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Improving of MOMA-Plus Hybrid approach by using
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Abstract. In this work, we study the effect of four penalty functions, namely the Lagrangian,
exponential, logarithmic, and logarithmic-exponential penalties, on the new hybrid MOMA-Plus
method for solving multiobjective optimization problems. We conduct a theoretical study on the
convergence of the proposed approach. The numerical analysis of the solutions generated on a
set of test problems highlights the strengths of each penalty function.
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1. Introduction

In the field of constrained multi-objective optimization, as in constrained single-
objective optimization, there are numerous methods for handling these constraints. In
recent years, most of the algorithms for solving these problems have adopted an approach
based on penalty functions. Penalty methods transform the constrained multi-objective
optimization problem into an unconstrained one. The constraints are integrated into one
of the objective functions, with a penalty coefficient. This makes it possible to obtain
solutions identical to those of the original problem.

Among penalty functions, we find the exponential penalty function, developed in
[1, 2, 3], the logarithmic penalty function, mentioned in [4, 5], as well as the logarithmic-
exponential penalty function, discussed in [6, 7, 8].

Several methods have been proposed in the literature using penalty functions for
constraint management [1, 4, 6], including the MOMA-Plus method, another version of
the MOMA method [9], which is a clever combination of penalty techniques and Alienor
transformation. Another version, called the hybrid MOMA-Plus, was proposed in [10].
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In this work, we use four penalty functions, namely the Lagrangian, exponential,
logarithmic, and logarithmic-exponential penalties, on the hybrid MOMA-Plus method
to conduct a theoretical and numerical study on the effect of these penalty functions on
the hybrid MOMA-Plus method. The main contributions and highlights of this article
are as follows:

• proposal of a new approach to solving multi-objective optimization problems;

• theoretical study of the convergence of solutions generated by these proposed
methods;

• numerical validation of the theoretical results on ten (10) test problems;

• comparative study between these proposed methods and existing methods in the
literature.

In the continuation of this work, we present in Section 2 the preliminaries, where we
expose the basic concepts, properties, and definitions concerning multi-objective opti-
mization. In Section 3, we will present the proposed approach followed by the theoreti-
cal and numerical study. We conclude in Section 4 with conclusions and some remarks
on future research.

2. Preliminaries

2.1. Basic Concepts

Let us consider the multi-objective optimization problem defined as follows [11, 12]:

minF(x) =
(

f1(x), f2(x), . . . , fm(x)
)

m≥ 2

s.t :
{

g j(x)⩽ 0, j = 1, ..., p
x ∈ Rn ;

(1)

where:

◦ x = (x1,x2.....xn) denotes the vector of n decision variables;

◦ fi, i = 1,m, the objective functions;

◦ g j, j = 1, p, the constraints associated with the optimization of fi, i = 1,m.

We denote D = { x ∈ Rn : g j(x)≤ 0; j = 1, p} as the feasible domain of problem (1).
With the following definitions, we characterize a Pareto optimal and weakly optimal

solution.
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Definition 1 ([9, 10, 13]). A point x∗ ∈D is said to be a weakly efficient or weakly Pareto
optimal solution of problem (1) if and only if there does not exist another x∈D such that:

fi(x)< fi(x∗), ∀i = 1,m.

Definition 2 ([9, 14, 15]). A point x∗ ∈ D is said to be an efficient or Pareto optimal
solution of problem (1) if and only if there does not exist an x∈D such that fi(x)≤ fi(x∗),
∀i = 1,m, and for at least one k ∈ {1, · · · ,m}, we have fk(x)< fk(x∗).

We note that Y = {(x, f (x)),x ∈ D} is called the Pareto front.

2.2. Penalty Functions

In this section, we will define the different penalty functions.

• Lagrangian-based penalty

Definition 3 ([16, 17]). The Lagrangian-based penalty function applied to prob-
lem (1) is defined by

Pq(x) = η

p

∑
j=1

[g j(x)+ | g j(x) |] (2)

where η is a sufficiently large positive real number.

• Exponential penalty

Definition 4 ([1, 2, 3]). The exponential penalty function applied to problem (1)
is defined by

Pq(x) =
1
ρq

p

∑
j=1

ϑ [ρqg j(x)] (3)

where g j, j = 1, p, are the constraints of problem (1), and ρq is the penalty coeffi-
cient satisfying

lim
q7−→+∞

ρq =+∞

and ϑ is a real-valued function defined by:

ϑ(t) = exp(t)−1, t ∈ R

Using this penalty function, problem (1) is reformulated as follows:{
min{ fi(x)+Pq(x)}, i = 1,2, ...,m
x ∈ Rn ;

(4)
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• Logarithmic penalty

Definition 5 ([4, 5]). The logarithmic penalty function related to problem (1) is
defined by

Pq(x) = σq

m

∑
j=1

[ln((g j(x))2 +1 j)], j = 1,m (5)

where g j, j = 1, p, are the constraints of problem (1), with σq being the penalty
coefficient satisfying

lim
q7−→+∞

σq =+∞

Applying this penalty function to problem (1), we obtain the following formula-
tion: {

min{ fi(x)+Pq(x)}, i = 1,2, ...,m
x ∈ Rn ;

(6)

Definition 6 ([4, 5]). A feasible solution x∗ ∈ D is said to be an optimal solution
to the penalized optimization problem (6) if there does not exist any x ∈ D such
that fi(x)+Pq(x)< fi(x)+Pq(x∗)∀i = 1,m

• Logarithmic-exponential penalty

Definition 7 ([6, 7, 18]). The logarithmic-exponential penalty function related to
problem (1) is defined by

Pq(x) =
2
µq

p

∑
j=1

ln
[

1+ exp[µqλ jg j(x)]
]

(7)

where g j, j = 1,m are the constraints of problem (1) with µq being the penalty
coefficient satisfying

lim
q7−→+∞

µq =+∞

By applying this penalty function to problem (1), we obtain the following formu-
lation: {

min{ fi(x)+Pq(x)}, i = 1,2, ...,m
x ∈ Rn ;

(8)

2.3. Aliénor transformation
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If we consider a function with n continuous variables defined on Rn, a reducing
transformation (called Aliénor transformation) allows expressing all the variables as a
function of a unique variable θ such that

xi = hi(θ) θ ∈ R+.

This transformation was invented by professors Yves Cherruault, Arthur Guillez, and
Blaise Somé [9]. It reduces any multi-variable function into a single-variable function
via the Archimedes spiral.

Definition 8 ( [19]). Let f be a function with n variables. A reducing transformation
associated with the function f is any transformation that reduces the function f to a
single-variable function given by the following definition:

Definition 9 ([14]). A subset S ∈ Rn is said to be α-dense in Rn if

∀M ∈ Rn, ∃M′ ∈ S such that d(M,M′)≤ α.

