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On Homogeneous Limit Integral Equations of
Fredholm Type in Spaces of Bounded Functions
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Abstract. In this work, we consider homogeneous limit integral equations of Fredholm-
type in the class of bounded continuous functions. We develop a corresponding theory
that establishes fundamental results analogous to Fredholm theory, similar to those in
the theory of limit integral equations in Bohr spaces. The main difference compared to
the Bohr space case lies in the fact that, in the present setting, it is not possible to reduce
the problem to ordinary integral equations on the unit cube.
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1. Introduction

In [1, 2], the question on Fredholm-type limit integral equations in the Bohr
class of almost periodic functions was studied. In these works, the main results
of Fredholm theory are established for the class of almost periodic functions.
This program was successfully carried out due to the possibility of reducing the
problem to a family of ordinary Fredholm-type integral equations on a multidi-
mensional unit cube. In [3], some results of Fredholm theory were studied in
the context of limit integral equations, and solutions to these equations were
obtained using repeated kernels. Interesting applications of the theory of limit
integral equations are presented in [4, 5], where analogs of certain boundary
problems are introduced and solved by constructing analogs of Green’s functions,
thereby reducing the problems to limit integral equations. Here, one considers
a new approach consisting in obtaining solutions as a limit of approximate solu-
tions for special ordinary equations or systems of equations. Here, the class of
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almost periodic functions plays an essential role, in which the problems are stud-
ied. It is well known that standard differential equations may not be solvable
in Bohr space [6]. It is an interesting problem to describe the functions defined
in the real line or in intervals with an arbitrary large length by equations given
in bounded intervals [12],[13],[14],[15]. Special properties of Bohr space demand
consideration of modified boundary problems for which it is possible to find many
applications in various areas.

Despite what was said above, such a reduction does not work in the case of
[7]. The main result on the existence of solutions and a formula for the solutions
of limit integral equations was established in the case of bounded continuous
functions on the real axis (or on the half real line). As in the previous case, we
use Theorem 1 [7] as a key auxiliary result.

Consider a homogeneous limit integral equation of the form:

φ(x) = λ lim
T→∞

1

T

∫ T

0
K(x, ξ)φ(ξ)dξ (1)

In the ordinary case,this equation is called a Fredholm equation of the second
kind. It is clear that the equation has a trivial solution ψ(x) = 0, x ∈ R+, where
we use the notation R+ = {x|x ≥ 0}. As the operator on right hand side of the
equation (1) is a linear operator, then the solution set of the equation forms a
linear subspace in the space CB(R+), i. e. every linear combination of solutions
with real coefficients will be solution again. In [3], the case of such λ for which
D(λ) ̸= 0, was studied completely. Here we consider the case D(λ) = 0, and
we shall investigate only non-trivial solutions. The basic question consists in
studying the existence of solutions of the equation (1). Note that here we do not
discuss the uniqueness of solutions, in general, due to fact that the limit in our
case is taken over some unbounded sequence of real numbers Tm, set beforehand.
Variation of numbers in this sequence can change solutions.

2. Introduction of some analogues and their properties for
Fredholm functions

As it was observed in [3], considering the equations of the form (1) we shall
formulate it as a problem: there exists a sequence of real numbers (Tm), 1 < T1 <
T2 < · · · such that the equation

φ(x) = λ lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)φ(ξ)dξ (2)

has a non-zero solution φ(x) ∈ CB(R+).
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In [1, 3], there were introduced following analogs for Fredholm functions from
[8, 9] which play an essential role in investigations of the equation (1):

D(λ) = 1 +

∞∑
n=1

bnλ
n

n!
,

with

bn = (−1)n lim
m→∞

1

Tn
m

×

×
∫ Tm

0
· · ·

∫ Tm

0

∣∣∣∣∣∣∣∣∣
K(ξ1, ξ1) K(ξ1, ξ2) · · · K(ξ1, ξn)
K(ξ2, ξ1) K(ξ2, ξ2) · · · K(ξ2, ξn)

...
...

