
Journal of Contemporary Applied Mathematics
V. 15, No 1, 2025, June
ISSN 2222-5498, E-ISSN 3006-3183
https://doi.org/10.62476/jcam.151.4

OPERATORS INTERTWINING WITH CONVO-
LUTION OPERATORS ON HYPERGROUPS
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Abstract. Let G be a locally compact hypergroup and let K be a compact sub-
hypergroup such that (G,K) is a Gelfand pair. Let µ be a bounded complex-valued Borel

measure on G , and let T
♮

µ be the corresponding convolution operator of L1♮(G), the sub-
set of L1(G) consisting of K-bi-invariant functions. Suppose that S is a bounded linear
operator on a Banach space X. We prove that every linear operator Ψ : X −→ L1♮(G)

such that ΨS = T
♮

µΨ is continuous if and only if (S, T
♮

µ) has no critical eigenvalues.
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1. Introduction

Hypergroups generalize locally compact groups where the convolution of two
Dirac measures is a Dirac measure. A hypergroup is a locally compact Hausdorff
space equipped with a convolution product which maps two Dirac measures to
a probability measure with compact support. The notion of hypergroup has
been sufficiently studied (see for example [3, 8, 13, 15]). Harmonic analysis and
probability theory on commutative hypergroups are well-developed and many
results from group theory remain valid (see [1]). When G is a commutative
hypergroup, the convolution algebra Mc(G) consisting of measures with compact
support on G is commutative. A typical example of commutative hypergroup
is the double coset G//K when G is a locally compact group, K is a compact
subgroup of G such that (G,K) is a Gelfand pair. The class of translation
invariant operators is a fundamental object in harmonic analysis. Several authors
studied translation invariant operators on hypergroups [see [9, 7, 12]].
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In their paper [10], Laursen and Neumann raised the following question: “Let
µ and ν be complex-valued bounded Borel measures on a locally compact abelian
group G such that the corresponding pair (Tµ, Tν) of convolution operators on
L1(G) has no critical eigenvalues. Is every linear operator Ψ : L1(G) → L1(G)
for which TµΨ = ΨTν , continuous?”

Let us note that this question generalizes that of Johnson on R [see [9]].

In the case of hypergroups, the question above is studied by Kumar and Sarma
in [6], in the context of commutative hypergroups and compact hypergroups. But
in general, the hypergroups involved in applications are not commutative, thus
the question whether it is possible to have an affirmative response for this question
when the hypergroup is neither commutative nor compact is our main concern.
We consider the case where the hypergroup G is not commutative, but admitting
a compact sub-hypergroup K leading to a commutative subalgebra of Mc(G). In
fact, if K is a compact sub-hypergroup of a hypergroup G, the pair (G,K) is
said to be a Gelfand pair if Mc(G//K) the convolution algebra of measures with
compact support on the double cosets space G//K is commutative. The notion
of Gelfand pairs for hypergroups is well-known (see [4, 16, 17]).

The goal of this paper is to study the question of Johnson for locally compact
hypergroups (possibly non-abelian) admitting a compact sub-hypergroup K such
that (G,K) is a Gelfand pair. In this case, the charactery used in the commutative
case are replaced by the spherical functions.

In the next section, we give notations and setup useful for the remainder of
this paper. In section 3, we prove our main result.

2. Notations and preliminaries

Let G be a locally compact space. We denote by:
- C(G) (resp. M(G)) the space of continuous complex-valued functions (resp.
the space of Radon measures) on G,
- Cb(G) (resp. Mb(G)) the space of bounded continuous functions (resp. the
space of bounded Radon measures) on G,
- K(G) (resp. Mc(G)) the space of continuous functions (resp. the space of Radon
measures) with compact support on G,
- C(G) the space of compact sub-space of G,
- δx the point measure at x ∈ G,
- supp(µ), the support of the measure µ,
- cl(A), the closure of the subset A in G.

For any linear space X, IX denote the identity operator on X.

Let us note that the topology on M(G) is the cône topology [8] and the
topology on C(G) is the topology of Michael [11].
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Definition 1. G is said to be a hypergroup if the following assumptions are
satisfied.

(H1) There is a binary operator ∗ named convolution on Mb(G) under which
Mb(G) is an associative algebra such that:
i) the mapping (µ, ν) 7−→ µ∗ν is continuous from Mb(G)×Mb(G) in Mb(G).
ii) ∀x, y ∈ G, δx ∗ δy is a measure of probability with compact support.
iii) the mapping: (x, y) 7−→ supp(δx∗δy) is continuous from G×G in C(G).