Thus, if we consider a function with n variables f (x1,x2, ...,xn), continuous and
defined on Rn, a reducing transformation allows expressing all the variables as a
function of a unique variable θ .

xi = hi(θ); i = 1,mandθ ∈ [0,θmax]

hence f (x1,x2, ...,xn) becomes f (h1(θ),h2(θ), ...,hn(θ)). This reducing transformation
has several variants, and the one we are interested in is the Konfé-Cherruault transfor-
mation [17].
This reducing transformation is defined by h(θ) =

(
h1(θ),h2(θ), ...,hn(θ)

)
where hi(θ)

are defined as follows:

xi = hi(θ) =
1
2
[
(bi−ai)cos(ωiθ +ϕi)+bi +ai

]
, i = 1,n; (9)

where (ωi)i=1,n and (ϕi)i=1,n are slowly increasing sequences, xi ∈ [ai,bi] and

θ ∈ [0,θmax] with θ 1 =
2π−ϕ1

ω1
and θmax =

(b1−a1)θ
1 +(b1 +ai)

2
.

2.4. Performance measurement

Performance measures are used to study the efficiency of a new multi-objective
optimization method compared to existing solution methods. In our work, we will use
two performance measures [15], namely the convergence metric γ and the average di-
versity metric ∆, since our test problems have an analytical front.
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2.4.1. Convergence metric γ

The convergence metric γ measures the average distance between the approximate
solutions and those on the Pareto front (analytical front) [20, 21]. It is defined as follows
[15, 22]:

γ =
1
n
(

n

∑
i=1

dp
i )

1
p (10)

The parameter di is the Euclidean distance (in the objective space) between the i-th
solution and the closest point on the Pareto front:

di =
|P|

min
k=1

√
M

∑
m=1

( f (i)m − f ∗(k)m )2

where f ∗(k)m is the m-th objective function value of the k-th solution on the Pareto front.

2.4.2. Average diversity metric ∆

The average diversity metric ∆ measures the dispersion of the obtained solutions
over the analytical front. It is defined by [23, 24]:

∆ =

M

∑
m=1

de
m +

n−1

∑
i=1
|di−d|

M

∑
m=1

de
m +(n−1)d

. (11)

Where the parameter di is the Euclidean distance between neighboring solutions with
the average value d, and the parameter de

m is the distance between the extreme solutions
of the Pareto analytical front and the approximate front.

2.4.3. Performance Profiles

The performance of different algorithms can be compared using performance profiles
and data. Performance profiles are represented by a graph showing the cumulative dis-
tribution function ρ(α), which captures the performance ratios of different algorithms.
Given the previously defined sets, let tp,s denote the performance measure (e.g., compu-
tation time) of algorithm s ∈ S on problem p ∈ P. The performance ratio rp,s is defined
as:

rp,s =
tp,s

min
{

tp,s′ | s′ ∈ S
} ,

where s′ iterates over all algorithms in S.
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The performance profile ([21, 15, 29]) of an algorithm s ∈ S corresponds to the
proportion of problems where its performance ratio does not exceed α (α ≥ 1):

ρ(α) =

∣∣{p ∈ P | rp,s ≤ α
}∣∣

|P|
. (12)

For sufficiently large α , ρ(α) represents the proportion of problems where algorithm s
satisfies the convergence criterion.

3. Main Results

3.1. Principle

The principle is to convert a multi-objective optimization problem with constraints
into a single-objective optimization problem with constraints using the ε-constraint ap-
proach. This single-objective problem with constraints is then transformed into a single-
objective problem without constraints by using one of the following penalty functions:
Lagrangian, exponential, logarithmic, and logarithmic-exponential. Then, we use the
Alienor method to transform a multi-variable, unconstrained single-objective problem
into a single-variable, unconstrained problem. Finally, the Nelder-Mead simplex method
is applied to solve the single-variable, unconstrained problem, and the original solutions
are reconstructed.

3.2. Theoretical Description

In this section, we present the different steps of the hybrid MOMA-plus method.
Step I: Aggregation

At this step of the algorithm, one of the objective functions of problem (1) is selected
to be optimized, and the others are transformed into constraints. The approach is as
follows:

◦ choose one objective function fk to prioritize for optimization;

◦ choose an initial vector of constraints εi, εi≥0 ; i ̸= k with εi ∈[
min
x∈D

fi(x),max
x∈D

fi(x)
]
, i = 1,m;

◦ transform the other objectives into inequality constraints ( fi ≤ εi, i ̸= k), i = 1,m.

Applying this approach to problem (1) leads to the following single-objective opti-
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mization problem: 
min{ fk(x)}
sub ject to :

fi(x)≤ εi, i = 1,m, i ̸= k
g j(x)⩽ 0, j = 1, p
x ∈ Rn.

(13)

Step II: Penalization
We use the four (4) penalty functions defined in section 2.2 to transform problem (13)
into an unconstrained single-objective problem.

NB: In this subsection, we consider Z∗ as the set of solutions to problem (13), and
Z∗q as the set of solutions to the problems with the different penalty functions applied.

★ Penalty derived from the Lagrangian

From the definition (3), applied to problem (13), we obtain:

min{L(x)}= fk(x)+η

[ p

∑
j=1

(g j(x)+ |g j(x)|+
m

∑
i=1

( fi(x)− εi)+ | fi(x)− εi|)
]

sub ject to :
x ∈ Rn η ≥ M− fk(x)

p

∑
j=1

g j(x)+
m

∑
i=1

( fi(x)− εi)

M = max
x∈D

fk(x)

(14)

Theorem 1. All solutions to problem 14 are solutions to problem 1 and vice versa.

★ Exponential Penalties

We use the definition (4) to obtain:
min

{
L(x) = fk(x)+ 1

ρq

[ p

∑
j=1

ϑ [ρqg j(x)]+
m

∑
i=1
i ̸=k

ϑ [ρq( fi(x)− εi)]

]}
subject to:

x ∈ Rn

(15)

where ρq is the penalty coefficient satisfying

lim
q7−→+∞

ρq =+∞

and ϑ is a real-valued function defined by:

ϑ(t) = exp(t)−1, t ∈ R
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Lemma 1. Let D be the set of admissible solutions of problem (1). For any εi > 0
where i = 1,m, we have:

1. If x ∈ D, then

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x)]+
m

∑
i=1

ϑ [ρq( fi(x)− εi)]

]
= 0, ∀ εi > 0.

2. If x /∈ D then

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x)]+
m

∑
i=1

ϑ [ρq( fi(x)− εi)]

]
=+∞, ∀ εi > 0.

Proof.
Let x ∈D. We have g j(x)< 0 and fi(x)−εi ≤ 0, ∀ εi > 0, i ̸= k, i = 1,m, j = 1, p, which

implies lim
ρq 7−→+∞

1
ρq

p

∑
j=1

(
eρqg j(x)−1

)
= 0 and lim

ρq 7−→+∞

1
ρq

m

∑
i=1

(
eρq( fi(x)−εi)−1

)
= 0.

Thus,

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x)]+
m

∑
i=1

ϑ [ρq( fi(x)− εi)]

]
= 0, ∀ εi > 0.

If x /∈ D, we have g j(x) > 0 and fi(x)− εi > 0 for i ̸= k, i = i,m and j = 1, p, then

lim
ρq 7−→+∞

1
ρq

p

∑
j=1

(
eρqg j(x)−1

)
= +∞ and lim

ρq 7−→+∞

1
ρq

m

∑
i=1

(
eρq( fi(x)−εi)−1

)
= +∞, ∀εi > 0

since lim
ρq 7−→+∞

p

∑
j=1

(
eρqg j(x)−1

)
=+∞ and lim

ρq 7−→+∞

m

∑
i=1

(
eρq( fi(x)−εi)−1

)
=+∞, ∀ εi > 0.