. . .
...

K(ξn, ξ1) K(ξn, ξ2) · · · K(ξn, ξn)

∣∣∣∣∣∣∣∣∣dξ1dξ2 · · · dξn; (3)

also

D(x, y;λ) = λK(x, y) +
∞∑
n=1

(−1)n
Qn(x, y)λ

n+1

n!
;x, y ∈ R,

where

Qn(x, ξ) = lim
m→∞

1

Tn
m

×

×
∫ Tm

0
· · ·

∫ Tm

0

∣∣∣∣∣∣∣∣∣
K(x, ξ) K(x, ξ1) · · · K(x, ξn)
K(ξ1, ξ) K(ξ1, ξ1) · · · K(ξ1, ξn)

...
...

. . .
...

K(ξn, ξ) K(ξn, ξ1) · · · K(ξn, ξn)

∣∣∣∣∣∣∣∣∣ dξ1 · · · dξn. (4)

Here 1 < T1 < T2 < · · · is some unbounded sequence of real numbers which, in
general, could be set freely.

Let us briefly remind some features of defining of the functions D(λ) and
D(x, y;λ). In [3], for this purpose, taking some sequence (Tm), one shows that
first function is entire, and the series defining it converges uniformly. At the same
time, the series for D(x, y;λ) also converges uniformly for every compact set of
pairs (x, y). Defined sequence (Tm) or its any subsequence can be taken as an
initial sequence used above.

Denoting by Dm(λ) and Dm(x, y;λ) sums of corresponding series without
passing to the limit in (3) and (4), we find Fredholm functions in ordinary mean-
ing. To avoid the influence of the parameter T , we transform the given equation
by following way. Taking some λ, being not a root of the equation D(λ) = 0,
consider the equation

ρ(x) = h(x) + λ
1

T

∫ T

0
K(x, ξ)ρ(ξ)dξ =
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= h(uT ) + λ

∫ 1

0
K(Tu, Tξ)ρ(Tξ)dξ = g(u) + λ

∫ 1

0
KT (u, ξ)ρ(Tξ)dξ;

here in the last chain of the previous equality we have denoted KT (u, ξ) =
K(Tu, Tξ). So, we have a new equation

ϕ(u) = g(u) + λ

∫ 1

0
KT (u, ξ)ϕ(ξ)dξ,

where ϕ(u) = ρ(Tu) and g(u) = h(Tu). This is a Fredholm-type equation which
has unique solution, if λ is not a root of the Fredholm determinant corresponding
to equation found above. In [3], it was established that this function, for T = Tm,
coincides with Dm(λ), defined above.

Analizing definition and construction of analogs for Fredholm functions in [3,
p.293], we see that at first one must take some unbounded sequence of positive real
numbers M1 < M2 < · · · . Then, it required to define a sequence of positive real
numbers tending to zero ε1 > ε2 > · · · . Now, we apply the theorem of Hurwitz
[10, p.128]. Note that every bounded domain can include finite number of roots of
entire function, only, and zeroes of such function have not any finite limit points.
Suppose that λ′ is not a root of the function D(λ). So, |λ′ − λ0| ≥ εN , where λ0
is nearist to λ′ root of the function D(λ). In accordance with this theorem, for
every natural n > N , such that εN > 3εn, in the neighborhood |λ − λ0| ≤ εn of
any root λ1 of the function Dn(λ), placed in the closed disc |λ| ≤ Mn, we have
|λ′ − λ1| ≥ 2εn. So, for all n ≥ N we have Dr(λ

′) ̸= 0. Applying now results
of ordinary Fredholm theory, we obtain the sequence of Theorem 1 of the work
[3], to find the solution of the equation (1.2) [2], for λ = λ′. Essential role, for
completing of the proof of this theorem, plays the theorem from [1] on existing
of uniformly converging subsequences for equicontinuous sequence of functions.

