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Generalisation of algebraic point families of the
Fermat curve quotient C1,2(7)
M.M.D.Diallo, C.M.Coly

Abstract. We explicitly determine the algebraic point families of a given degree over Q
of the curve C1,2(7) with affine equation:

y7 = x(x− 1)2

This curve is a special case of the family of quotients of Fermat curves Cr,s(p) described
in [11] of affine equation:

yp = xr(x− 1)s with 1 ≤ r, s, r + s ≤ p;

for r = 1, s = 2 and p = 7 such a curve was considered in [10]. This curve has been
studied by O. Sall in [14], where the author gives a parametrisation of the cubic points. It
should be noted, however, that the method used by O. Sall does not allow us to determine
the set of points of degree greater than 3. We have therefore used a geometric method
to extend this work and determine the quartic points [4]. In this note, we describe all
the families of algebraic points of given degree, geometrically specifying the contact lines
and the curve containing them, by applying the fundamental Abel-Jacobi theorem [1, 9],
before using these results with a Q-basis of the linear systems L(m∞) and combining the
contact order of the curve and specific points to obtain analytical expressions for these
families of points.

Key Words and Phrases: Mordell-Weill group, Rational Points, Jacobian, Galois
Conjugate, Linear Systems.

2010 Mathematics Subject Classifications: 14L40; 14H15; 14C20; 14H45.

1. Introduction

Algebraic geometry is a field of mathematics that historically has been in-
terested in geometric objects (curves, surfaces, etc.) composed of points whose
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coordinates verified equations that were not only sums and products.
Descartes’ geometry [3] inaugurating the study of algebraic curves by the meth-
ods of analytic geometry, marks a great stage in the genesis of this discipline.
At the beginning of the twentieth century, algebraic geometry became a field in
its own right.
This was initiated on the one hand by the work of David Hilbert [17, 15] and
then was developed on the other hand by the Italian school at the end of the
twentieth century.
Towards the end of the 1930s, André Weil introduced a formalism that made it
possible to rigorously demonstrate their results (for a more extensive range of
readers, see [16]).
In the aftermath of the 1930s in [12], the mathematicians Zariski, Brauer, Kol-
mogorov, Weil, and Chevalley developed in a more algebraic form the study of
manifolds on any commutative field, essentially using ring theory.
In the 1950s, this branch had a great boom under the impetus of Pierre Samuel,
Enri Cartan, Jean Pierre Serre and Alexandre Grothendieck.
Let p be a prime number. Let Fp be the Fermat curve of degree p defined by:

Fp : Xp + Y p = 1 (1)

and J (p) its jacobian. Faddev (see [7]) prouve that when p ≤ 7 the Mordell-Weil
group of J (p) over Q is finite. Gross and Rohrlich show that, this group contains
points of infinite order for p > 7 (cf. [10]).
In this document, we are interested in algebraic curves which are quotients of
Fermat curves. These curves are described by affine equations of the type:

Cr,s(p) : yp = xr(x− 1)s with 1 ≤ r, s, r + s ≤ p− 1 (2)

They have interested a large number of algebraic geometers, including Gross and
Rohrlich who determined in 1978 the set of algebraic points of degree ≤ 2 for
p = 5, 7 or 11.
In 2003 (see [13]), Sall extended the work of Gross and Rohrlich by determining
the set of algebraic points of any degree ℓ for p = 5, 7 or 11.
The case C1,2(7) was already studied in 1908 by Hurwitz (cf. [11]) who had de-
scribed the rational points. In 2003 Sall extended (see [14]), by determining the
set of algebraic points of degree at most 3 on the curve C1,2(7).
In 2024, we extended the work of O. Sall by determining the quartic points on
the same curve [4].
In this note, we explicitly determine the families of algebraic points of any degree
on C1,2(7) , which makes the originality of the work.
The determination of algebraic points seems to be favorable when the Mordell-
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Weil group of the Jacobian J (Q) is finite. It should be noted that the Rie-
mann–Roch theorem plays an essential role in the calculations of the dimensions
of vector spaces L(m∞) i.e if m ≥ 2g − 1 with m is a natural non-zero number;
then dim(L(m∞)) = m− g + 1 where g is the genus of the curve.
Let C be a projective algebraic curve defined over Q. For any number field K,
we denote by C(K) the set of algebraic points on C with coordinates in K and by⋃
[K:Q]≤d