Therefore,

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x)]+
m

∑
i=1

ϑ [ρq( fi(x)− εi)]

]
=+∞, ∀ εi > 0.

Theorem 2. Let Sq be a sequence of numbers such that Sq ⊂ Rn where q ∈ N.
If

lim
k 7−→+∞

Sq =
{

x ∈ Rn : x ∈ Sq for an infinite number of q ∈ N
}

then lim
q7−→+∞

(Z∗q\Z∗) = /0

Proof.
Assuming by contradiction that lim

q7−→+∞
(Z∗q\Z∗) ̸= /0, then there exists a subset Z∗qr

, r =

1,2, ... such that x
′ ∈ lim

q7−→+∞
(Z∗qr
\Z∗).



29

This implies ∃q0 ≥ 0 such that for qr ≥ q0 we have x
′ ∈ Z∗q\Z∗.

Since x
′ ∈ Z∗, then

L(x
′
)< L(y) ∀y ∈ Z∗. (16)

If x
′ ∈ D and since x

′
/∈ Z∗, then ∃y ∈ D such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m.

Since x
′
,y ∈ D then according to Lemma 1 we have:

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x
′
)]+

m

∑
i=1

ϑ [ρq( fi(x
′
)− εi)]

]
= 0, ∀ εi > 0 and

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(y)]+
m

∑
i=1

ϑ [ρq( fi(y)− εi)]

]
= 0, ∀ εi > 0

⇒ ∃ q0 ∈ N, qr > q0,

fk(y)+
1
ρq

[ p

∑
j=1

ϑ [ρqg j(y)]+
m

∑
i=1

ϑ [ρq( fi(y)− εi)]

]
< fk(x

′
)+

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x
′
)]+

m

∑
i=1

ϑ [ρq( fi(x
′
)− ε)]

]
, ∀ εi > 0

⇒ L(y)< L(x
′
)

Which contradicts equation (16).
If x

′
/∈ D, then ∃y ∈ Z∗ such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m.

Since x
′
,y /∈ D then according to Lemma 1 we have:

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x
′
)]+

m

∑
i=1

ϑ [ρq( fi(x
′
)− εi)]

]
=+∞, ∀ εi > 0 and

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(y)]+
m

∑
i=1

ϑ [ρq( fi(y)− ε)]

]
=+∞, ∀ εi > 0.

There exists q0 ∈ N, q > q0

fk(y)+
1
ρq

[ p

∑
j=1

ϑ [ρqg j(y)]+
m

∑
i=1

ϑ [ρq( fi(y)− ε)]

]
< fk(x

′
)+

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x
′
)]+

m

∑
i=1

ϑ [ρq( fi(x
′
)− εi)]

]

⇒ L(y)< L(x
′
)

Which is absurd since x
′ ∈ Z∗q hence lim

q7−→+∞
(Z∗q\Z∗) = /0.
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Theorem 3. Let Sq be a sequence of numbers such that Sq ⊂ Rn where q ∈ N.
If lim

q7−→+∞

Sq =
{

x ∈ Rn : x ∈ Sq f or a f inite number q ∈ N,
}

then lim
q7−→+∞

(Z∗q\Z∗) = /0

Proof.
Suppose by contradiction that lim

q7−→+∞

(Z∗q\Z∗) ̸= /0.

In other words, ∃x′ ∈ lim
q7−→+∞

(Z∗q\Z∗), and there exists an index q0 such that for q ≥ q0,

x
′ ∈ Z∗q\Z∗.

This implies x
′ ∈ Z∗ and x

′
/∈ Z∗ starting from index n0.

Thus,
∀y ∈ Z∗, L(x

′
)< L(y). (17)

If x
′ ∈ D, as x

′
/∈ Z∗, then ∃y ∈ D such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m

Since x
′
,y ∈ D, by Lemma 1, we have:

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x
′
)]+

m

∑
i=1

ϑ [ρq( fi(x
′
)− εi)]

]
= 0 and

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(y)]+
m

∑
i=1

ϑ [ρq( fi(y)− ε)]

]
= 0

⇒ ∃ q0 ∈ N, qr > q0,

fk(y)+
1
ρq

[ p

∑
j=1

ϑ [ρqg j(y)]+
m

∑
i=1

ϑ [ρq( fi(y)− ε)]

]
< fk(x

′
)+

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x
′
)]+

m

∑
i=1

ϑ [ρq( fi(x
′
)− εi)]

]

⇒ L(y)< L(x
′
)

which contradicts equation (17).
If x

′
/∈ D, ∃y ∈ D, fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m

Since x
′
/∈ D, by Lemma 1 we have:

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x
′
)]+

m

∑
i=1

ϑ [ρq( fi(x
′
)− εi)]

]
=+∞ and

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(y)]+
m

∑
i=1

ϑ [ρq( fi(y)− εi)]

]
= 0

⇒there exists n0 ∈ N, n≥ n0

1
ρq

[ p

∑
j=1

ϑ [ρqg j(y)]+
m

∑
i=1

ϑ [ρq( fi(y)−εi)]

]
<

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x
′
)]+

m

∑
i=1

ϑ [ρq( fi(x
′
)−ε)]

]
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⇒ fk(y)+ 1
ρq

[ p

∑
j=1

ϑ [ρqg j(y)]+
m

∑
i=1

ϑ [ρq( fi(y)−εi)]

]
< fk(x

′
)+

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x
′
)]+

m

∑
i=1

ϑ [ρq( fi(x
′
)− εi)]

]
⇒ L(y)< L(x

′
)

which is absurd since x
′
is the optimal solution of problem (17), hence

lim
q7−→+∞

(Z∗q\Z∗) = /0.

★ Logarithmic Penalties

Using Equation (13) and Definition (4), we have:


min

{
L(x) = fk(x)+σq

[ p

∑
j=1

[ln((g j(x))2 +1 j)]+
m

∑
i=1

[ln((( fi(x)− εi))
2 +1i)]

]}
sub ject to :

i ̸= k
x ∈ Rn.

(18)
where σq is the penalty coefficient satisfying

lim
q7−→+∞

σq =+∞

Lemma 2. Let D be the set of admissible solutions of problem (1), ∀ εi > 0, i = 1,m,
we have:

1. If x ∈ D, then

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x))2 +1 j)]+
m

∑
i=1

[ln((( fi(x)− εi))
2 +1i)]

]
= 0, ∀εi > 0.

2. If x /∈ D then

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x))2 +1 j)]+
m

∑
i=1

[ln((( fi(x)− εi))
2 +1i)]

]
=+∞, ∀εi > 0.

Proof.
Let x ∈ D, we have g j(x)≤ 0 j = 1, p and fi(x)− εi ≤ 0
∀ i = 1,m and εi > 0, hence
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lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x))2 +1 j)]+
m

∑
i=1

[ln((( fi(x)− εi))
2 +1i)]

]
= 0 ∀εi > 0

since j ln(1) = 0, ∀ j = 1, p and i ln(1) = 0 ∀ i = 1,m now assume x /∈ D ⇒ g j(x) >
0 j = 1, p and fi(x)− εi > 0 ∀ i = 1,m and εi > 0 thus

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x))2 +1 j)]+
m

∑
i=1

[ln((( fi(x)− εi))
2 +1i)]

]
=+∞, ∀εi > 0.

