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Abstract. In this paper, we investigate the unique solvability of a regular solution and
the smoothness of a generalized solution of a semi-nonlocal boundary value problem for
a fourth-order mixed-type equation of the second kind in Sobolev spaces. Theorems of
uniqueness are proved by the energy integral method, and the existence and smoothness of
the solution are proved by the methods of ”ε-regularization”, a priori estimates, modified
Galerkin methods, and the Fourier method.
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1. Introduction

The first nonlocal boundary value problems for second-order mixed-type equa-
tions were initially studied using classical methods in the works [1-3]. Subse-
quently, the methods presented in their studies were further developed using
functional approaches in the works [4-10]. Local and nonlocal boundary value
problems for fourth-order partial differential equations were studied in the work
[11-16]. Boundary value problems with local conditions for high-order mixed-type
equations in various spaces were studied in the works [17-22]. However, there has
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been insufficient study of forward problems with nonlocal boundary conditions
for high-order mixed-type equations [24].

In this paper, using the results of [17-19] and applying the modified Galerkin
method, the ”ε-regularization” method, and the method of a priori estimates,
we study the unique solvability and smoothness of a generalized solution to a
semi-nonlocal boundary value problem for a fourth-order mixed-type equation of
second kind in Sobolev spaces.

2. Problem statement

Consider fourth-order mixed-type equations of second kind in domain Q =
(0, 1)× (0, T ) = {(x, t); 0 < x < 1; 0 < t < T < +∞}:

Lu = Pu+Mu = f(x, t), (1)

here Pu =
∑4

i=0Ki(x, t)D
i
tu; Mu = auxxxx − buxxtt − cuxx;

K4(x, t) = K4(t), K4(0) = K4(0) = 0, Di
tu = ∂iu

∂ti
(i = 0, 1, 2, 3, 4), D0

t u = u.
Let the following conditions be satisfied for the coefficients of equation (1):

K4(t) ∈ C3(0, T ) ∩ C[0, T ]; Ki(x, t) ∈ C2(Q) ∩ C(Q); a, b, c− consts > 0

for all x ∈ [0, 1] .
Equation (1) is a mixed-type equation of the second kind since no restrictions

are imposed on the sign of functionK4(t) with respect to variable t inside segment
[0, T ] [17, 18, 25].

Semi-nonlocal boundary value problem: find solution u(x, t) to equation
(1) from the Sobolev space W 4

2 (Q), satisfying the following boundary conditions:

γDp
t u|t=0 = Dp

t u|t=T ; p = 0, 1, 2 (2)

u|x=0 = u|x=1 = 0; (3)

uxx|x=0 = uxx|x=1 = 0, (4)

where γ is the value different from zero, which will be specified below.
In what follows, we need the following definitions and auxiliary propositions.

Let −→e (et, ex); (et = cos(−→e , t), ex = cos(−→e , x)) be the unit vector of the inner
normal to boundary ∂Q. When obtaining various a priori estimates, we often use
the Cauchy inequality with σ [26], that is,

∀u, ϑ ≥ 0, ∀σ > 0, 2uϑ ≤ σu2 + σ−1ϑ2.

Let us denote the class of smooth functions from space W 4
2 (Q), satisfying

conditions (2)-(4) by CL.
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Definition 1. We call function u(x, t) a regular solution to problem (1), (2)-(4),
if u ∈ CL satisfies equation (1) almost everywhere in domain Q.

Theorem 1. Let the above conditions for the coefficients of equation (1) be satis-
fied, coefficient K1 (x, t) > 0 is sufficiently large, and let the following inequalities
be satisfied for the coefficients of equation (1); −(2K3 − 3K4t + 3λK4) ≥ δ3 > 0,
2K1 − K2t + λK2 ≥ δ2 > 0, λK0 − K0t ≥ δ1 > 0 for any (x, t) ∈ Q, where
λ = 2

T ln |γ| > 0, |γ| > 1, for all x ∈ [0, 1] .

