym12111850

[19] M. Shams, N. Rafiq, N. Kausar, N. et al.; On iterative techniques for estimating all
roots of nonlinear equation and its system with application in differential equation.
Adv Differ Equ, 2021 480 (2021). https://doi.org/10.1186/s13662-021-03636-x

[20] R. Wen, J. Yang; Multiple solutions to critical magnetic Schrödinger equations. Acta
Math Sci 44 (2024), 1373-1¤793. https://doi.org/10.1007/s10473-024-0411-9

S. Jain
Department of Mathematics,
Poornima College of Engineering-302022, India
E-mail: shilpijain1310@gmail.com

F. Hashemi
University of Mazandran, Babolsar, 47416 Iran
E-mail: f.hashemi04@umail.umz.ac.ir

M. Alimohammady
University of Mazandran, Babolsar, 47416 Iran
E-mail:amohsen@umz.ac.ir

C. Cesarano
Universit‘a Telematica Internazionale Uninettuno, Rome, 00186 Italy
E-mail: clemente.cesarano@uninettunouniversity.net

P. Agarwal
Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE,
and
Anand International College of Enginerring, Jaipur 303012, India
and
International Telematic University Uninettuno Corso Vittorio Emanuele II, 3900186 Roma, Italy.
E-mail: goyal.praveen2011@gmail.com

Received 02 August 2024
Accepted 24 November 2024

71