C(K) or Cd(K) the set of points on C with coordinates in K of degree at

most d over Q. The degree of a point P is the degree of its definition field over
Q, i.e deg(P ) = [Q(P : Q].
We denote by J1,2 the jacobian of the curve C1,2(7) with affine equation
y7 = x(x− 1)2 and by j1,2(P ) the class [P −∞] of P −∞, i.e. j is the Jacobian
folding:

j1,2 : C1,2(7) −→ J1,2(7)(Q)
P 7−→ [P −∞]

(3)

where J1,2(7)(Q) denotes the Mordell-Weil group of rational points of the Jaco-
bian of C1,2(7). This group is finite (see [6, 13]). This work consists in two parts,
the first of which consists of developing certain essential results, called ’Auxiliary
results’, which enable us to demonstrate our result in the next section, called
’Main result’.

2. Auxiliary results

Let Q̄ be the algebraic closure of Q and for a divisor D in C, let L(D) as
the Q̄ vector space of rational functions f defined over Q such that f = 0 or
div(f)≥−D; l(D) denotes the Q̄ dimension of L(D).

Lemma 1. According to [10], the Mordell-Weil group of the rational points of
the Jacobian of C1,2(7) is given by:

J1,2(7)(Q) ∼= Z/7Z

Proof. This result is given in [14] and is explicitly proved in [10].

Let’s P0 , P1, G1, G2 and∞ are the points of the curve C1,2(7) in the projective
space P defined by: P0 = [0 : 0 : 1], P1 = [1 : 0 : 1], G1 = [η : η̄ : 1]; G2 = [η̄ : η : 1]
and ∞ = [1 : 0 : 0] where η is a primitive sixth root of unity and η̄ is its complex
conjugate.

Lemma 2. We have the following rationnel divisors on the curve C1,2(7):
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a) div(x− µ) = 7Pµ − 7∞ where µ ∈ {0, 1},

b) div(y) =
1∑

µ=0

(µ+ 1)Pµ − 3∞.

Proof. A brief demonstration is given in [4], but a complete one is given in
[14].

Corollary 1. For our curve C1,2(7) we have the following equations:

a) j1,2(P0) = −2j1,2(P1),

b) 7j1,2(P0) = 7j1,2(P1) = 0.

Proof. They are direct consequences of Lemma 2 by associating the Jacobian
plunge expression (3).

Lemma 3. The Mordell-Weil group of rational points of the Jacobian of C1,2(7)
is generated by

J1,2(7)(Q) ∼= {mj1,2(P0)|m ∈ {0, . . . , 6}} ∪ {mj1,2(P0) + y0|m ∈ {0, . . . , 6}},

with y0 =

[
−

2∑
κ=1

Gκ + 2∞

]
.

Proof. See ([11], [14]).

Lemma 4.

1 For our curve C1,2(7), we obtain the following linear systems:

• L(∞) = L(2∞) = ⟨1⟩,
• L(3∞) = L(4∞) = ⟨1, y⟩,

• L(5∞) =

〈
1, y,

y
19
3

(x− 1)2

〉
,

• L(6∞) =

〈
1, y,

y
19
3

(x− 1)2
, y2

〉
,

• L(7∞) =

〈
1, y,

y
19
3

(x− 1)2
, y2, x

〉
,
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• L(8∞) =

〈
1, y,

y
19
3

(x− 1)2
, y2, x,

y
22
3

(x− 1)2

〉
,

• L(9∞) =

〈
1, y,

y
19
3

(x− 1)2
, y2, x,

y
22
3

(x− 1)2
, y3

〉
,

• L(10∞) =

〈
1, y,

y
19
3

(x− 1)2
, y2, x,

y
22
3

(x− 1)2
, y3, xy

〉
.