Then for any f(x, t) ∈ L2(Q). If there exists a regular solution u(x, t) to
problem (1), (2)-(4) from the Sobolev space W 4

2 (Q), then it is unique and the
following estimate is true for it:

∥u∥2W 2
2 (Q) ≤ c ∥f∥20 .

Proof. We will prove the uniqueness of the solution to problem (1), (2)-
(4) using the method of energy integrals. Let there exist a regular generalized
solution to problem (1), (2)-(4) u(x, t) from the Sobolev space W 4

2(Q). Consider
the following identity:

2

∫
Q

Lu e−λt ut dxdt = 2

∫
Q

f e−λt ut dxdt. (5)

By virtue of the conditions of Theorem 1 and boundary conditions (2)-(4), by
integrating identity (5) by parts, and applying the Cauchy inequalities with σ
[24], from identity (5), it is easy to obtain the following inequality:

2

∫
Q

e−λtLuut dxdt ≥
∫
Q

e−λt
{
−(2K3 − 3K4t + 3λK4)u

2
tt+λau2xx+λbu2xt+λcu2x+

+(2K1 −K2t + λK2)u
2
t + (λK0 −K0t)u

2
}
dxdt− 2σ∥utt∥20 − 4λ4Kσ−1∥ut∥20−

−
∫
∂Q

e−λt
{
2K4utttut−2 (K4t − λK4)uttut−K4u

2
tt+2K3uttut+2K2u

2
t−K0u

2−au2xx−

+bu2xt+cu2x

}
et ds−

∫
∂Q

e−λt
{
2auxxxut−2auxxutx−2buxxtut−2cuxut

}
ex ds, (6)

where K = max
{
∥K4∥2C2(Q), ∥K3∥2C1(Q)

}
.
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The conditions of Theorem 1 ensure the nonnegativity of the integral over
domain Q and zero boundary integrals. From inequality (6), we obtain:

2

∣∣∣∣∣∣∣
∫
Q

Lue−λtutdxdt

∣∣∣∣∣∣∣ ≥
∫
Q

e−λt
{
δ3u

2
tt+λau2xx+λbu2xt+ δ2u

2
t +λcu2x+ δ1u

2
}
dxdt−

−2σ ∥utt∥20 − 4λ4σ−1K ∥ut∥20 . (7)

Let σ be a sufficiently small positive number. We choose constant values of
δ3 and δ2 in inequality (7) such that δ3− 2σ ≥ δ03 > 0, δ2− 4λ4σ−1K ≥ δ02 > 0,
now denoting by δ = min{δ03, λa, λb, λc, δ02, δ1}, we obtain the first a priori
estimate from (7) for solving problem (1)-(4):

∥u∥2W 2
2 (Q) ≤ c1 ∥f∥2L2(Q) .

In what follows, we denote different positive constants by ci.
Now we will prove the uniqueness of the regular solution to problem (1)-

(4). We will prove the theorem by contradiction. Let problem (1)-(4) have two
different solutions u1(x, t), u2(x, t). Then the new function ϑ(x, t) = u1(x, t) −
u2(x, t) satisfies the homogeneous equation (1) with conditions (2)-(4) and the
first estimate ∥ϑ∥22 ≤ 0 is valid for it. From this follows the uniqueness of the
regular solution to problem (1)-(4).

Now we will prove the solvability of the regular solution to problem (1)-(4).

3. Fifth-order equation with a small parameter (auxiliary
problem)

The solvability of problem (1)-(4) will be proven by the ”ε-regularization”
method, in combination with the modified Galerkin method and the method of
a priori estimates; in domain Q = (0, 1) × (0, T ) we will consider a family of
fifth-order equations with a small parameter:

Lεuε = −ε
∂∆2uε
∂t

+ Luε = f(x, t) (8)

with semi-nonlocal boundary conditions:

γDq
t uε|t=0 = Dq

t uε|t=T ; q = 0, 1, 2, 3, 4, (9)

uε|x=0 = uε|x=1 = 0, (10)

uεxx|x=0 = uεxx|x=1 = 0, (11)
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where ε is a small positive number, Dq
zw = ∂qw

∂zq , q = 1, 2, 3, 4, 5; D0
zw = w,

∆2u = ( ∂2

∂t2
+ ∂2

∂x2 )
2u = (∂

4u
∂t4

+ 2 ∂4u
∂x2∂t2

+ ∂4u
∂x4 ) is a biharmonic operator.