Theorem 4. Let us suppose that Sq is a sequence of numbers such that Sq ⊂ Rn where
q ∈ N.
If lim

k 7−→+∞

Sq =
{

x ∈ Rn : x ∈ Sq f or an in f inite number o f q ∈ N,
}

then

lim
q7−→+∞

(Z∗q\Z∗) = /0

Proof.
Assuming by contradiction that lim

q7−→+∞
(Z∗q\Z∗) ̸= /0, then there exists a subset Z∗qr

, r =

1,2, ... such that x
′ ∈ lim

q7−→+∞
(Z∗qr
\Z∗).

Thus, ∃q0 ≥ 0 such that for qr ≥ q0 we have x
′ ∈ Z∗q\Z∗.

Since x
′ ∈ Z∗, then

L(x
′
)< L(y) ∀y ∈ Z∗ (19)

If x
′ ∈ D, since x

′
/∈ Z∗, then ∃y ∈ D such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m

Since x
′
,y ∈ D, then by Lemma 2:

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x
′
))2 +1 j)]+

m

∑
i=1

[ln((( fi(x
′
)− εi))

2 +1i)]

]
= 0, ∀εi > 0 and

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(y))2 +1 j)]+
m

∑
i=1

[ln((( fi(y)− εi))
2 +1i)]

]
= 0, ∀εi > 0.

There exists q0 ∈ N, q > q0

⇒ σq

[ p

∑
j=1

[ln((g j(y))2+1 j)]+
m

∑
i=1

[ln((( fi(y)−εi))
2+1i)]

]
<σq

[ p

∑
j=1

[ln((g j(x
′
))2+1 j)]

+
m

∑
i=1

[ln((( fi(x
′
)− εi))

2 +1i)]

]
, ∀ εi > 0
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fk(y)+σq

[ p

∑
j=1

[ln((g j(y))2+1 j)]+
m

∑
i=1

[ln((( fi(y)−εi))
2+1i)]

]
< fk(x

′
)+σq

[ p

∑
j=1

[ln((g j(x
′
))2+1 j)]

+
m

∑
i=1

[ln((( fi(x
′
)− εi))

2 +1i)]

]
,∀εi > 0

⇒ L(y)< L(x
′
)

which contradicts Equation (19)
If x

′
/∈ D, then ∃y ∈ Z such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m

Since x
′
,y /∈ D, then by Lemma 2 we have:

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x
′
))2+1 j)]+

m

∑
i=1

[ln((( fi(x
′
)−εi))

2+1i)]

]
=+∞, ∀εi > 0 and

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(y))2 +1 j)]+
m

∑
i=1

[ln((( fi(y)− εi))
2 +1i)]

]
=+∞, ∀εi > 0.

There exists q0 ∈ N, q > q0

⇒σq

[ p

∑
j=1

[ln((g j(y))2+1 j)]+
m

∑
i=1

[ln((( fi(y)−εi))
2+1i)]

]
<σq

[ p

∑
j=1

[ln((g j(x
′
))2+1 j)]+

m

∑
i=1

[ln((( fi(x
′
)− εi))

2 +1i)]

]
, ∀ εi > 0

fk(y)+σq

[ p

∑
j=1

ln
(
(g j(y))2+1

)
+

m

∑
i=1

ln
(
( fi(y)−εi)

2+1
)]

< fk(x′)+σq

[ p

∑
j=1

ln
(
(g j(x′))2+1

)
+

m

∑
i=1

ln
(
( fi(x′)− εi)

2 +1
)]
, ∀ εi > 0

⇒ L(y)< L(x
′
)

which contradicts Equation (19) since x
′ ∈ Z∗q, hence lim

q7−→+∞
(Z∗q\Z∗) = /0.

Theorem 5. Let us suppose that Sq is a sequence of numbers such that Sq ⊂ Rn where
q ∈ N.
If lim

q7−→+∞

Sq =
{

x∈Rn : x∈ Sq f or a f inite number o f q∈N,
}

then lim
q7−→+∞

(Z∗q\Z∗)= /0

Proof. Suppose, by contradiction, that lim
q7−→+∞

(Z∗q\Z∗) ̸= /0.

In other words, there exists x
′ ∈ lim

q7−→+∞

(Z∗q\Z∗) and an index n0 such that for n ≥ n0,
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x
′ ∈ Z∗q\Z∗.

This leads to x
′ ∈ Z∗ and x

′
/∈ Z∗ from the rank n0.

Therefore:
∀y ∈ Z∗, L(x

′
)< L(y). (20)

If x
′ ∈ D, since x

′
/∈ Z∗, then ∃y ∈ D such that fk(y)< fk(x

′
), ∀ k ̸= i, i = 1,m

Since x
′
,y ∈ D, then by Lemma 2 we have:

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x
′
))2 +1 j)]+

m

∑
i=1

[ln((( fi(x
′
)− εi))

2 +1i)]

]
= 0, ∀εi > 0 and

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(y))2 +1 j)]+
m

∑
i=1

[ln((( fi(y)− εi))
2 +1i)]

]
= 0, ∀εi > 0.

There exists q0 ∈ N, q > q0

⇒ σq

[ p

∑
j=1

[ln((g j(y))2+1 j)]+
m

∑
i=1

[ln((( fi(y)−εi))
2+1i)]

]
<σq

[ p

∑
j=1

[ln((g j(x
′
))2+1 j)]

+
m

∑
i=1

[ln((( fi(x
′
)− εi))

2 +1i)]

]
, ∀ εi > 0

fk(y)+σq

[ p

∑
j=1

[ln((g j(y))2 +1 j)]+
m

∑
i=1

[ln((( fi(y)− εi))
2 +1i)]

]
< fk(x

′
)+

σq

[ p

∑
j=1

[ln((g j(x
′
))2 +1 j)]+

m

∑
i=1

[ln((( fi(x
′
)− εi))

2 +1i)]

]
, ∀ εi > 0

⇒ L(y)< L(x
′
)

which contradicts Equation (20)
If x

′
/∈ D, then ∃y ∈ Z such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m

Since x
′
,y /∈ D, then by Lemma 2 we have:

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x
′
))2+1 j)]+

m

∑
i=1

[ln((( fi(x
′
)−εi))

2+1i)]

]
=+∞, ∀εi > 0 and

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(y))2 +1 j)]+
m

∑
i=1

[ln((( fi(y)− εi))
2 +1i)]

]
=+∞, ∀εi > 0.

There exists q0 ∈ N, q > q0
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⇒σq

[ p

∑
j=1

[ln((g j(y))2+1 j)]+
m

∑
i=1

[ln((( fi(y)−εi))
2+1i)]

]
<σq

[ p

∑
j=1

[ln((g j(x
′
))2+1 j)]

+
m

∑
i=1

[ln((( fi(x
′
)− εi))

2 +1i)]

]
, ∀ εi > 0

⇒ fk(y)+σq

[ p

∑
j=1

[ln((g j(y))2 +1 j)]+
m

∑
i=1

[ln((( fi(y)− εi))
2 +1i)]

]
< fk(x

′
)+

σq

[ p

∑
j=1

[ln((g j(x
′
))2 +1 j)]+

m

∑
i=1

[ln((( fi(x
′
)− εi))

2 +1i)]

]
, ∀ εi > 0

⇒ L(y)< L(x
′
)

which contradicts (20) since x
′ ∈ Z∗q, hence lim

q7−→+∞

(Z∗q\Z∗) = /0.