2 Generally, for all m ∈ N, a Q-base of the space L(m∞) is given by:

Bm =
{
yi
∣∣∣ i ≤ m

3

}⋃{
xyj

∣∣∣∣ j ≤ m− 7

3

}⋃{
y

19
3
+k

(x− 1)2

∣∣∣∣ k ≤ m− 5

3

}
,

such that (i, j, k) ∈ N3

Proof. It is clear that Bm is free. It remains to show that the cardinality of
Bm is equal to the dimension of L(m∞). For m ≤ 2g− 2 = 4, Lemma 2 and the
Clifford’s theorem [5] gives the results; which justifies the 1.
For the second point noted 2, we will consider m ≥ 2g−1 = 5, we have according
to Riemann-Roch theorem (cf. [2, 8]), dim(L(m∞)) = m − g + 1. Let consider
the following cases:

⊙ 1st Case: Consider m is even. Let m = 2(3h) with h ∈ N; we have:

∗ for i: i ≤ m

3
⇔ i ≤ 6h

3
⇔ i ≤ 2h,

∗ for j: j ≤ m− 7

3
⇔ j ≤ 6h− 7

3
⇒ j <

6h− 6

3
⇔ j < 2h− 2 ⇒ j ≤ 2h− 3,

∗ for k: k ≤ m− 5

3
⇔ k ≤ 6h− 5

3
⇒ k <

6h− 3

3
⇔ k < 2h− 1 ⇒ k ≤ 2h− 2.

Then, the expression of Bm is given by:

Bm =
{
1, y, . . . , y2h

}⋃{
x, xy, . . . , xy2h−3

}⋃{
y

19
3

(x− 1)2
, . . . ,

y
19
3
+2h−2

(x− 1)2

}
.

This results in the dimension of Bm being as follows:

#Bm = (2h+1)+(2h−3+1)+(2h−2+1) = 6h−2 = m−2 = dimL(m∞).

⊙ 2nd Case: Consider m is odd. Let m = 2(3h) + 1 with h ∈ N; we have:
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∗ for i: i ≤ m

3
⇔ i ≤ 6h+ 1

3
⇒ i <

6h+ 3

3
⇔ i < 2h+ 1 ⇒ i ≤ 2h,

∗ for j: j ≤ m− 7

3
⇔ j ≤ 6h− 6

3
⇔ j ≤ 2h− 2,

∗ for k: k ≤ m− 5

3
⇔ k ≤ 6h− 4

3
⇒ k <

6h− 3

3
⇔ k < 2h− 1 ⇒ k ≤ 2h− 2.

Then, the expression of Bm is given by:

Bm =
{
1, y, . . . , y2h

}⋃{
x, xy, . . . , xy2h−2

}⋃{
y

19
3

(x− 1)2
, . . . ,

y
19
3
+2h−2

(x− 1)2

}

This results in the dimension of Bm being as follows:

#Bm = (2h+1)+(2h−2+1)+(2h−2+1) = 6h−1 = m−2 = dimL(m∞).

Proposition 1. The geometric expression of the algebraic points is described by
the intersections Γn and Γn′ with the curve C1,2(7) over Q is given by:

• Γn · C1,2 =
d∑

ν=1

Rν + (7n− d− 2m)∞,

• Γn′ · C1,2 =
d∑

ν=1

Rν + 2mP1 +

2∑
κ=1

Gκ + (7n′ − d− 2m− 2)∞,

where Γn and Γn′ are the curves defined by:

Γn =

{
[X : Y : 1] ∈ C1,2(Q)

∣∣∣∣Znξ

(
X

Z
,
Y

Z

)
= 0, ξ ∈ L ((d+ 2m)∞)

}
,

Γn′ =

{
[X : Y : 1] ∈ C1,2(Q)

∣∣∣∣Zn′
ζ

(
X

Z
,
Y

Z

)
= 0, ζ ∈ L ((d+ 2m+ 2)∞)

}
.