Below we will use fifth-order equations with a small parameter (8) as the
”ε-regularizing” equation for the mixed-type fourth-order equation of the second
kind (1) [4, 5, 6, 17, 25].

By V (Q), we will denote the class of functions such that uε(x, t) ∈ W 4
2 (Q),

∂∆2uε
∂t ∈ L2(Q), satisfy the corresponding boundary conditions (9)-(11).

Definition 2. We call function uε(x, t) a regular solution to problem (8), (9)-
(11), if uε ∈ V (Q) satisfies equation (8) almost everywhere in domain Q.

Theorem 2. Let all the conditions of Theorem 1 be satisfied, and let the following
conditions be satisfied for the coefficients of equation (8); coefficient K3 (x, t) > 0
is sufficiently large and −(2K3 + (2j − 3)K4t + 3λK4) ≥ δ3 > 0, j = 0, 1, 2.

Then, for any function f(x, t) ∈ W 1
2 (Q), such that γf(x, 0) = f(x, T ), there

exists a unique regular solution uε(x, t) to problem (8), (9)-(11) from space V (Q)
and the following estimates are valid for it:

I). ε
(
∥uεttt∥20 + ∥uεttx∥20 + ∥uεtxx∥20

)
+ ∥uε∥22 ≤ c1 ∥ f ∥20,

II). ε
∥∥ ∂
∂ t∆

2uε
∥∥+ ∥uε∥24 ≤ c2 ∥ f ∥21.

Proof. The inequality I) is proven in the same way as the first estimate of
Theorem 1, from which the uniqueness of a regular solution to problem (8), (9)-
(11) follows [17-19].

Now we present the proof of the first a priori estimate. Let ϕj(x, t) ∈ W 4
2 (Q)

be the eigenfunctions of the following problem:

−∆2ϕj = −
(∂4ϕj

∂4t
+

∂4ϕj

∂4x

)
= µ4

jϕj , (12)

Dp
t ϕj |t=0 = Dp

t ϕj |t=T , p = 0, 1, 2, 3, (13)

ϕj |x=0 = ϕj |x=1 = 0, (14)

ϕjxx|x=0 = ϕjxx|x=1 = 0. (15)

From the general theory [17-19] of linear self-adjoint elliptic operators, it is known
that all eigenfunctions of problem (12)-(15) belong to W 4

2 (Q) and form a com-
plete orthonormal system in L2(Q). Now, using these sequences of functions, we
construct a solution to the auxiliary problem:

Pωj ≡ exp
(
− λt

2

) ∂ωj

∂ t
= ϕj , (16)
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γ · ωj(x, 0) = ωj(x, T ), (17)

where γ − const ̸= 0, and | γ | > 1. Obviously, problem (16), (17) is uniquely
solvable and its solution has the following form:

P−1ϕj = ωj =

t∫
0

exp
(λτ

2

)
ϕjdτ +

1

γ − 1

T∫
0

exp
(λt
2

)
ϕjdt.

Functions ωj(x, t) ∈ W 5
2 (Q) are linearly independent. Indeed, if

∑N
j=1 cjωj =

0 for some set of sequences of functions ω1, ω2, ..., ωN , then, acting on this sum
by operator P , we have

∑N
j=1 cjPωj =

∑N
j=1 cjϕj = 0, and from this, it follows

that for all j = 1, N , coefficients are cj = 0. Note that the following conditions
of functions ωj(x, t) ∈ W 5

2 (Q), follow from the construction of function ϕj(x, t):

γ Dq
t ωj |t=0 = Dq

t ωj |t=T , q = 0, 1, 2, 3, 4, (18)

ωj |x=0 = ωj |x=1 = 0, (19)

ωjxx|x=0 = ωjxx|x=1 = 0. (20)

Now we seek an approximate solution to problem (8)-(11) in the form
w(x, t) = uNε (x, t) =