★ Logarithmic-Exponential Penalties

Using equation (13) and the definition (4), we have:

min
{

L(x) = fk(x)+ 2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x)])+

m

∑
i=1

ln(1+ exp[µqλi( fi(x)− εi)])

]
sub ject to :

i ̸= k
x ∈ Rn.

(21)

where µq is the penalty coefficient satisfying

lim
q7−→+∞

µq =+∞.

λi > 0, λ j > 0 ∀ i = 1,m, j = 1, p are multiplier parameters.

Lemma 3. Let D be the set of admissible solutions of problem (1), ∀ εi > 0 for i = 1,m,
we have:

1. If x ∈ D, then

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x)− εi)])

]
= 0, ∀εi > 0.
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2. If x /∈ D, then

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x)− εi)])

]
=+∞, ∀εi > 0.

Proof. Suppose x ∈ D, ⇒ g j(x) ≤ 0 for j = 1, p and fi(x)− εi ≤ 0 for all i = 1,m
and εi > 0, therefore

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x)− εi)])

]
= 0, ∀εi > 0

since ln(1) = 0.
If x /∈D,⇒ g j(x)> 0 for j = 1, p and fi(x)−εi > 0 for all i = 1,m and εi > 0, therefore

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x)− εi)])

]
=+∞, ∀εi > 0.

Theorem 6. Suppose Sq is a sequence of numbers such that Sq ⊂ Rn where q ∈ N.
If

lim
k 7−→+∞

Sq =
{

x ∈ Rn : x ∈ Sq for an infinite number of q ∈ N
}

then lim
q7−→+∞

(Z∗q\Z∗) = /0

Proof.
Assume by contradiction that lim

q7−→+∞
(Z∗q\Z∗) ̸= /0, then there exists a subset Z∗qr

, r =

1,2, ... such that x
′ ∈ lim

q7−→+∞
(Z∗qr
\Z∗).

Therefore, there exists q0 ≥ 0 such that for qr ≥ q0, we have x
′ ∈ Z∗q\Z∗.

Since x
′ ∈ Z∗, we have

L(x
′
)< L(y) ∀y ∈ Z∗. (22)

If x
′ ∈ D, since x

′
/∈ Z∗, then ∃y ∈ D such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m.

Since x
′
,y ∈ D then, according to Lemma 3, we have:

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
= 0, ∀εi > 0

and
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lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
= 0, ∀εi > 0.

There exists q0 ∈ N, q > q0,

⇒ 2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
<

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
, ∀ εi > 0.

⇒ fk(y)+
2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
<

fk(x
′
)+

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
, ∀ εi > 0.

⇒ L(y)< L(x
′
)

which contradicts (22).
If x

′
/∈ D, then ∃y ∈ Z such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m.

Since x
′
,y /∈ D, then according to Lemma 3, we have:

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
=+∞ ∀εi > 0.

and

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
=+∞ ∀εi > 0.

There exists q0 ∈ N, q > q0,

⇒ 2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
<

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
∀ εi > 0.
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⇒ fk(y)+
2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
< fk(x

′
)+

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
∀ εi > 0.

⇒ L(y)< L(x
′
) which contradicts (22) since x

′ ∈ Z∗q. Thus, lim
q7−→+∞

(Z∗q\Z∗) = /0.

Theorem 7. Suppose that Sq is a sequence of numbers such that Sq ⊂ Rn where q ∈ N.
If lim

q7−→+∞

Sq =
{

x ∈Rn : x ∈ Sq f or a f inite number o f q ∈N,
}

then lim
q7−→+∞

(Z∗q\Z∗) =

/0.

Proof.
Suppose by contradiction that lim

q7−→+∞

(Z∗q\Z∗) ̸= /0, then there exists a subset Z∗qr
, r =

1,2, ... such that x
′ ∈ lim

q7−→+∞

(Z∗qr
\Z∗).

Thus, there exists q0 ≥ 0 such that for qr ≥ q0, we have x
′ ∈ Z∗q\Z∗.

Since x
′ ∈ Z∗, then

L(x
′
)< L(y), ∀y ∈ Z∗. (23)

If x
′ ∈ D, since x

′
/∈ Z∗, then ∃y ∈ D such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m.

Since x
′
,y ∈ D, then according to Lemma 3, we have:

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
= 0 ∀εi > 0

and

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
= 0, ∀εi > 0.

There exists q0 ∈ N, q > q0

⇒ 2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
<

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
,∀εi > 0.
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⇒ fk(y)+
2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
<

fk(x
′
)+

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
, ∀ εi > 0.

⇒ L(y)< L(x
′
)

which contradicts (23).
If x

′
/∈ D, then ∃y ∈ Z such that fk(y)< fk(x

′
) ∀ k ̸= i, i = 1,m.

Since x
′
,y /∈ D, then according to Lemma 3, we have:

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
=+∞, ∀εi > 0

and

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
=+∞, ∀εi > 0.

There exists q0 ∈ N, q > q0

⇒ 2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
<

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
, ∀ εi > 0.

⇒ fk(y)+
2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(y)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(y)− εi)])

]
<

fk(x
′
)+

2
µq

[ p

∑
j=1

ln
(

1+ exp[µqλ jg j(x
′
)]
)
+

m

∑
i=1

ln
(

1+ exp[µqλi( fi(x
′
)− εi)]

)]
, ∀ εi > 0.

⇒ L(y)< L(x
′
) which contradicts (23) because x

′ ∈ Z∗q, thus lim
q7−→+∞

(Z∗q\Z∗) = /0.

Step III: Alienor Transformation
This step involves transforming the previously defined problems with penalty functions
into a single-variable optimization problem. An Alienor transformation allows us to
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express all variables as a function of a unique variable θ .
By setting xi = hi(θ), we obtain:

★ Penalty Derived from the Lagrangian



min{L(h(θ))}= fk(h(θ))+η

[ p

∑
j=1

(g j(h(θ))

+|g j(h(θ))|+
m

∑
i=1

( fi(h(θ))− εi)+ | fi(h(θ))− εi|)
]

sub ject to :
θ ∈ [0,θmax].

η ≥ M− fk(h(θ))
p

∑
j=1

g j(h(θ))+
m

∑
i=1

( fi(h(θ))− εi)

M = max
h(θ)∈D

fk(h(θ))

(24)

Theorem 8. If θ ∗ ∈ [0,θmax] is an optimal solution to problem (24), then all x∗i =
hi(θ

∗) ∈ D is an optimal solution to problem (14).

★ Exponential penalization

min
{

L(h(θ)) = fk(h(θ))+ 1
ρq

[ p

∑
j=1

ϑ [ρqg j(h(θ))]+

m

∑
i=1

ϑ [ρq( fi(h(θ))− εi)]

]}
sub ject to :

i ̸= k
θ ∈ [0,θmax].

(25)

Theorem 9. If θ ∗ ∈ [0,θmax] is an optimal solution of the problem (25), then all x∗i =
hi(θ

∗) ∈ D is an optimal solution of the problem (15).