(H2) There is a unique element e (called neutral element) in G such that δx∗δe =
δe ∗ δx = δx, ∀x ∈ G.

(H3) There is an involutive homeomorphism: x 7−→ x from G in G, named
involution, such that:
i) (δx ∗ δy)

− = δy ∗ δx,∀x, y ∈ G with µ−(f) = µ(f−) where f−(x) =
f(x),∀f ∈ C(G) and µ ∈ M(G).
ii) ∀x, y, z ∈ G, z ∈ supp(δx ∗ δy) if and only if x ∈ supp(δz ∗ δy).

For two subset A and B of G, A ∗ B = ∪
x∈A,y∈B

supp(δx ∗ δy). For x, y ∈ G

{x} ∗ {y} is denoted by x ∗ y.
The hypergroup G is commutative if δx ∗ δy = δy ∗ δx,∀x, y ∈ G.

For x, y ∈ G and for f ∈ C(G), (δx ∗ δy)(f) is denoted by f(x ∗ y). Thus, we
have

f(x ∗ y) =
∫
G
f(z)d(δx ∗ δy)(z).

The convolution of two measures µ, ν in Mb(G) is defined by:

(µ ∗ ν)(f) =
∫
G

∫
G
(δx ∗ δy)(f)dµ(x)dν(y) =

∫
G

∫
G
f(x ∗ y)dµ(x)dν(y),∀f ∈ C(G)

For µ in Mb(G), µ∗ = (µ)−. So Mb(G) is a ∗-Banach algebra.

Definition 2. H ⊂ G is a sub-hypergroup of G if the following conditions are
satisfied.

1. H is non empty and closed in G,

2. ∀x ∈ H,x ∈ H,

3. ∀x, y ∈ H, supp(δx ∗ δy) ⊂ H.
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Let us now consider a hypergroup G provided with a left Haar measure
µG and K a compact sub-hypergroup of G with a normalized Haar measure
ωK . For x ∈ G, the double coset of x with respect to K is K ∗ {x} ∗ K =
{k1 ∗ x ∗ k2; k1, k2 ∈ K}. We write simply KxK for a double coset and recall
that KxK =

⋃
k1,k2∈K

supp(δk1 ∗ δx ∗ δk2). All double cosets form a partition of G

and the quotient topology with respect to the corresponding equivalence relation
equips the double cosets space G//K with a locally topology ([1], page 53). The
natural mapping pK : G −→ G//K defined by

pK(x) = KxK, x ∈ G

is an open surjective continuous mapping. A function f ∈ C(G) is said to beK-bi-
invariant if f(k1 ∗ x ∗ k2) = f(x) for all x ∈ G and for all k1, k2 ∈ K. We denote
by C♮(G), (resp. K♮(G)) the space of continuous functions (resp. continuous
functions with compact support) which are K-bi-invariant. We consider the K-
projection f 7−→ f ♮ from C(G) into C♮(G) where for x ∈ G,

f ♮(x) =

∫
K

∫
K
f(k1 ∗ x ∗ k2)dωK(k1)dωK(k2).

If f ∈ K(G), then f ♮ ∈ K♮(G). For a measure µ ∈ M(G), one defines µ
♮
by

µ
♮
(f) = µ(f ♮) for f ∈ K(G).

µ is said to be K-bi-invariant if µ
♮
= µ and we denote by M ♮ (G) the set of all

those measures. Considering these properties, one defines a hypergroup operation
on G//K by

δKxK ∗ δKyK(f̃) =

∫
K
f(x ∗ k ∗ y)dωK(k)

where f̃ ∈ K(G//K) and f ∈ K♮(G) such that f = f̃ ◦ pK (see [16] and [1]).
This defines uniquely the convolution (KxK) ∗ (KyK) on G//K. The involution
is defined by: KxK = KxK and the neutral element is K. Let us put m =∫
G δKxKdµG(x), m is a left Haar measure on G//K. We say that (G,K) is a
Gelfand pair if the convolution algebra Mc(G//K) is commutative (see [17]),

that means M ♮
c (G) is commutative. Considering the convolution product on

K(G) defined by

f ∗ g(x) =
∫
G
f(x ∗ y)g(y)dµG(y),

K(G) is a convolution algebra and K♮(G) is a subalgebra of K(G) Thus (G,K)
is a Gelfand pair if and only if K♮(G) is commutative ([4], theorem 3.2.2).
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In the rest of the paper, we consider a Gelfand pair (G,K).