Proof. Let R ∈ C1,2 (7)(Q) with [Q(R) : Q] = d and Rν for ν ∈ {1, . . . , d}

the Galois conjugates of R. Let’s work with t =

[
d∑

ν=1

Rν − d∞

]
which is a

point of J1,2(7)(Q). We will use two steps depending on whether t be-
longs to {mj1,2(P0) | 0 ≤ m ≤ 6} or to {mj1,2(P0) + y0 | 0 ≤ m ≤ 6} with

y0 =

[
−

2∑
κ=1

Gκ + 2∞

]
.
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First step: Let us first consider t in the set {mj1,2(P0) | 0 ≤ m ≤ 6}. This im-

plies that t = mj1,2(P0) for 0 ≤ m ≤ 6 and furthermore t =

[
d∑

ν=1

Rν − d∞

]
.

We then obtain the following equation:[
d∑

ν=1

Rν − d∞

]
= mj1,2(P0), (4)

from Corollary 1, the equation (4) becomes:[
d∑

ν=1

Rν − d∞

]
= −2mj1,2(P1), (5)

by applying the expression for the Jacobian fold noted in (3) to equation
(5), we obtain the following equality:[

d∑
ν=1

Rν − d∞

]
= − [2mP1 − 2m∞], (6)

from expression (6), we can then deduce the following equation:[
d∑

ν=1

Rν + 2mP1 − (d+ 2m)∞

]
= 0. (7)

According to the Abel-Jacobi theorem [1, 9], from equation (7), there exists
a rational function ξ(x, y) defined on Q such that the principal divisor is
described as follows:

div(ξ) =
d∑

ν=1

Rν + 2mP1 − (d+ 2m)∞, (8)

for 0 ≤ m ≤ 6; then ξ ∈ L ((d+ 2m)∞). The function ξ is a polynomial of

n ≤ ⌊d+ 19

3
⌋ where ⌊d+ 19

3
⌋ denotes the integer part of

d+ 19

3
. There is

then a curve Γn defined over Q of equation Znξ(XZ , YZ ) = 0 such that

Γn · C1,2 =
d∑

ν=1

Rν − (d+ 2m)∞+ 7n∞, (9)

we conclude from the expression (9) that Γn · C1,2 is expressed as follows:

Γn · C1,2 =
d∑

ν=1

Rν + (7n− d− 2m)∞.
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Second step: In this second part, we take t in the
set {mj1,2(P0) + y0 | 0 ≤ m ≤ 6}. This implies that
t = {mj1,2(P0) + y0 | 0 ≤ m ≤ 6}. This implies that

t = {mj1,2(P0) + y0 | 0 ≤ m ≤ 6}, furthermore t =

[
d∑

ν=1

Rν − d∞

]
and

y0 =

[
−

2∑
κ=1

Gκ + 2∞

]
. We then obtain the following equation:

[
d∑

ν=1

Rν − d∞

]
= mj1,2(P0) +

[
−

2∑
κ=1

Gκ + 2∞

]
, (10)

from Corollary 1, the equation (10) becomes:[
d∑

ν=1

Rν − d∞

]
= mj1,2(P0) +

[
−

2∑
κ=1

Gκ + 2∞

]
, (11)

by reapplying the expression for the Jacobian fold noted in (3) to equation
(11), we obtain the following equality:[

d∑
ν=1

Rν − d∞

]
= −2mj1,2(P1) +

[
−

2∑
κ=1

Gκ + 2∞

]
, (12)

expression (12), we can then deduce the following equation:[
d∑

ν=1

Rν − d∞

]
= −[2mP1 − 2m∞] +

[
−

2∑
κ=1

Gκ + 2∞

]
, (13)

then, we have the following equation:[
d∑

ν=1

Rν + 2mP1 +
2∑

κ=1

Gκ − (d+ 2m+ 2)∞

]
= 0. (14)

Similarly, by application of the Abel-Jacobi theorem [1, 9], from equation
(14), there exists a rational function ζ(x, y) defined on Q such that the
principal divisor is defined as follows:

div(ζ) =

d∑
ν=1

Rν + 2mP1 +
2∑

κ=1

Gκ − (d+ 2m+ 2)∞, (15)
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with 0 ≤ m ≤ 6; then ζ ∈ L((d+2m+2)∞). The function ζ is a polynomial

of degree n′ ≤ ⌊d+ 21

3
⌋ where ⌊d+ 21

3
⌋ denotes the integer part of d+ 21

3
.