∑N
j=1 cjωj(x, t), where coefficients cjfor anyj from 1 to

N are determined as a solution to the linear algebraic system:

2

∫
Q

Lεu
N
ε exp

(
− λ t

2

)
ϕjdxdt = 2

∫
Q

f exp
(
− λ t

2

)
ϕjdxdt. (21)

Let us prove the unique solvability of algebraic system (21). Multiplying each
equation from (21) by cj and summing over j from 1 to N , considering prob-
lem (16), (17) and boundary conditions (18)-(20), and algebraic system (21), we
obtain the following identity:

2

∫
Q

Lεw exp(−λ t)wtdxdt = 2

∫
Q

f exp(−λ t)wtdxdt, (22)

from which, by virtue of the conditions of Theorem 2 and by integrating identity
(22) by parts, we obtain estimate I) for an approximate solution to problem
(8)-(11), i.e.

ε
(∥∥uNεttt∥∥20 + ∥∥uNεttx∥∥20 + ∥∥uNεtxx∥∥20 )+

∥∥uNε ∥∥2
2
≤ c1 ∥ f ∥20 . (23)
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From this follows the solvability of algebraic system (21) [26]. Estimate (23)
allows (by virtue of Theorem 1 on weak compactness [26, 28]) to pass to the limit

as N → ∞ and conclude that some subsequence
{
uNk
ε (x, t)

}
converges weakly,

by virtue of the uniqueness of the solution to the problem (Theorem 1), to the
sought-for solution uε(x, t) of problem (8)-(11) in space V (Q), possessing the
properties specified in Theorem 2. For uε(x, t), by virtue of (23), the following
inequality is valid:

ε
(
∥uεttt∥20 + ∥uεttx∥20 + ∥uεtxx∥20

)
+ ∥uε∥22 ≤ c1 ∥ f ∥20 . (24)

Now passing to the limit as N → ∞ in (21), we obtain the unique regular
generalized solution to problem (8)-(11) from space V (Q).

Let us prove the second a priori estimate II). Using problem (12)-(17), from
identity (21), we obtain:

− 2

µ2
j

∫
D

Lεw exp
(
− λ t

2

)
∆2Pωj dxdt = − 2

µ2
j

∫
D

f exp
(
− λ t

2

)
∆2Pωj dxdt.

(25)
Multiplying equation (25) by −2µ2

jcj , summing over j from 1 to N and con-
sidering conditions (18)-(20), from (25) we obtain the following identity:

2
(
Lεw, e

−λ t Pw
)
0
= 2

(
f, e−λ t Pw

)
0
, (26)

where Pw ≡ ∂∆2w
∂ t − 2λ ∂2

∂ t2
∆w + 3λ2 ∂

∂t∆w − λ
2wtt +

λ2

16wt,

∂∆2w

∂ t
=

∂

∂ t

(
wtttt + 2wttxx + wxxxx

)
.

Integrating (26) by parts, considering the conditions of Theorem 2 and bound-
ary conditions (18), (20), we obtain the following inequality:

c2 ∥ f ∥21 ≥ ε

∥∥∥∥ ∂∆2w

∂t

∥∥∥∥2
0

+

∫
Q

e−λt
{
− (2K 3 +K 4t + 3λK4)w

2
tttt − (2K3 −K4t+

+3λK 4)w
2
ttxx − ( 2K3 +K4t + 3λK4)w

2
tttx + λaw2

xxxx + λbw2
xxtt + λaw2

xxxt

}
dxdt+

+ρ ∥w∥23 −N1σ(∥wtttt∥20 + ∥wttxx∥20 + ∥wtttx∥20)−N2σ (∥wxxxx∥20 + ∥wttxx∥20 + ∥wtxxx∥20)−

−c (σ−1, λ,K) ∥w∥23 +
∫
∂Q

e−λ·tB(u(s),Ki(s)) ds, i = 0, 4, (27)
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where ρ, Ni(i = 1, 2) are positive numbers depending on the norm of function

Ki(x, t); i = 0, 3, in space C3(Q), K = max
{
∥K4(t)∥C3[0,T ] , ∥Ki(x, t)∥C3(Q)

}
,

σ, c(σ−1) are the coefficients of the Cauchy inequality [26], B(u(s),Ki(s)) are
functions depending on the traces of functions u(x, t), Ki(x, t) on the boundary of

domain Q. Let us denote δ0 = min
{
δ3, λa, λb, λc, δ2, δ1

}
, by N = max

{
N1, N2

}
.