Let S(G,K) be the set of continuous, bounded function ϕ on G such that:
(i) ϕ is K-bi-invariant,
(ii) ϕ(e) = 1,
(iii)

∫
K ϕ(x ∗ k ∗ y)dwK(k) = ϕ(x)ϕ(y) ∀x, y ∈ G,

(iv) ϕ(x) = ϕ(x) ∀x ∈ G.
S(G,K) is the set of spherical functions of G with respect to K.

Equipped with the topology of uniform convergence on compact sets, S(G,K)
is a locally compact Hausdorff space and the function 1 : x 7−→ 1 belongs to
S(G,K).

For µ belongs to Mb(G), the Fourier transform of µ, is defined by

µ̂(ϕ) =

∫
G
ϕ(x)dµ(x), ϕ ∈ S(G,K).

µ̂ ∈ Cb(S(G,K)) and the map:

Mb(G) −→ Cb(S(G,K))
µ 7−→ µ̂

is a continuous linear operator. For β ∈ Mb(S(G,K)), the inverse Fourier
transform of β is defined by

∨
β(x) =

∫
S(G,K)

ϕ(x)dβ(ϕ), x ∈ G.

By identifying, first f ∈ L1(G) with fµG, we have f̂(ϕ) =
∫
G ϕ(x)f(x)dµG(x)

∀ϕ ∈ S(G,K), and then φ ∈ L1(S(G,K)) with φπ (where π is the Plancherel

measure [5]), we have
∨
φ(x) =

∫
S(G,K) ϕ(x)φ(ϕ)dπ(ϕ), x ∈ G.

Remark 1. By the commutativity of M ♮
c (G) and the characteristics of the ele-

ments of S(G,K), it have been proven that

a) µ̂ = µ̂♮ for any µ ∈ Mb(G)

b) µ̂ ∗ ν = µ̂ν̂ for µ ∈ M ♮
b (G) and ν ∈ Mb(G)

c) If f ∈ L1♮(G) and f̂ ∈ L1♮(S(G,K)), then
(
f̂
)∨

= f .

For the properties above and more details on the Fourier and the inverse
Fourier transform, see [2] and [5]
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3. Operators commuting with convolution operators

In this part, after recalling some definitions and properties, we specify the
convolution operator we will use and establish our result.

Definition 3. Let X and Y be Banach spaces. Let S and T be continuous linear
operators on X and Y respectively. A linear operator Ψ : X → Y is said to
intertwine the pair (S, T ) if ΨS = TΨ.
A complex number λ is called a critical eigenvalue of (S, T ) if λ is an eigenvalue
of T and (λIX − S)(X) is a subspace with infinite co-dimension in X.

Lemma 1. (See [14],Lemma 3.2). If (S, T ) has a critical eigenvalue then there
exists a discontinuous operator which intertwines the pair (S, T ).

Definition 4. Let Ψ : X −→ Y be a linear operator from the Banach space X
into the Banach space Y . The separating space of Ψ is the subspace
G(Ψ) = {y ∈ Y : ∃ a sequence (xn)n such that xn −→ 0 in X and Ψ(xn) −→ y in Y }.

Remark 2. It is clear that Ψ is continuous if and only if G(Ψ) = {0Y }.

Lemma 2. (See [14], Lemma 1.6). Let X and Y be two Banach spaces and
let (Tn)n and (Rn)n be sequences of continuous linear operators on X and Y
respectively. If S is a linear operator from X into Y satisfying
STn = RnS for all n, then there exists an integer N such that
cl(R1...Rn(G(Ψ)) = cl(R1...RN (G(Ψ)) for n ≥ N .

Let µ ∈ Mb(G) and let f ∈ L1(G). The convolution of µ by f is

defined by

µ ∗ f(x) =
∫
G
f(y ∗ x)dµ(y), x ∈ G.

It is well known that µ ∗ f ∈ L1(G) and the convolution operator

Tµ : f 7−→ µ ∗ f is a bounded linear operator on L1(G) (see [1]).