Let us establish now analogs for some relations from ordinary Fredholm the-
ory.

Lemma 1. There exists an unbounded sequence (Tm) of positive real numbers
such that for real x, y the following relation is satisfied:

D(x, y;λ) = λD(λ)K(x, y) + λ lim
m→∞

1

Tm

∫ Tm

0
K(u, y)D(x, u;λ) du; x, y ∈ R.

Proof. The functions D(λ) and D(x, y;λ) are defined by power series above.
By this reason we must transform the coefficients of these power series for obtain-
ing relations with respect to the parameter λ. For this purpose, in the right-hand
side of the equality (4), take the expansion of the determinant with respect to
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entries of the first column:∣∣∣∣∣∣∣∣∣
K(x, ξ) K(x, ξ1) · · · K(x, ξn)
K(ξ1, ξ) K(ξ1, ξ1) · · · K(ξ1, ξn)

...
...

. . .
...

K(ξn, ξ) K(ξn, ξ1) · · · K(ξn, ξn)

∣∣∣∣∣∣∣∣∣ =

= K(x, ξ)

∣∣∣∣∣∣∣
K(ξ1, ξ1) · · · K(ξ1, ξn)

...
. . .

...
K(ξn, ξ1) · · · K(ξn, ξn)

∣∣∣∣∣∣∣+

+

n∑
i=1

(−1)iK(ξi, ξ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K(x, ξ1)
K(ξ1, ξ1)

· · ·
· · ·

K(x, ξn)
K(ξ1, ξn)

· · ·
K(ξi−1, ξ1)

· · ·
· · ·

· · ·
K(ξi−1, ξn)

K(ξi+1, ξ1)
· · ·

K(ξn, ξ1)

· · ·
· · ·
· · ·

K(ξi+1, ξn)
· · ·

K(ξn, ξn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In every determinant of the sum over i, we move i-th column to the first place,
performing sequential replacement with the column before it. After moving i-th
column to the first place, the sign before the integral stands equal to (−1)2i−1 =
−1. After this procedure, we find one and the same determinants. Substituting
obtained relations in the expressions (3) and (4), we get:

∫ Tm

0
· · ·

∫ Tm

0

∣∣∣∣∣∣∣∣∣
K(x, ξ) K(x, ξ1) · · · K(x, ξn)
K(ξ1, ξ) K(ξ1, ξ1) · · · K(ξ1, ξn)

...
...

. . .
...

K(ξn, ξ) K(ξn, ξ1) · · · K(ξn, ξn)

∣∣∣∣∣∣∣∣∣ dξ1 · · · dξn =

=

∫ Tm

0
· · ·

∫ Tm

0
K(x, ξ)

∣∣∣∣∣∣∣
K(ξ1, ξ1) · · · K(ξ1, ξn)

...
. . .

...
K(ξn, ξ1) · · · K(ξn, ξn)

∣∣∣∣∣∣∣ dξ1 · · · dξn−

−n
∫ Tm

0
· · ·

∫ Tm

0
K(ξi, ξ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K(x, ξ1)
K(ξ1, ξ1)

· · ·
· · ·

K(x, ξn)
K(ξ1, ξn)

· · ·
K(ξi−1, ξ1)

· · ·
· · ·

· · ·
K(ξi−1, ξn)

K(ξi+1, ξ1)
· · ·

K(ξn, ξ1)

· · ·
· · ·
· · ·

K(ξi+1, ξn)
· · ·

K(ξn, ξn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
dξ1 · · · dξn.
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So,

Qn(x, ξ) = bnK(x, ξ)− n lim
m→∞

1

Tm

∫ Tm

0
Qn−1(x, t)K(t, ξ) dt. (5)

Substituting this expression in the definition of the series for D(x, y;λ), and
using the relation (3), we find out:

D(x, y;λ) = λK(x, y) +
∞∑
n=1

(−1)n
Qn(x, y)λ

n+1

n!
=

= λK(x, y)+
∞∑
n=1

(
(−1)n

λn+1

n!
bnK(x, y)− n lim

m→∞

1

Tm

∫ Tm

0
Qn−1(x, t)K(t, y)dt

)
.