Considering the condition of Theorem 2, boundary conditions (18)-(20), and
γ2 = eλT , we obtain that in (27) the boundary integrals will vanish. Now choosing
σ so that δ0 − Nσ ≥ σ0 > 0, ρ − c(σ−1, λ,K) ≥ ρ0 > 0, from inequality (27),
we obtain the second estimate:

ε

∥∥∥∥ ∂∆2uNε
∂t

∥∥∥∥2
0

+
∥∥uNε ∥∥2

4
≤ c2

(
∥ f ∥20 + ∥ ft ∥20

)
≤ c2 ∥f∥21 . (28)

The constant on the right-hand side of inequality (28) does not depend on N ,
therefore, the second estimate for the approximate solution to problem (8), (9)-
(11) follows from (28). Estimate (24) together with estimate (28) allow us to
pass to the limit as N → ∞ and conclude that some subsequence

{
uNk
ε (x, t)

}
converges weakly (due to the uniqueness of the solution to problem (8)-(11)) in
V (Q) with the derivatives of the fourth and fifth orders to the sought for solution
of problem (8), (9)-(11), which has the properties specified in Theorem 2 [26, 28].
Therefore, for uε(x, t) by virtue of (28), the following inequality is true:

ε

∥∥∥∥ ∂

∂t
∆2uε

∥∥∥∥2
0

+ ∥uε∥24 ≤ c2

(
∥ f ∥20 + ∥ ft ∥20

)
≤ c2 ∥ f ∥21 .

This implies the existence of a regular generalized solution uε(x, t) to problem
(8)-(11) from space V (Q). Thus, Theorem 2 is proven.

4. Existence of a regular solution to problem (1), (2)-(4)

Let us proceed to the proof of the solvability of problem (1), (2)-(4).

Theorem 3. Let all the conditions of Theorem 2 be satisfied. Then a solution
to problem (1)-(4) from W 4

2 (Q) exists and is unique.

Proof. The uniqueness of a solution to problem (1)-(4) in space W 4
2 (Q) is

proven in Theorem 1. Now we prove the existence of a solution to problem (1)-
(4) in spaceW 4

2 (Q). To do this, we consider equation (8) and boundary conditions
(9)-(11) for ε > 0 in domain Q. Since all the conditions of Theorem 2 are satisfied,
there exists a unique regular solution to problem (8), (9)-(11) for ε > 0 from V (Q)
and the first and second estimates are valid for it. It follows that from the set
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of functions {uε(x, t)} , ε > 0, we can extract a weakly convergent subsequence
of functions in V (Q), such that {uεi(x, t)} → u(x, t) as εi → 0. We will show
that the limit function u(x, t) satisfies equation Lu = f (equation (1)) almost
everywhere in domain Q. Indeed, since subsequence {uεi(x, t)} weakly converges

in W 4
2 (Q), subsequence

{√
εi

∂∆2uεi (x,t)

∂ t

}
is uniformly bounded in L2(Q), and

operator L is linear, we obtain:

Lu− f = Lu− Luεi + εi
∂∆2uεi

∂ t
= L (u− u εi) + εi

∂∆2u εi

∂ t
. (29)

From equality (29), passing to the limit as εi → 0, we obtain a unique solution
to problem (1)-(4) [25]. Thus, Theorem 3 is proven.

5. Smoothness of the generalized solution to problem (1), (2)-(4)

Now we proceed to the study of the smoothness of the generalized solution
to problem (1), (2)-(4) in Sobolev spaces Wm+4

2 (Q), when 0 ≤ m is a finite
integer. Below, for simplicity, we assume that the coefficients of equation (1) are
sufficiently differentiable functions in the closed domain Q.