Let µ belongs to M ♮
b (G). We call by convolution operator on L1♮(G), corre-

sponding to µ, the operator

T ♮
µ : f 7−→ µ ∗ f, f ∈ L1♮(G).

Remark 3. (i) T ♮
µ is a bounded linear operator on L1♮(G).

(ii) ∀f ∈ L1♮(G),
(
(T ♮

µ)n(f)
)∧

= µ̂...µ̂︸︷︷︸
n times

.f̂ ,∀n ≥ 1. In fact, for n ≥ 1, we have
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(T ♮
µ)n(f) = µ ∗ ... ∗ µ︸ ︷︷ ︸

n times

∗ f . It then follows by Remark 1 b) that
(
(T ♮

µ)n(f)
)∧

=

µ̂...µ̂︸︷︷︸
n times

.f̂ .

We have the following result which is our main theorem.

Theorem 1. Let (G,K) be a Gelfand pair and T ♮
µ be the convolution operator

on L1♮(G) corresponding to µ ∈ M ♮
b (G). Let S be a continuous linear operator

on a Banach space X. If the pair (S, T ♮
µ) has no critical eigenvalue, then every

linear operator Ψ : X −→ L1♮(G) which intertwines (S, T ♮
µ) is continuous.

Proof. Suppose that Ψ : X −→ L1♮(G) is a discontinuous operator in-

tertwining the pair (S, T ♮
µ). So G(Ψ) ̸= {0}. Let us consider the space

µ̂(S(G,K))Ψ =
{
µ̂(ϕ) : ϕ ∈ S(G,K) and f̂(ϕ) ̸= 0 for some f ∈ G(Ψ)

}
.

µ̂(S(G,K))Ψ is finite. In fact, if we assume that µ̂(S(G,K))Ψ is infinite, we
can have a sequence (ϕn)n with ϕn ∈ S(G,K) such that µ̂(ϕn) ̸= µ̂(ϕm) for n ̸= m

and for any n ∈ N there exists fn ∈ G(Ψ) such that f̂n(ϕn) ̸= 0. For k ∈ N, let
us put λk = µ̂(ϕk). Let IL1 and IX denote the identity operators on L1♮(G) and
X respectively.
For any ϕ belongs to S(G,K) and any f ∈ L1♮(G), let us prove by recurrence
that[
(λ1IL1 − T ♮

µ)...(λnIL1 − T ♮
µ)f

]∧
(ϕ) = (λ1−µ̂(ϕ))...(λn−µ̂(ϕ))f̂(ϕ) ∀n ∈ N∗. (1)

Indeed,
[
(λ1IL1 − T ♮

µ)f
]∧

(ϕ) = [λ1f − µ ∗ f ]∧ (ϕ) = (λ1−µ̂(ϕ))f̂(ϕ) (see Remark

3 (ii)), and suppose that[
(λ1IL1 − T ♮

µ)...(λkIL1 − T ♮
µ)f

]∧
(ϕ) = (λ1 − µ̂(ϕ))...(λk − µ̂(ϕ))f̂(ϕ) for k ≥ 1

We have[
(λ1IL1 − T ♮

µ)...(λk+1IL1 − T ♮
µ)f

]∧
(ϕ) =

[
(λ1IL1 − T ♮

µ)...(λkIL1 − T ♮
µ)(λk+1f − µ ∗ f)

]∧
(ϕ)

= (λ1 − µ̂(ϕ))...(λk − µ̂(ϕ))(λk+1f − µ ∗ f)∧(ϕ)

= (λ1 − µ̂(ϕ))...(λk − µ̂(ϕ))(λk+1 − µ̂(ϕ))f̂(ϕ),

hence we have the assertion.
Otherwise, since Ψ intertwines (S, T ♮

µ), we have

(λnIL1 − T ♮
µ)Ψ = Ψ(λnIX − S), ∀n ≥ 1.
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Then by lemma 3.4, there exists n ≥ 1 such that

cl((λ1IL1−T ♮
µ)...(λnIL1−T ♮

µ)G(Ψ)) = cl((λ1IL1−T ♮
µ)...(λn+1IL1−T ♮

µ)G(Ψ)) (2)

Using (1) we have[
(λ1IL1 − T ♮

µ)...(λn+1IL1 − T ♮
µ)f

]∧
(ϕn+1) = (λ1 − λn+1)...(λn+1 − λn+1)f̂(ϕn+1)

= 0.