Proof. Suppose that θ ∗ is an optimal solution of the problem (25) then

∀θ ∈ [0,θmax], L(h(θ ∗))< L(h(θ))

which implies

fk(h(θ ∗))+
1
ρq

[ p

∑
j=1

ϑ [ρqg j(h(θ ∗))]+
m

∑
i=1

ϑ [ρq( fi(h(θ ∗))− εi)]

]
< fk(h(θ))+
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1
ρq

[ p

∑
j=1

ϑ [ρqg j(h(θ))]+
m

∑
i=1

ϑ [ρq( fi(h(θ))− εi)]

]
, εi > 0

According to lemma 1, we have:

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(h(θ ∗))]+
m

∑
i=1

ϑ [ρq( fi(h(θ ∗))− εi)]

]
= 0, εi > 0

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(h(θ))]+
m

∑
i=1

ϑ [ρq( fi(h(θ))− εi)]

]
= 0, εi > 0

and⇒ fk(h(θ ∗))< fk(h(θ)) or x∗i = hi(θ
∗)⇒ fk(x∗)< fk(x).

With Lemma 1, we have:

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x∗)]+
m

∑
i=1

ϑ [ρq( fi(x∗)− εi)]

]
= 0, εi > 0

and

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x)]+
m

∑
i=1

ϑ [ρq( fi(x)− εi)]

]
= 0, εi > 0

Therefore

fk(x∗)+
1
ρq

[ p

∑
j=1

ϑ [ρqg j(x∗)]+
m

∑
i=1

ϑ [ρq( fi(x∗)− εi)]

]
< fk(x)+

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x)]+

m

∑
i=1

ϑ [ρq( fi(x)− εi)]

]
, εi > 0.

⇒∀x ∈ D,L(x∗)< L(x)

Consequently, x∗ ∈ D is an optimal solution of the problem (15).
Conversely, if x∗ is an optimal solution of the problem (14) then

⇒∀x ∈ D,L(x∗)< L(x)

⇒ fk(x∗)+ 1
ρq

[ p

∑
j=1

ϑ [ρqg j(x∗)]+
m

∑
i=1

ϑ [ρq( fi(x∗)− εi)]

]
<

fk(x)+
1
ρq

[ p

∑
j=1

ϑ [ρqg j(x)]+
m

∑
i=1

ϑ [ρq( fi(x)− εi)]

]
, εi > 0.

By using lemma 1

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x∗)]+
m

∑
i=1

ϑ [ρq( fi(x∗)− εi)]

]
= 0, εi > 0
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and

lim
ρq 7−→+∞

1
ρq

[ p

∑
j=1

ϑ [ρqg j(x)]+
m

∑
i=1

ϑ [ρq( fi(x)− εi)]

]
= 0, εi > 0

⇒ fk(x∗)< fk(x). Since x∗ = hi(θ
∗), we then have fk(h(θ ∗))< fk(h(θ))

⇒ fk(h(θ ∗))+
1
ρq

[ p

∑
j=1

ϑ [ρqg j(h(θ ∗))]+
m

∑
i=1

ϑ [ρq( fi(h(θ ∗))− εi)]

]
< fk(h(θ))+

1
ρq

[ p

∑
j=1

ϑ [ρqg j(h(θ))]+
m

∑
i=1

ϑ [ρq( fi(h(θ))− εi)]

]
, εi > 0

from lemma 1
which leads to

∀θ ∈ [0,θmax], L(h(θ ∗))< L(h(θ))

Thus, θ ∗ ∈ [0,θmax] is an optimal solution of the problem (24).

★ Logarithmic penalty

min
{

L(h(θ)) = fk(h(θ))+σq

[ p

∑
j=1

[ln((g j(h(θ)))2

+1 j)]+
m

∑
i=1

[ln((( fi(h(θ))− εi))
2 +1 j)]

]}
sub ject to :

i ̸= k
θ ∈ [0,θmax].

(26)

Theorem 10. If θ ∗ ∈ [0,θmax] is an optimal solution of the problem (26), then all x∗i =
hi(θ

∗) ∈ D is an optimal solution of the problem (18).

Proof. Suppose that θ ∗ is an optimal solution of the problem (26) then

∀θ ∈ [0,θmax], L(h(θ ∗))< L(h(θ))

hence

fk(h(θ ∗))+σq

[ p

∑
j=1

[ln((g j(h(θ ∗)))2+1 j)]+
m

∑
i=1

[ln((( fi(h(θ ∗))−εi))
2+1 j)]

]
< fk(h(θ))+

σq

[ p

∑
j=1

[ln((g j(h(θ)))2 +1 j)]+
m

∑
i=1

[ln((( fi(h(θ))− εi))
2 +1 j)]

]
, εi > 0
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According to lemma 2, we have:

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(h(θ ∗)))2+1 j)]+
m

∑
i=1

[ln((( fi(h(θ ∗))−εi))
2+1 j)]

]
= 0, εi > 0

and

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(h(θ)))2+1 j)]+
m

∑
i=1

[ln((( fi(h(θ))−εi))
2+1 j)]

]
= 0, εi > 0

⇒ fk(h(θ ∗))< fk(h(θ)) or x∗i = hi(θ
∗)⇒ fk(x∗)< fk(x).

With lemma 2, we have:

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x∗))2 + 1 j)] +
m

∑
i=1

[ln((( fi(x∗) − εi))
2 + 1 j)]

]
= 0, εi > 0

and

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x))2 + 1 j)] +
m

∑
i=1

[ln((( fi(x) − εi))
2 + 1 j)]

]
= 0, εi > 0

Thus,

fk(x∗)+σq

[ p

∑
j=1

[ln((g j(x∗))2 +1 j)]+
m

∑
i=1

[ln((( fi(x∗)− εi))
2 +1 j)]

]
< fk(x)+

σq

[ p

∑
j=1

[ln((g j(x))2 +1 j)]+
m

∑
i=1

[ln((( fi(x)− εi))
2 +1 j)]

]
,εi > 0.

⇒∀x ∈ D,L(x∗)< L(x)

Consequently, x∗ ∈ D is an optimal solution of the problem (18).

Now suppose that x∗ is an optimal solution of the problem (18), then

⇒∀x ∈ D,L(x∗)< L(x)

⇒ fk(x∗)+σq

[ p

∑
j=1

[ln((g j(x∗))2 +1 j)]+
m

∑
i=1

[ln((( fi(x∗)− εi))
2 +1 j)]

]
< fk(x)+
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σq

[ p

∑
j=1

[ln((g j(x))2 +1 j)]+
m

∑
i=1

[ln((( fi(x)− εi))
2 +1 j)]

]
,εi > 0.

Using lemma 2, we have

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x∗))2 + 1 j)] +
m

∑
i=1

[ln((( fi(x∗) − εi))
2 + 1 j)]

]
= 0, εi > 0

and

lim
σq 7−→+∞

σq

[ p

∑
j=1

[ln((g j(x))2 + 1 j)] +
m

∑
i=1

[ln((( fi(x) − εi))
2 + 1 j)]

]
= 0, εi > 0

⇒ fk(x∗)< fk(x), and since x∗ = hi(θ
∗), we have fk(h(θ ∗))< fk(h(θ))

⇒ fk(h(θ ∗))+σq

[ p

∑
j=1

[ln((g j(h(θ ∗)))2 +1 j)]+
m

∑
i=1

[ln((( fi(h(θ ∗))− εi))
2 +1 j)]

]
<

fk(h(θ))+σq

[ p

∑
j=1

[ln((g j(h(θ)))2 +1 j)]+
m

∑
i=1

[ln((( fi(h(θ))− εi))
2 +1 j)]

]
, εi > 0

from lemma 2
which gives that

∀θ ∈ [0,θmax], L(h(θ ∗))< L(h(θ))

hence, θ ∗ ∈ [0,θmax] is an optimal solution of the problem (26).