There is then a curve Γn′ defined over Q of equation Zn′
ζ(XZ , YZ ) = 0 such

that

Γn′ · C1,2 =
d∑

ν=1

Rν + 2mP1 +
2∑

κ=1

Gκ − (d+ 2m+ 2)∞+ 7n′∞, (16)

we conclude from the expression (16) that Γn′ · C1,2 is expressed as follows:

Γn′ · C1,2 =
d∑

ν=1

Rν + 2mP1 +

2∑
κ=1

Gκ + (7n′ − d− 2m− 2)∞.

3. Main result

Our main result is described by the following theorem:

Theorem 1. The families of algebraic points of given degree on the quotient curve

C1,2(7) of affine equation y7 = x(x−1)2 are given as follows Cd
1,2(7)(Q) = M

⋃
D

such that

M =



−

7n−d−2m
3∑

i=0

aiy
i

ζ(y)
, y



∣∣∣∣∣∣∣∣∣∣∣∣

a 7n−d−2m
3

̸= 0 if n and d have the same

parity, c 7n−d−2m−5
3

̸= 0 otherwise, a0

and b0 cannot both be zero and x

is a root of the equation (E1)


and

D =




−

7n′−d−2m−2
3∑

i=2m

ait
i + α(t)

ϑ(t) + β(t)
, t



∣∣∣∣∣∣∣∣∣∣∣∣∣

a 7n′−d−2m−2
3

̸= 0 if n′ and d have

the same, c 7n′−d−2m−7
3

̸= 0 otherwise

and x isa root of the equation (E2)
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where

(E1) : y7 (ζ(y))3 =

7n−d−2m
3∑

i=0

aiy
i

 7n−d−2m
3∑

i=0

aiy
i + ζ(y)

2

and

(E2) : y7 (ϑ(t) + β(t))3 =

 7n′−d−2m−2
3∑

i=2m

ait
i + α(t)


 7n′−d−2m−2

3∑
i=2m

ait
i + α(t) + ϑ(t)


2

,

with s = (x−Re(η)), tς = yς − cos (ς arg(η)) for ς ∈ {i, j, k} and ζ(y), α(t),
β(t) and ϑ(t) are polynomial functions defined by:

ζ(y) =

7n−d−2m−7
3∑

j=0

bjy
j +

7n−d−2m−5
3∑

k=0

cky
− 2

3
+k,

α(t) = −
2m−1∑
ℓ=1

(
bℓ +

(
3ℓ− 2

3ℓ

)
cℓ

)
tℓ,

β(t) = −

(
2m−1∑
ℓ=1

(
aℓ +

(
3ℓ− 2

3ℓ

)
cℓ

)
tℓ +

2m−1∑
ℓ=1

(
3ℓ− 2

3ℓ

)
(aℓ + bℓ) t

ℓ− 2
3

)
,

ϑ(t) =

7n′−d−2m−9
3∑

j=2m

bjt
j +

7n′−d−2m−7
3∑

k=2m

ckt
k− 2

3 .

Proof. First, note that if R is an algebraic point of degree d, then it belongs
to the intersection family of the curve written in Proposition 1. Two cases are
possible:

1st Consider first that R is an element of Γn · C1,2. Then there is a rational func-
tion χ(x, y) defined on Q such that χ(x, y) ∈ L ((7n− d− 2m)∞). From
Lemma 4, we derive the expression χ(x, y) as follows:

χ(x, y) =

7n−d−2m
3∑

i=0

aiy
i +

7n−d−2m−7
3∑

j=0

bjxy
j +

7n−d−2m−5
3∑

k=0

ck
y

19
3
+k

(x− 1)2
, (17)

with ai, bj and ck scalars belonging to Q such that a0 and b0 not simulta-
neously equal to zero (otherwise one of the Rν ’s would have to be equal to
Pµ with µ ∈ {0, 1}, which would be an absurd thing to do) a 7n−d−2m