So the Fourier transform of any function belongs to (λ1IL1 − T ♮
µ)...(λn+1IL1 −

T ♮
µ)G(Ψ) vanishes at ϕn+1. Then by (2), the Fourier transform of any function

belongs to cl((λ1IL1 − T ♮
µ)...(λnIL1 − T ♮

µ)G(Ψ)) vanishes at ϕn+1, that is[
(λ1IL1 − T ♮

µ)...(λnIL1 − T ♮
µ)f

]∧
(ϕn+1) = 0

for all f ∈ G(Ψ) and consequently

(λ1 − λn+1)...(λn − λn+1)f̂(ϕn+1) = 0.

Since (λ1 − λn+1)...(λn − λn+1) ̸= 0, then f̂n+1(ϕn+1) = 0, this contradicts the

choice of fn+1, and
{
µ̂(ϕ) : ϕ ∈ S(G,K) and f̂(ϕ) ̸= 0 for some f ∈ G(Ψ)

}
is fi-

nite.
Let β1, ..., βm ∈ C such that{

µ̂(ϕ) : ϕ ∈ S(G,K) and f̂(ϕ) ̸= 0 for some f ∈ G(Ψ)
}
= {β1, ..., βm} .

(β1IL1 − T ♮
µ)...(βmIL1 − T ♮

µ)G(Ψ) = 0. In fact, let us put

ĜΨ =
{
ϕ ∈ S(G,K): f̂(ϕ) ̸= 0 for some f ∈ G(Ψ)

}
.

For f ∈ G(Ψ) and ϕ ∈ S(G,K), we have[
(β1IL1 − T ♮

µ)...(βmIL1 − T ♮
µ)f

]∧
(ϕ) = (β1 − µ̂(ϕ))...(βm − µ̂(ϕ))f̂(ϕ).

It is clear that (β1 − µ̂(ϕ))...(βm − µ̂(ϕ))f̂(ϕ) = 0 if ϕ /∈ ĜΨ.
If ϕ ∈ ĜΨ, then there exists k ∈ {1, ...,m} such that µ̂(ϕ) = βk, hence (β1 −
µ̂(ϕ))...(βm − µ̂(ϕ))f̂(ϕ) = 0. So

[
(β1IL1 − T ♮

µ)...(βmIL1 − T ♮
µ)f

]∧
= 0.

It follows that (β1IL1 − T ♮
µ)...(βmIL1 − T ♮

µ)f = 0 since the function

(β1IL1 − T ♮
µ)...(βmIL1 − T ♮

µ)f belongs to L1♮(G).
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Thus, as all operators βkIL1 − T ♮
µ; k ∈ {1, ...,m} commute among themselves,

we can state that βk is a eigenvalue of T ♮
µ for k ∈ {1, ...,m}. Since (S, T ♮

µ) has
no critical eigenvalues, then the subspace (βkIX − S)(X) has finite co-dimension
for k ∈ {1, ...,m}, therefore N = (β1IX − S)...(βmIX − S)(X) has finite co-
dimenson. The operator R = (β1IX − S)...(βmIX − S) is continuous, hence by
[[14], Lemme 3.3], N is a closed subspace of X. We have

ΨR = Ψ(β1IX − S)...(βmIX − S) = (β1IL1 − T ♮
µ)...(βmIL1 − T ♮

µ)Ψ.

(β1IL1 − T ♮
µ)...(βmIL1 − T ♮

µ)G(Ψ) = 0, so ΨR = (β1IL1 − T ♮
µ)...(βmIL1 − T ♮

µ)Ψ
is continuous (see [14], Lemma 1.3 (i)). Otherwise let (yn)n be a sequence in N
such that yn −→ 0. Since R : X −→ N is continuous and surjective, then R is
an open operator. So there exists a sequence (xn)n in X such that xn −→ 0 and
R(xn) = yn. We have Ψ(yn) = ΨR(xn) and by the continuity of ΨR, we have
Ψ(yn) −→ 0. Thus the restriction of Ψ to N is continuous. Since N has finite
co-dimenson, then Ψ is continuous on X, this is a contradiction, and the proof is
complete.

Remark 4. The above result is a generalization of the one established in the case
of commutative hypergroups (see [6]). In fact, if G is a commutative hypergroup,
then (G, {e}) is a Gelfand pair.
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