★ Logarithmic-exponential Penalty

min
{

L(h(θ)) = fk(h(θ))+ 2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(h(θ))])

+
m

∑
i=1

ln(1+ exp[µqλi( fi(h(θ))− εi)])

]
sub ject to :

i ̸= k
θ ∈ [0,θmax].

(27)

Theorem 11. If θ ∗ ∈ [0,θmax] is an optimal solution of problem (27), then all x∗i =
hi(θ

∗) ∈ D is an optimal solution of problem (21).

Proof. Suppose that θ ∗ is an optimal solution of problem (27), then

∀θ ∈ [0,θmax], L(h(θ ∗))< L(h(θ))
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hence

fk(h(θ ∗))+
2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(h(θ ∗))])+
m

∑
i=1

ln(1+ exp[µqλi( fi(h(θ ∗))− εi)])

]
< fk(h(θ))+

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(h(θ))])+
m

∑
i=1

ln(1+ exp[µqλi( fi(h(θ))− εi)])

]
, εi > 0

From lemma 3

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(h(θ ∗))])+
m

∑
i=1

ln(1+ exp[µqλi( fi(h(θ ∗))− εi)])

]
= 0, εi > 0

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(h(θ))])+
m

∑
i=1

ln(1+ exp[µqλi( fi(h(θ))− εi)])

]
= 0, εi > 0

Thus,⇒ fk(h(θ ∗))< fk(h(θ)) or x∗i = hi(θ
∗)⇒ fk(x∗)< fk(x).

With Lemma 3 we have:

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x∗)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x∗)− εi)])

]
= 0, εi > 0

and lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x)− εi)])

]
= 0, εi > 0

Therefore,

fk(x∗)+
2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x∗)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x∗)− εi)])

]
< fk(x)+

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x)− εi)])

]
, εi > 0.

⇒∀x ∈ D,L(x∗)< L(x)

Consequently, x∗ ∈ D is an optimal solution of problem (15).
Now suppose that x∗ is an optimal solution of problem (15), then

⇒∀x ∈ D,L(x∗)< L(x)
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⇒ fk(x∗)+σq

[ p

∑
j=1

[ln((g j(x∗))2 +1 j)]+
m

∑
i=1

[ln((( fi(x∗)− εi))
2 +1 j)]

]
< fk(x)+

σq

[ p

∑
j=1

[ln((g j(x))2 +1 j)]+
m

∑
i=1

[ln((( fi(x)− εi))
2 +1 j)]

]
, εi > 0.

Using Lemma 3

lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x∗)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x∗)− εi)])

]
= 0, εi > 0

and lim
µq 7−→+∞

2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(x)])+
m

∑
i=1

ln(1+ exp[µqλi( fi(x)− εi)])

]
= 0, εi > 0

(28)

⇒ fk(x∗)< fk(x) as x∗ = hi(θ
∗), we have

fk(h(θ ∗))< fk(h(θ))

⇒ fk(h(θ ∗))+
2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(h(θ ∗))])+
m

∑
i=1

ln(1+ exp[µqλi( fi(h(θ ∗))− εi)])

]
<

fk(h(θ))+
2
µq

[ p

∑
j=1

ln(1+ exp[µqλ jg j(h(θ))])+
m

∑
i=1

ln(1+ exp[µqλi( fi(h(θ))− εi)])

]
, εi > 0

From lemma 3
this leads to

∀θ ∈ [0,θmax], L(h(θ ∗))< L(h(θ))

Thus, θ ∗ ∈ [0,θmax] is an optimal solution of problem (27).

Step IV: Resolution
With the problem having a single variable and an unconstrained objective, we use the
Nelder-Mead algorithm to find the θ ∗ = argminL(θ).

Step V: Configuration.
This involves determining the values of the variables of the initial problem through the
relationship:

xi = hi(θ
∗) i = 1,m (29)
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Algorithm 1: Algorithme
Input: functions gi defining the feasible set

X = {x ∈ Rn : g j(x)≤ 0, j = 1, . . . , p}, and objective function
f (x) = ( f1(x), f2(x), · · · , fm(x))⊤.

Output: A discrete approximation S of the complete Pareto set of (1).
1 select a function fk from fi as the priority function;
2 Compute εi = min{ fi(x) : x ∈X } for each i = 1,2,3, i ̸= k;
3 Compute εi = max{ fi(x) : x ∈X } for each i = 1,2,3, i ̸= k;
4 choose the type of penalty function to have either equation (14), (15), (18) or

(21);
5 if we use equation (14) then
6 Choose η such that η ≥ M− fk(x)

p

∑
j=1

g j(x)+
m

∑
i=1

( fi(x)− εi)

with M = max
x∈D

fk(x);

7 else if we use equation (15) then
8 Choose ρq such that lim

q7−→+∞
ρq =+∞;

9 else if we use equation (18) then
10 Choose σq such that lim

q7−→+∞
σq =+∞;

11 else if we use equation (21) then
12 Choose µq such that lim

q7−→+∞
µq =+∞;

13 Set S ← 0;
14 for i=1:n do

15 Set hi(θ) =
1
2
[
(bi−ai)cos(ωiθ +ϕi)+bi +ai

]
;

16 Set xi = hi(θ);

17 Compute f (θ)←− L
(
h1(θ),h2(θ), ...,hn(θ)

)
;

18 for ε ∈ [ε,ε] do
19 Set θ ∗ = argmin

(
f ε(θ)

)
;

20 for i=1:n do
21 Set xi = hi(θ

∗) ;

22 Set x̄ = x and update S ←S ∪{ f (x̄)};
23 return S as a discrete approximation of the complete Pareto set of (1).

3.3. Algorithm

The algorithm of the improved hybrid method is presented as follows:
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3.4. Numerical Experiments

We implement Algorithm 1 with the following parameters: η = 10000, ρ = 100000,
σ = 1000000, µ = 100000, and λ = 1. We chose ten (10) multi-objective test problems
from the literature that have Pareto fronts.

The specifications of the computer used for the experimentation are as follows:
ASUS Processor 11th Gen Intel(R) Core(TM) i3-1115G4 @ 3.00GHz; RAM Memory
8 GB; Operating System Windows 11 / 64 bits. The test problems used are extracted
from the works of Zitzler [24] and also from the works of Deb [25, 27, 28]. The various
problems are presented in Table 1.