3
̸= 0

if n and d have the same parity (otherwise one of the Rν ’s would have to
be equal to ∞, which would be an absurd thing to do), c 7n−d−2m−5

3
̸= 0 if

n and d have different parities (otherwise one of the Rν ’s would have to
be equal to ∞, which would be an absurd thing to do). Since the points
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Rν are simple zeros of χ(x, y), we deduce that χ(x, y) = 0, which simplifies
expression (17) to:

7n−d−2m−7
3∑

j=0

bjxy
j +

7n−d−2m−5
3∑

k=0

ck
y

19
3
+k

(x− 1)2
= −

7n−d−2m
3∑

i=0

aiy
i. (18)

Note that
y

19
3
+k

(x− 1)2
=

y7

(x− 1)2
× y−

2
3
+k = xy−

2
3
+k. So equation (18) be-

comes:

7n−d−2m−7
3∑

j=0

bjxy
j +

7n−d−2m−5
3∑

k=0

ckxy
− 2

3
+k = −

7n−d−2m
3∑

i=0

aiy
i. (19)

From equation (19), we can derive the expression for x as a function of y
as follows:

x = −

7n−d−2m
3∑

i=0

aiy
i

7n−d−2m−7
3∑

j=0

bjy
j +

7n−d−2m−5
3∑

k=0

cky
− 2

3
+k

. (20)

By replacing the value of x in expression (20) of the equation of curve
C1,2(7), we obtain:

(E1) : y7 (ζ(y))3 =

7n−d−2m
3∑

i=0

aiy
i

 7n−d−2m
3∑

i=0

aiy
i + ζ(y)

2

,

with ζ(y) the polynomial in y described by:

ζ(y) =

7n−d−2m−7
3∑

j=0

bjy
j +

7n−d−2m−5
3∑

k=0

cky
− 2

3
+k.

This gives a a first family of points of degree at most d given by:

M =



−

7n−d−2m
3∑

i=0

aiy
i

ζ(y)
, y



∣∣∣∣∣∣∣∣∣∣∣∣

a 7n−d−2m
3

̸= 0 if n and d have the same

parity, c 7n−d−2m−5
3

̸= 0 otherwise, a0

and b0 cannot both be zero and x

is a root of the equation (E1)
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2nd Finally, let R be an element of Γn′ · C1,2.
Then there is a rational function φ(x, y) defined on Q such that
φ(x, y) ∈ L

(
(7n′ − d− 2m− 2)∞

)
with ordP1φ = 2m and ordGκφ = 1 for

any integer κ ∈ {1, 2}. From Lemma 4, we derive the expression φ(x, y) as
follows:

φ(x, y) =

7n′−d−2m−2
3∑

i=0

aiy
i +

7n′−d−2m−9
3∑

j=0

bjxy
j +

7n′−d−2m−7
3∑

k=0

ck
y

19
3
+k

(x− 1)2
. (21)

Furthermore, given that
y

19
3
+k

(x− 1)2
= xy−

2
3
+k, we have deduced from expres-

sion (21) a new writing of φ(x, y) by:

φ(x, y) =

7n′−d−2m−2
3∑

i=0

aiy
i +

7n′−d−2m−9
3∑

j=0

bjxy
j +

7n′−d−2m−7
3∑

k=0

ckxy
k− 2

3 . (22)

Since on the one hand ordGκφ = 1 for κ ∈ {1, 2}, noting s and t the
changes of variable associated with x followed by y respectively gives
s = (x−Re(η)) and tς = yς − cos (ς arg(η)) with ς ∈ {i, j, k}, then the ex-
pression (22) of φ(s, t) will be written as follows:

φ(s, t) =

7n′−d−2m−2
3∑

i=1

ait
i +

7n′−d−2m−9
3∑

j=1

bjst
j +

7n′−d−2m−7
3∑

k=1

ckst
k− 2

3 , (23)

and on the other hand, since ordP1φ = 2m imples that

aℓ + bℓ +

(
3ℓ− 2

3ℓ

)
cℓ = 0 for 1 ≤ ℓ ≤ 2m− 1 then the expression (23) of

φ(s, t) will be written as follows:

φ(s, t) =

7n′−d−2m−2
3∑

i=2m

ait
i +α(t) +s

 7n′−d−2m−9
3∑

j=2m

bjt
j +

7n′−d−2m−7
3∑

k=2m

ckt
k− 2

3 + β(t)

, (24)

where α(t) and β(t) are polynomial functions defined as follows

α(t) = −
2m−1∑
ℓ=1

(
bℓ +

(
3ℓ− 2

3ℓ

)
cℓ

)
tℓ and

β(t) = −

(
2m−1∑
ℓ=1

(
aℓ +

(
3ℓ− 2

3ℓ

)
cℓ

)
tℓ +

2m−1∑
ℓ=1

(
3ℓ− 2

3ℓ

)
(aℓ + bℓ) t

ℓ− 2
3

)
.
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such that ai, bj and ck scalars belonging to Q such that a 7n′−d−2m−2
3

̸= 0 if

n′ and d have the same parity (otherwise one of the Rν ’s would have to be
equal to ∞, which would be an absurd thing to do), c 7n′−d−2m−7

3

̸= 0 if n′

and d have different parities (otherwise one of the Rν ’s would have to be
equal to ∞, which would be an absurd thing to do). Furthermore, since
Rν is a simple zero of φ(s, t), we deduce that φ(s, t) = 0, which simplifies
expression (24) to:

s

 7n′−d−2m−9
3∑

j=2m

bjt
j +

7n′−d−2m−7
3∑

k=2m

ckt
k− 2

3 + β(t)

 = −

7n′−d−2m−2
3∑

i=2m

ait
i + α(t) (25)

From equation (25), it follows that x is expressed as a function of y by:

s = −

7n′−d−2m−2
3∑

i=2m

ait
i + α(t)

7n′−d−2m−9
3∑

j=2m

bjt
j +

7n′−d−2m−7
3∑

k=2m

ckt
k− 2

3 + β(t)

. (26)

By replacing the value of x in the expression (26) of the equation of the
curve C1,2(7), we obtain:

(E2) : y7 (ϑ(t) + β(t))3 =

 7n′−d−2m−2
3∑

i=2m

ait
i + α(t)


 7n′−d−2m−2

3∑
i=2m

ait
i + α(t) + ϑ(t)


2

,

with ϑ(t) the polynomial in t described by:

ϑ(t) =

7n′−d−2m−9
3∑

j=2m

bjt
j +

7n′−d−2m−7
3∑

k=2m

ckt
k− 2

3 .

This gives a second family of points of degree at most d given by:

D =




−

7n′−d−2m−2
3∑

i=2m

ait
i + α(t)

ϑ(t) + β(t)
, t



∣∣∣∣∣∣∣∣∣∣∣∣∣

a 7n′−d−2m−2
3

̸= 0 if n′ and d have

the same, c 7n′−d−2m−7
3

̸= 0 otherwise

and x isa root of the equation (E2)
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Comptes Rendus. Mathématiques, v.336, No.2, 2003, pp. 117–120.

[14] O. Sall, Points cubiques sur la quartique de Klein, Comptes Rendus de
l’Académie des Sciences-Series I-Mathematics, v.333, No.10, 2001, pp. 931–
934.

[15] N. Schappacher and H. David, Report on algebraic number fields
(’Zahlbericht’), (1897), 1640-1940,, Landmark Writings in Western Math-
ematics, 2005, pp. 700–709.

[16] Weintraub, E., Mirowski, P. The pure and the applied: Bourbakism comes
to mathematical economics, Science in Context, v.7,No.2, 1994, pp. 245–272.

[17] H. Weyl, David Hilbert , The Royal Society London, 1944, pp. 1862-1943.

Mohamadou M. D. Diallo
Department of Mathematics, Assane Seck University of Ziguinchor, 27000, Ziguinchor, Senegal
E-mail: m.diallo1836@zig.univ.sn

Cherif M. Coly
Department of Mathematics, Assane Seck University of Ziguinchor, 27000, Ziguinchor, Senegal
E-mail: c.coly1309@zig.univ.sn

Received 15 November 2024
Accepted 11 March 2025