Now, we use (3). Then putting Q0(x, y) ≡ 0, and using reasonings of the
work [2], we obtain:

D(x, y;λ) = D(λ)K(x, y) + λ lim
m→∞

1

Tm

∫ Tm

0
D(x, t, λ)K(t, y) dt. (6)

Proof of the Lemma 1 is finished.
Let’s denote:

k(x, y, λ) =
D(x, y, λ)

λD(λ)
.

Then the previous relation acquires the form:

k(x, y;λ)−K(x, y) = λ lim
m→∞

1

Tm

∫ Tm

0
K(u, y) k(x, u;λ) du; x, y ∈ R. (7)

The last equality shows that the ratio of two entire functions k(x, u;λ) serves as
a solution of the equation (3) of the work [2], with the function f(x) = K(x, y)
at the right-hand side.

Definition 1. We call the function k(x, u;λ) as the function relative to
−K(x, y), and we call the function

r(x, u;λ) = λk(x, u;λ) =
D(x, y, λ)

D(λ)

to be resolvent for the equation (1).
In contrary to the theorem 2 of the work [7], we can not state, if λ is not a

root of the function D(λ), that the relative function is unique. It is clear that
the values of T sets up some sequence (Tm) which is defined from the equation,
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the construction of which is clarified above. Clearly, the limit can be different
depending on the taken subsequence.

Now we can formulate the analog of the first theorem of Fredholm from [1].
Lemma 2. Let λ be a real number such that D(λ) ̸= 0. Then, there exists

a sequence (Tm) such that the equation (1) has a solution belonging to CB(R+)
given by the equality

φ(x) = f(x) + λ lim
m→∞

1

Tm

∫ Tm

0
f(ξ)k(x, u;λ)dξ. (8)

Theorem 1. Let a real number λ be distinct from any roots of the function
D(λ) , and the function K(x, y) be some symmetric bounded function from the
class CB(R+ × R+), and k(x, u;λ) be relative to him. If the function φ(x) is a
solution of the equation

φ(x)− f(x) = λ lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)φ(ξ)dξ

then the function f(x) is a solution of the equation

f(ξ)− φ(ξ) = λ lim
m→∞

1

Tm

∫ Tm

0
k(ξ, u;λ)f(u)du.

Proof. Proving of the theorem is based on the scheme of the proof for
corresponding theorem from [2]. Multiplying the first equation in Theorem 1 by
the function k(x, u;λ), take mean value with respect x:

λ lim
m→∞

1

Tm

∫ Tm

0
k(x, u;λ)f(x)dx = λ lim

m→∞

1

Tm

∫ Tm

0
k(ξ, x;λ)φ(x)dx−

−λ2 lim
m→∞

1

Tm

∫ Tm

0
k(x, u;λ)dx lim

m→∞

1

Tm

∫ Tm

0
K(x, ξ)φ(ξ)dξ.

Changing the order of integration and limiting processes, we can rewrite the
second integral in the right-hand side of the last equality as follows

λ lim
m→∞

1

Tm

∫ Tm

0
φ(ξ)dξ lim

m→∞

λ

Tm

∫ Tm

0
K(x, ξ)k(x, u;λ)dx.

The inner mean value in the right hand-side can be substituted by the left hand-
side of the equation (8). Now, using conditions of the theorem, represent the last
expression as below

λ lim
m→∞

1

Tm

∫ Tm

0
φ(ξ)(k(u, ξ;λ)−K(u, ξ))dξ =
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= λ lim
m→∞

1

Tm

∫ Tm

0
φ(ξ)(k(u, ξ;λ))dξ − (φ(u)− f(u)).