Table 1: List of multiobjective optimization problems

Function Sources Types m n Parameters bounds
SCH [13, 23, 25] Convex, Continuous 2 1 x ∈ [−5,5]

Min− ex [13, 23, 26] Convex, Continuous 2 2 x ∈ [0.1,1]× [0,0.5]
Max− ex [13, 23, 27] Concave, Continuous 2 2 x ∈ [0.1,1]× [0,0.5]

ZDT 1 [13, 23, 28] Convex, Continuous 2 30 x ∈ [0,1]30

ZDT 2 [13, 23, 24] Convex, Continuous 2 30 x ∈ [0,1]30

ZDT −n− c [13, 17, 23] Convex, Continuous 2 30 x ∈ [0,1]30

ZDT 6 [10, 13, 23] Convex, Continuous 2 30 x ∈ [0,1]30

SOP [13, 22, 23] Concave, Continuous 2 30 x ∈ [0,1]30

ZDT − linear [13, 22, 23] Convex, Continuous 2 30 x ∈ [0,1]30

ZDT 3 [13, 23, 24] Nonconvex, Discontinuous 2 30 x ∈ [0,1]30

3.4.1. Graphical representation

The graphical results of the various problems are presented in Figures 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, where (a) represents the Lagrangian penalty, (b) corresponds to the exponential,
(c) is for logarithmic, and (d) is for logarithmic-exponential.

3.5. Performance measurement

We compare our algorithm with that of NSGA-II. To do this, we use the convergence
metric γ and the distribution metric ∆. The results are reported in Tables 2 and 3.

3.5.1. Discutions

The results in Table 2 show good convergence of the proposed algorithm for the ten test
problems. The metric values close to zero confirm this convergence. Furthermore, the
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Figure 1: SCH problem Pareto front
Figure 2: Min-ex problem Pareto
front

Figure 3: Front de Pareto du
problème Max-ex

Figure 4: ZDT1 problem Pareto front

Lagrangian and exponential penalty functions yield higher values than the logarithmic,
logarithmic-exponential penalties, and the NSGA-II method for all problems.

The results in Table 3 also demonstrate the good diversity of the generated solutions,
with all values within the interval

]
0,1

[
. The exponential and logarithmic-exponential

functions offer better performance in terms of diversity compared to the Lagrangian,
logarithmic penalties, and the NSGA-II method.
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Figure 5: ZDT2 problem Pareto front
Figure 6: ZDT-n-c problem Pareto
front

Figure 7: ZDT6 problem Pareto front Figure 8: SOP problem Pareto front

In summary, the use of Lagrangian and exponential penalties in the hybrid
MOMA-plus approach improves convergence compared to the logarithmic, logarithmic-
exponential penalties and NSGA-II. However, for diversity, the exponential and
logarithmic-exponential penalties outperform the Lagrangian, logarithmic penalties, and
NSGA-II.

We also compare the performance profiles of the two metrics, namely the metrics γ

and ∆.
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Figure 9: ZDT-linear problem Pareto
front

Figure 10: ZDT3 problem Pareto
front

Figure 11 illustrates the performance of the five optimization methods based on the
convergence criterion γ . The Lagrangian and Exponential methods stand out clearly:
they dominate the other methods with a probability of 0.8 for an interest factor τ < 2,
with a slight dominance of the Exponential method.

Figure 12 highlights the performance in terms of diversity (∆-spread). Here, Expo-
Log, Exponential, and Logarithmic dominate: they ensure an optimal distribution of
solutions on the Pareto front starting from τ ≈ 1.2, with over 90 % success rate. For
τ > 7, methods such as Expo-Log, Exponential, Lagrangian, and Logarithmic show
no significant differences.

Figure 11: Performance profiles of γ Figure 12: Performance profiles of ∆
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Table 2: Performance measurement Values of the convergence metric γ obtained by the
algorithms

Problems Lagrangian Exponential Logarithmic Expo-Log NSGA-II
SCH 2,2104e−3 1,1000e−3 1,0900e−2 1,090e−2 3.2700e−2

Min-ex 3,6200e−3 2,4000e−3 4,6000e−4 2,3000e−3 8.2500e−2

ZDT1 5,4732e−4 3,4066e−4 5,7311e−4 3,3066e−4 2.3600e−2

Max-ex 2,2114e−6 4,6000e−6 3,7000e−3 2,5000e−3 2.6900e−2

ZDT2 1,3000e−4 1,3000e−4 7,2391e−2 7,2391e−2 2.6900e−2

ZDT-n-c 7,9359e−4 5,7053e−4 6,27316e−4 5,9432e−4 2.1100e−2

ZDT6 3,6511e−5 3,6530e−5 4,7596e−5 5,7053e−3 2.4300e−2

SOP 3,2008e−4 3,6732e−4 1,1000e−3 3,6205e−4 1.0260e−1

ZDT-linear 8,1037e−04 6.5037e−04 6,5309e−04 6,4885e−04 2.5600e−2

ZDT3 2,6644e−4 2,2600e−4 2,2600e−4 2,1598e−4 4.100e−3

Table 3: The values of the distribution metric ∆ obtained by the algorithms

Problems Lagrangian Exponential Logarithmic Expo-Log NSGA-II
SCH 0,4300 0,4300 0,6650 0,7924 0,8169

Min-ex 0,6789 0,1289 0,7329 0,1216 0,8506
ZDT1 0,7106 0,2573 0,2206 0,2624 0,5551

Max-ex 0,6667 0,2644 0,0946 0,0953 0,8350
ZDT2 0,4326 0,4326 0,2525 0,2517 0,7320

ZDT-n-c 0,2589 0,2094 0,2410 0,2064 0,6628
ZDT6 0,6997 0,6997 0,6096 0,6967 0,8975
SOP 0,4084 0,0899 0,1247 0,1620 0,8489

ZDT-linear 0,0530 0,0393 0,0409 0,0413 0,5965
ZDT3 0,7136 0,4110 0,6859 0,6813 0,7479

4. Conclusion

In this article, we conducted a theoretical and numerical study on the effect of La-
grangian, logarithmic, exponential, and logarithmic-exponential penalties in the hybrid
MOMA-plus method for solving multi-objective optimization problems. The analysis
showed that exponential and logarithmic-exponential penalty functions perform better
than Lagrangian and logarithmic penalties in terms of solution diversity. For the con-
vergence of the generated solutions, the Lagrangian and exponential penalty functions
yield better results than the logarithmic and logarithmic-exponential penalties. Finally, a
comparison with the NSGA-II algorithm indicates that the latter is outperformed by the
hybrid MOMA-plus method for all four penalty functions.
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Future work will focus on applying the hybrid MOMA-plus method to solve con-
strained dynamic problems, as presented in [29].
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[11] S. Mirjalili, & A. Gandomi, Seyedeh Zahra Mirjalili, Shahrzad Saremi, Hossam
Faris, Seyed Mohammad Mirjalili.(2017). Salp Swarm Algorithm: A bio-inspired
optimizer for engineering design problems. Adv. Eng. Softw., 114 pp. 163-191.

[12] N. Khodadadi, M.Azizi, S. Talatahari, & P. Sareh. (2021). Multi-objective crystal
structure algorithm (MOCryStAl): Introduction and performance evaluation. IEEE
Access, 9 pp. 117795-117812.

[13] S. Huband, P. Hingston, L. Barone, & L. While. (2006). A review of multiobjective
test problems and a scalable test problem toolkit. IEEE Transactions On Evolution-
ary Computation, 10, 477-506.

[14] A.Compaoré , K. Somé, J. Poda, & B. Somé. (2018). Efficiency of MOMA-Plus
method to solve some fully fuzzy LR triangular multiobjective linear programs.
Journal Of Mathematics Research, 10, 77-87.
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