Theorem 4. Let all the conditions of Theorem 3 be satisfied, in addition, let
p = 0, 1, 2, 3, ...,m and q = 0, 1, 2, 3, ...,m; −2 (K3 + mK4t) + (2j − 3)K4t +
3λK4 ≥ δ > 0, j = 0, 1, 2 for all (x, t) ∈ Q, Dp+1

t K4 |t=0 = Dp+1
t K4 |t=T ,

Dq
t Ki |t=0 = Dq

t Ki |t=T , (i = 0, 1, 2, 3).
Then for any function f(x, t) ∈ Wm

2 (Q), such that γDq
t f |t=0 = Dq

t f |t=T for
all x ∈ [0, 1], there exists a unique solution to problem (1)-(4) in Sobolev spaces
Wm+4

2 (Q), where 0 ≤ m is a finite integer.

Proof. Considering the conditions of Theorem 2, Theorem 3 for ε > 0 and
nonlocal boundary conditions at t = 0, t = T , from the equality(

e−
λ t
2 Lεuε

)
|t=T
t=0 =

(
− ε e

−λ t
2

∂

∂t
∆2uε + e

−λ t
2 Luε

)
|t=T
t=0 =

(
e

−λ t
2 f(x, t)

)
|t=T
t=0

we obtain
γD5

t uε
∣∣
t=0

= D5
t uε

∣∣
t=T

.

It follows that function ϑε(x, t) = uε t(x, t) belongs to class V (D) and satisfies
the following equation:

Tεϑε ≡ Lεϑε +K4tϑεttt = ft −
3∑

i=0

KitD
i
tuε ≡ Fε.
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From Theorem 3, it follows that the family of functions {Fε} is uniformly bounded
in space L2(D), i.e. ∥Fε∥20 ≤ c1 ∥ f ∥21 .

Then, from the conditions of Theorem 3, it is easy to obtain that the coef-
ficients of operator Tε (ε > 0) satisfy the conditions of Theorem 4, hence, based
on estimates I), II), and Theorem 3 for function {ϑε(x, t)}, we obtain similar
estimates:

ε
(
∥ϑεttt∥20 + ∥ϑεttx∥20 + ∥ϑεtxx∥20

)
+ ∥ϑε∥22 ≤ c1 ∥ f ∥20 ,

ε

∥∥∥∥ ∂

∂ t
∆2ϑε

∥∥∥∥+ ∥ϑε∥24 ≤ c2 ∥ f ∥21 .

Functions {uε} satisfy the parabolic equation with conditions (2), (3):

Πuε ≡ uε t − uεxx = f + ε
∂

∂ t
∆2 uε −

4∑
i=0

KiD
i
tuε −M uε + uε t − uεxx ≡ Φε

and Φε ∈ W 1
2 (Q); by virtue of what was proven above, the family of functions

{Φε} is uniformly bounded in space W 1
2 (Q), i.e.

∥Φε∥21 ≤ c2

(
∥ f ∥21 + ∥ ftt ∥20

)
≤ c2 ∥f∥22 < c4 ∥f∥24 . (30)

Hence, based on a priori estimates for parabolic equations [25, 26] and in-
equality (30), we obtain

∥uε ∥25 ≤ c4 ∥f∥24 .
Repeating similar reasoning, the following inequality is also proven:

∥uε∥2m+2 ≤ cm+2 ∥f∥2m , m = 1, 2, 3, ...

6. Conclusion

In this paper, we investigated the unique solvability and smoothness of solu-
tions to a semi-nonlocal boundary value problem for a fourth-order mixed-type
equation of the second kind in Sobolev spaces. The theorems of uniqueness were
proved using the energy integral method, demonstrating the robustness of this
approach for mixed-type equations. The existence and smoothness of solutions
were established through the combined use of ε-regularization methods, a priori
estimates, modified Galerkin methods, and the Fourier method. These results ex-
tend the theory of mixed-type equations and provide a deeper understanding of
the regularity properties of solutions in Sobolev spaces. The proposed techniques
and results can be further applied to other types of boundary value problems in
mathematical physics.
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