So, we have

λ lim
m→∞

1

Tm

∫ Tm

0
k(x, u;λ)f(x)dx = f(u)− φ(u),

as stated in the theorem. Theorem 1 is proven.
Definition 2. Roots of the equation D(λ) = 0 are called characteristic

numbers of the equation or the kernel K(x, y).
As the function D(λ) is an entire function, then it has no more than countable

set of complex roots with finite multiplicities. Relation, defined by the formula
of Theorem 2 of the work [1], cannot be applicable when the number λ is a
characteristic number.

Theorem 2. Every characteristic number of the limit integral equation is a
pole of the resolvent function r(x, u;λ).

Proof. Taking into account the expression (6) and letting x=y, we obtain:

D(x, x;λ) = λD(λ)K(x, x) + λ lim
m→∞

1

Tm

∫ Tm

0
K(u, x)D(x, u;λ) du; x ∈ R.

From the equality (4), it follows that if to put x = y in the formula for Qn(x, y),
and take the mean value, we obtain (−1)n+1 bn+1:

(−1)n+1 bn+1 = lim
m→∞

1

Tm

∫ Tm

0
Qn(x, x) dx. (9)

Now, every coefficient of the series D(λ) and D(x, u;λ) may be calculated using
relations (5) and (9), taking initial values b0 = 1, Q0(x, y) = K(x, y).

For the proof of our theorem, first we shall transform the formulae obtained
above. First of all, we note that

lim
m→∞

1

Tm

∫ Tm

0
D(x, x, λ) dx = lim

m→∞

1

Tm

∫ Tm

0
(

∞∑
n=0

(−1)n
λn+1Qn(x, t)

n!
) dx =

= −
∞∑
n=0

bn+1

n!
λn+1 = −λ

∞∑
n=0

bn+1

n!
λn.

Take derivative of D(λ):

dD( λ)

d λ
=

∞∑
n=0

bn+1λ
n

n!
= −λ lim

m→∞

1

Tm

∫ Tm

0
D(x, x, λ) dx. (10)
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Divide now every part of the last equality by D(λ). Then, we find a logarith-
mic derivative of the function D(λ) expressed by mean values for the functions
k(x, x, λ) and r(x, x, λ), as below:

dlnD( λ)

d λ
= − lim

m→∞

1

Tm

∫ Tm

0
k(x, x, λ) dx = −λ lim

m→∞

1

Tm

∫ Tm

0
r(x, x, λ) dx.

Suppose that λ is not a pole for the resolvent. Then, λ must be a root of the
numerator of the resolvent, moreover, order p of multiplicity of this root is not
less than the order q for multiplicity of λ as a root of D(λ). So, q ≤ p , and from
(8) we find, applying term by term differentiating:

dh+1D( λ)

d λh+1
= − lim

m→∞

1

Tm

∫ Tm

0

dh

d λh
D(x, x, λ) dx.

Taking h = 1, 2, . . . , p− 1, one has

dh

d λh
D(x, x, λ) = 0, x ∈ R

Therefor,
dh+1D( λ)

d λh+1
= 0,

from which it follows that q ≥ p+ 1. This is a contradiction. This completes the
proof of Theorem 2.

3. The Case of Homogeneous Equations

In [1], it was studied the Fredholm-type limit integral equation in Bohr spaces
of almost periodic functions for the case of non-homogeneous equations with val-
ues of the parameter satisfying the equation D(λ) = 0. In the case of homoge-
neous equations, in accordance with the results of the work [2], it is shown that
the equation has trivial solutions only, when D(λ) ̸= 0 .

In this section, we consider homogeneous equations and find their solutions.
Clearly, the equation (1) has the trivial solution φ(x) = 0, which is a bounded
function. But only non-trivial solutions of this equation are of primary interest.
It is obvious that when φ1(x), . . . , φk(x) are bounded solutions of a homogeneous
equation, then every linear combination of these functions will be a solution of
the equation, also. So, the set of solutions forms a linear space (zero solution
completes the set of solutions to a linear space). As in [2], we show that this is a
finite-dimensional linear space, after introducing below some equivalence relation.
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Theorem 3. If the number λ is a characteristic number of the kernel K(u, x),
then the homogenous equation (1) has nonzero solutions.

Proof. Consider the equality

D(x, y;λ) = λD(λ)K(x, y) + λ lim
m→∞

1

Tm

∫ Tm

0
K(u, y)D(x, u;λ) du; x, y ∈ R

of the Lemma 1. If λ is a characteristic number, then

D(x, y;λ) = λ lim
m→∞

1

Tm

∫ Tm

0
K(u, y)D(x, u;λ) du.

So, the function D(x, y;λ) is a solution of the equation (1). But this solution is
not of interest, if this function equals to zero identically. By this reason, we must
find non-zero solutions. Suppose that D(λ0) = 0 for some real λ0. Since D(λ) is
an entire function, then we can expand it into power series:

D(λ) = ds(λ− λ0)
s + ds+1(λ− λ0)

s+1 + · · · ;

here s is a natural number. The function D(x, y;λ) is an entire function, and
therefore, can be expanded into power series:

D(x, y, λ) = ar(x, y)(λ− λ0)
r + ar+1(x, y)(λ− λ0)

r+1 + · · · ; r ≥ 0,

for which the number λ0 can also be a root.
Now from (10) we deduce:

−dD( λ)

d λ
= cr(λ− λ0)

r + cr+1(λ− λ0)
r+1 + · · · ,

where

cn = lim
m→∞

1

Tm

∫ Tm

0
an(u, u) du;n = 0, 1, . . . .

The multiplicity of the root λ0 in the left hand-side is equal to s− 1 (we suppose
that λ ̸= 0, if not then the integral equation has a trivial solution). Since the
right hand-side has zero λ0 of multiplicity r, then s− 1 ≥ r.

Using reasonings of the work [10], we arrive at the equation:

ar(x, y) = λ lim
m→∞

1

Tm

∫ Tm

0
K(u, y)ar(x, y)du .

The function ar(x, x) at some x is distinct from zero. So, the function ar(x, y) is
not identically zero, for some y = y0. The proof of the theorem 3 is finished.

Consequence. The equation (1) either has not any solutions or it has
infinitely many solutions, when λ = λ0.

If D′(λ0) ̸= 0, then the function D(x, y;λ0) is not identically zero for some
y=y0. Therefore, in this case the function D(x, y;λ) is a solution of the homoge-
nous equation (1), for λ = λ0.
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4. Orthogonal Systems in the Space of Bounded Functions

Definition 3. We say that bounded functions f1(x) and f2(x) are orthogonal
if there exists a sequence of positive numbers 0 < T1 < T2 < · · · such that

lim
m→∞

1

Tm

∫ Tm

0
f1(x)f2(x)dx = 0.

System of bounded functions f1(x), f2(x),. . . , is called orthogonal, if there exists
a sequence of positive numbers of the form 0 < T1 < T2 < · · · such that for every
pair of different indices i ̸= j following relation is valid:

lim
m→∞

1

Tm

∫ Tm

0
fi(x)fj(x)dx = 0.

We call the expression

∥f∥ =

(
lim

m→∞

1

Tm

∫ Tm

0
|f(x)|2 dx

)1/2

to be the norm of the bounded function f . If the norm of bounded function is
equal to 1, then this function is called normalized.

From vanishing of the norm, in contrary with [2], we can not state that the
function is identically zero. The set of bounded functions

{g(x) ∈ CB(R+) : ||f(x)− g(x)|| = 0}

we call as an equivalence class of the function f(x). If the pair of functions are
orthogonal, then equivalent to them functions are orthogonal, also. This follows
from the reasonings below. Let the functions f1(x) and f2(x) be equivalent and
f1(x) is orthogonal to the function f(x):

lim
m→∞

1

Tm

∫ Tm

0
f(x)f1(x)dx = 0,

lim
m→∞

1

Tm

∫ Tm

0
|f1(x)− f2(x)|2dx = 0.

Then,

lim
m→∞

1

Tm

∫ Tm

0
f(x)f2(x)dx =

lim
m→∞

1

Tm

∫ Tm

0
f(x)f1(x)dx+ lim

m→∞

1

Tm

∫ Tm

0
f(x)(f2(x)− f1(x))dx.
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Since ∣∣∣∣ 1

Tm

∫ Tm

0
f(x)(f2(x)− f1(x))dx

∣∣∣∣ ≤
≤ 1

Tm

(∫ Tm

0
|f(x)|2dx

)1/2(∫ Tm

0
|f2(x)− f1(x)|2dx

)1/2

,

then our statement is true.
Let us consider a homogenous equation

f(x) = λ lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)f(ξ)dξ,

Let λ = λ0 be some characteristic number for which some system of orthogo-
nal solutions f1(x), f2(x), . . . is given. We call these solutions as characteristic
functions. In accordance with the said above, a set of solutions form class of
equivalence. We may suppose all of these functions are normalized, also.

Theorem 4. The number of various classes of normalized characteristic func-
tions corresponding to a given characteristic number λ0, satisfies the inequality:

n ≤ λ20 lim
m→∞

1

T 2
m

∫ Tm

0

∫ Tm

0
(K(x.y))2dxdy.

Proof. Consider the limit

lim
m→∞

1

Tm

∫ Tm

0

∣∣∣∣∣
k∑

n=1

fn(y) lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)fn(ξ)dξ

∣∣∣∣∣
2

dy =

lim
m→∞

1

Tm

∫ Tm

0

k∑
r=1

fr(y) lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)fr(ξ)dξ

k∑
s=1

fs(y)×

× lim
m→∞

1

Tm

∫ Tm

0
K(x, θ)fs(θ)dθdy.

Performing transformations analogical to made in [2], we complete the proof of
Theorem 4.

Theorem 5. Characteristic functions related to various characteristic num-
bers are orthogonal.

Proof. Let functions f1(x), f2(x) be characteristic functions relative to char-
acteristic numbers λ1, λ2, correspondingly. Then we have

f1(x)f2(x) = λ1 lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)f1(ξ)f2(x)dξ.
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Repeating the proof of Theorem 5 of [2] we complete the proof.
Theorem 6. If the kernel of the equation is symmetric, then all characteristic

numbers are real.
Proof. Consider the equation

f(x) = λ lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)f(ξ)dξ,

with real symmetric kernel. Taking complex conjugate we get

f(x) = λ lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)f(ξ)dξ;

so, the characteristic function relative to the characteristic number λ is complex
conjugate to f(x). Supposing that λ is not real, we see that λ ̸= λ. By Theorem
5

lim
m→∞

1

Tm

∫ Tm

0
f(x)f(x)dx = lim

m→∞

1

Tm

∫ Tm

0
⌈f(x)⌉2dx = 0,

which is not true. The got contradiction completes the proof of Theorem 6.
As in the case of ordinary integral equations, in the case of limit integral

equations with symmetric kernel, there are only real characteristic numbers. The
classes of characteristic functions set up a linear space with finite dimension. In
Theorem 4, one established an estimate for this dimension. The characteristic
functions, relative to different characteristic numbers, are orthogonal. Since Fred-
holm functions are entire functions, then the set of characteristic numbers is a
countable set. Therefore, the classes of characteristic functions set up a count-
able set. Let the sequence f1(x), f2(x),. . . be a complete system of orthogonal
functions (that is, from every class of equivalence is taken only one solution)
satisfying following homogenous limit integral equation

f(x) = λ lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)f(ξ)dξ,

and λ1, λ2,. . . be sequence of all characteristic numbers. Suppose that the series

∞∑
m=1

fm(y)fm(x)

λm

uniformly converges in the product R+×R+; here the characteristic numbers are
taken with their multiplicities.

Theorem 7. Suppose that the limit integral equation (1) has non-zero char-
acteristic numbers λn, n = 1, 2, ... with complete orthogonal system of normalized
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characteristic functions fn(x). Then:
1) a new kernel

L(x, y) = K(x, y)−
∞∑
n=1

fn(y)fn(x)

λn

has only characteristic functions equivalent to zero;
2) following relation holds true:

lim
m→∞

1

T 2
m

∫ Tm

0

∫ Tm

0
(K(x, y))2dxdy ≥

∞∑
n=1

λ2n.

Proof. Consider a new kernel

L(x, y) = K(x, y)−
∞∑

m=1

fm(y)fm(x)

λm
.

This is a symmetric kernel. If this function is not equal to zero, then it has
non-zero characteristic number µ. Take any characteristic function

f(x) = µ lim
m→∞

1

Tm

∫ Tm

0
L(x, ξ)f(ξ)dξ.

Let us take mean value

lim
m→∞

1

Tm

∫ Tm

0
fm(y)f(y)dy =

= µ lim
m→∞

1

Tm

∫ Tm

0
lim

m→∞

1

Tm

∫ Tm

0

{
K(x, y)−

∞∑
n=1

fn(y)fn(x)

λn

}
fm(y)f(y)dydx.

Performing term by term integration, we get following expression in the right
hand-side:

µ

λm
lim

m→∞

1

Tm

∫ T

0
fm(ξ)f(ξ)dξ − µ

λm
lim
T→∞

1

T

∫ Tm

0
fm(ξ)f(ξ)dξ = 0.

Then from previous relation it follows that the function f(x) is orthogonal to
every function from the set of characteristic functions. So,

f(x) = µ lim
m→∞

1

Tm

∫ Tm

0
L(x, ξ)f(ξ)dξ =

= µ lim
m→∞

1

Tm

∫ Tm

0

{
K(x, y)−

∞∑
n=1

fn(y)fn(x)

λn

}
f(ξ)dξ =
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= µ lim
m→∞

1

Tm

∫ Tm

0
K(x, ξ)f(ξ)dξ.

These equalities show that µ is a characteristic number and the characteristic
function f(x) must be equivalent to a linear combination of several number of
characteristic functions relative to this characteristic number:

s∑
j=1

cjfj(x).

The function f(x) is orthogonal to all functions. Then mean value for absolute
value of this function is equal to zero:

lim
m→∞

1

Tm

∫ Tm

0
f(ξ)fj(ξ)dξ = 0.

We have proved the statement 1) of the theorem.

Consider the repeated mean value:

lim
m→∞

1

T 2
m

∫ Tm

0

∫ Tm

0
(L(x, y))2dxdy ≥ 0.

Opening the square of parentheses, integrate term by term. Since

lim
m→∞

1

T 2
m

∫ Tm

0

∫ Tm

0

∞∑
n=1

λ−1
n fn(x)K(x, y)dxfn(y)dy =

= lim
m→∞

1

Tm

∫ Tm

0

∞∑
n=1

λ−2
n f2n(x)dx =

∞∑
n=1

λ−2
n ,

then

lim
m→∞

1

T 2
m

∫ Tm

0

∫ Tm

0
(L(x, y))2dxdy =

= lim
m→∞

1

T 2
m

∫ Tm

0

∫ Tm

0
(K(x, y))2dxdy −

∞∑
n=1

λ−2
n .

So, the relation 2) of Theorem 7 is true.

In conclusion, the authors express their sincere thanks to Professor M. Bayra-
moglu for useful discussions.
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